“设计人生”通过精心收集,向本站投稿了12篇泡沫铝在航天工程中的应用展望论文,下面是小编为大家带来的泡沫铝在航天工程中的应用展望论文,希望大家能够喜欢!

篇1:泡沫铝在航天工程中的应用展望论文
泡沫铝在航天工程中的应用展望论文
1 材料发展现状
通常金属材料中夹杂的气泡都被视为材料结构上的缺陷, 但结构中充满规则气泡的金属作为一种新型的结构材料已经得到越来越广泛的关注。具有该结构的金属被称为泡沫金属。近年来对泡沫金属的注意力主要集中在泡沫铝和铝合金的制备、性能分析及推广应用上。美国、英国等西方发达国家在这方面的投入很多, 1 9 9 6 年12 月, 美国高技术委员会和投资15 0 0 万美元将泡沫金属项目列为最大的材料项目之一, 调动哈佛、M I T、剑桥等研究机构,以结构性能设计方法为研究对象, 进行深入研究。欧共体支持德国以汽车以及高技术为对象展开对该材料的制备和应用研究。现在, 国外正在进行该种材料在高科技应用和民用方面的探索性工作。国内, 东南大学材料工程系历经十二年, 在多方支持下, 从基础制备研究入手, 发展到材料的应用研究及产业化阶段。1 9 9 9 年、2 0 0 0 年及2 0 01 年东南大学还作为中国的唯一代表应邀参加了三次国际学术会议。他们的制备工艺以及产品的质量等在国际同行业中已经处于先进行列, 美国的波音格罗曼公司对其提出了需求。
2 泡沫铝应用前景及发展动向
泡沫铝同时具有多项优异性能, 应用前景十分光明, 在汽车、舰船、航空、航天、兵器、电子、环保、交通、建材等方面都将大有作为。特别是在航天工程中, 同时具有多项优良性能的泡沫铝正是航夭工程一直追寻的理想结构材料。例如, 目前运载火箭的运载能力虽相对过去已经大大提高, 但实际运载能力还是很有限的, 因此减轻航天器的重量是航天产品设计的重要课题之一。即便是在火箭运载力足够的条件下, 如能减轻结构重量, 增加有效载荷则可以大大降低发射费用。据分析, 目前每送入轨道1 公斤有效载荷, 需发射费用上万美元。如果把泡沫铝用在航天器上, 经济效益将是显而易见的。泡沫铝在航天方面的应用是美国重点研究的方向之一。在剑桥国际会议上, 美国透露了以下一些应用取向: 支撑高精度的一般光学系统; 用于光学系统大型支架; 取代蜂窝铝以承受多向应力, 用作航天器承力筒; 空间热交换器等等。目前已经公开的应用方向主要是美国以航天、海洋、及个高技术领域为应用方向; 日本以静态、准静态地面降噪、建筑、隔热为主要应用方向; 德国以汽车、快艇等交通工具为应用对象。
3 我国航天工程中应用设想
国内, 泡沫铝的应用在其它技术领域已经开始, 并取得了较满意的结果。在航夭方面尚处在起步阶段, 由于种种原因, 目前只是进行一些探索性的讨论和研究。相比较, 美、英、日、德、法等国已经把航天作为泡沫金属的最主要应用领域, 正在大力发展。为了赶上国际发展潮流,根据国内外的研究结果和应用取向, 结合特定航天器设计中存在的问题, 这里对泡沫铝的应用可能作以下几方面的设想。
3.1 防振座椅载人飞船在发射和回收过程中, 航天员固定在座舱座椅上, 由于两过程的冲击振动较强,航天器工程1 0 卷对航天员健康十分不利。目前采取的减振措施一是座椅支架装有缓冲器, 二是座椅上有防振垫。其中支架缓冲器只对较大的冲击减振效果明显, 防振垫的作用又比较有限, 综合减振效果并不好。现在可以考虑将座椅材料换成泡沫铝, 利用该材料的超轻型、阻尼、冲击吸能特性, 再辅以减振垫, 即减轻了座椅重量, 又能够有效优化航天员所处的力学环境, 可谓一举两得。
3.2 抗冲击舱底某航天器的回收舱在返回着陆时的正常姿态是舱底着地, 为了缓冲着陆时的冲击, 舱底的结构设计成中间辅以加强筋的双层蒙皮形式, 舱底的局部图如图1 所示, 内层铝蒙皮厚度为5~, 该层既要完成回收舱密封功能, 又要用来支撑外部结构。外层蒙皮厚度也为4 一5~,中间的加强筋为径向放射状分布的析条, 析条高20 m m , 彬条与内层蒙皮采用焊接连接, 外层蒙皮与析条用螺钉连接。这一结构形式的p七I k g c/ m, 大致与水相当。该结构虽能够满足设计要求, 但结构比较复杂, 重量太大, 而且着陆中心点如果在彬条上, 会产生较大的冲击, 总体效果还不是很理想。泡沫铝材料在受冲击时有很大的冲击能量吸收值, 并且泡沫铝受冲击时的逐层塑性变形十分均匀, 因此设想将其应用在回收舱的舱底上, 以期达到更好的效果。这里设想了两种方案: 一是用泡沫铝替代现有的加强朽条, 并使彬条间距变小, 提高整体均匀性, 再减薄外蒙皮的厚度, 重量肯定会减轻, 同时又能提高舱底的整体性能, 结构如图2。也可以结合材料特性考虑设计出网状或其它适当形式的加强结构, 连接方式考虑采用粘接; 二是两层铝蒙皮间全部用泡沫铝填充, 形成夹层结构。这样舱底的结构性能会大大提高, 内外蒙皮的厚度可以大幅减薄, 舱底重量仍然可以减轻。这种结构可以充分发挥泡沫铝材料自身的性能优势,使舱底的功能得到加强, 可靠性大大提高。
3.3 陀螺支架陀螺是航天器在轨飞行和返回时的主要姿态控制部件, 因此它的安装精度要求很高。陀螺又是一个“ 娇气” 的高精密度仪器, 对力学环境和热学环境要求严格, 目前某航天器为了满足陀螺的环境要求, 在陀螺与支架之间的安装点加装了橡胶减振器缓冲上升段和返回的较严酷的力学环境。但是安装使用弹性的橡胶减振器, 陀螺的安装精度必将受到一定的影响。比如由于地面尚做不到“0 ” 重力安装环境, 在飞行器入轨进入“0” 重力环境后, 陀螺的安装精度会有一定的漂移, 目前还无法解决这一问题。此外, 陀螺还是一个发热部件, 橡胶减振器的安装也使得陀螺工作时产生的热量很难通过支架传导出去。为了解决这一问题, 采取了多重措施, 例如增加柔性传导带, 采用风机强迫对流散热等方法。
为了解决这些矛盾, 最好的想法就是使金属陀螺支架本身具有优良的减振性能, 泡沫铝在空气相和金属骨架两相不均匀及应变强烈滞后于应力决定了其具有极佳的阻尼性能, 其阻尼值约为纯铝的5 一10 倍。并且阻尼值随应变振幅的增加迅速加大1)设想, 如果陀螺支架采用泡沫铝合金( 因为泡沫铝合金的强度较高, 比泡沫铝高接近一倍)制造, 上述间题将可能得到较好的解决。支架材料本身的性能决定其可以隔离相当一部分振动、冲击, 就可以解决振动间题, 不必安装橡胶减振器。如果材料采用通孔泡沫, 同时用风机强迫对流散热, 可以获得极佳的`散热效果, 解决散热问题。现在该陀螺支架大体形状如图3, 支架采用硬铝制造, 支架上开了多处孔和槽以减轻重量。由于陀螺重量较轻, 支架的强度不是主要问题, 完全可以采用泡沫铝合金制造陀螺支架, 来解决安装精度和散热问题, 同时, 很重要的是支架的重量也得以减轻。
泡沫铝的隔振、冲击吸能也是国外研究的重要方向之一。现在国外已经用泡沫铝合金设计制作了预警飞机雷达的防振支座, 并获得了较佳的效果。这也在一定程度上说明了上述设想的合理性。泡沫铝作为阻尼减振或冲击吸能部件, 有传统结构方式不具有的优势, 它使结构件本身具有减振、阻尼的功能, 合二为一, 简化了设计, 提高了可靠性。此外, 孔隙率及孔径不同的泡沫铝合金对振动的响应会有所不同。陀螺的敏感振动频率段分布在5 0 H z 以下, 如果我们通过试验能够找出对该频段的振动过滤效果最佳的泡沫铝合航天器工程1 0 卷金制作陀螺支架, 就能得到更好的效果。
3.4 其它应用泡沫铝及铝合金用作非承力件或次承力件的情况相对较多, 主要是利用它的一些优异性能来满足一些特殊的要求。比如散热、隔热( 闭孔泡沫)、隔音、重量轻等等。航天工程应用在材料满足强度等其他性能要求的条件下, 希望材料尽可能的轻, 泡沫铝的优良综合性能恰好适应这一条件, 因此, 空间站以及一些大型航天器中的非承力件或次承力件, 如散热件、隔热件、隔板、舱门等等都有望用该材料替代现有材料。前面提及国外正在积极进行泡沫铝用作航天器主承力件方面的研究, 据悉, 现在国外已经在计算方法等方面取得了进展, 而目前国内在这方面并没有实质性的动作, 我们认为国内航天界应摆脱跟踪发展航天科技的现状, 利用国内良好的客观条件( 东南大学历经多年努力开发的泡沫铝和铝合金制备技术水平居世界同行业前列), 组织好多方力量, 积极展开泡沫铝在航天技术领域的应用研究, 争取率先取得突破。
4 泡沫铝与铝峰窝的几点比较
铝峰窝夹层板现已广泛应用于航空、航夭领域, 主要因其具有重量轻、比刚度大的优点。实际上铝蜂窝与泡沫铝在结构形式上很相似, 但在用作结构件时泡沫铝比铝蜂窝更有优势。首先泡沫铝的物理性能呈现稳定的各向同性, 铝蜂窝的径向与切向性能则相差甚远; 其次泡沫铝具有良好的机加工性能, 铝蜂窝基本无法进行机加工。相比之下明显可以看出泡沫铝适用性更广。
铝蜂窝也用作冲击吸能部件, 其压缩变形比较大, 在较大的范围内具有平稳的塌垮载荷,吸能效果较好。在这方面我们曾经做过大量的试验。铝蜂窝比较有代表性的静压试验曲线如图4 , 该曲线为正六角蜂窝试件的首次和二次静压比较图。曲线中带有尖峰的是一次静压曲线, 峰值的最高点为铝蜂窝屈服的临界点, 继续压缩, 蜂窝承载急剧下降, 降至一定值后, 位移增加, 载荷基本保持恒定, 直至铝蜂窝完全塌垮掉, 载荷才上升。二次压缩是先将试件压缩至临界点, 继续压缩使略微超过临界点, 然后卸载。重新加压进行二次压缩, 此时就不会再出现一次压缩曲线中的压力峰。这样我们就可以利用铝蜂窝作冲击吸能件了。但是大量的试验表
明同种铝蜂窝的塌垮载荷波动较大, 一致性低, 成为应用的障碍。经分析主要原因是铝蜂窝胶接层的质量不一致造成的。尽管已经采用了可以获得的最好的胶, 可在大载荷作用下胶层质量的微小差别仍然会产生比较大的影响。泡沫铝的重要应用之一也是冲击吸能, 其压缩a 一。曲线分弹性段、长的平台段和紧密段三部分, 其中很长的平台段决定了它的冲击能量吸收性能极佳2) P = 84 % 的泡沫铝, 变形50 % 的冲击能量吸收率大于2.SMJ / m。另外, 二者结构虽然类似, 但泡沫铝是一次铸造成型, 故不存在铝蜂窝的胶层质量问题。由上可以判断用泡沫铝作冲击吸能件效果应比铝蜂窝好得多。
泡沫金属的研究虽然起步较早, 但该材料近年来才得以推广应用, 并且主要集中在泡沫铝上。在2 0 0 0 年6 月剑桥大学国际会议上, 美、英等国的许多著名教授一直认为泡沫铝的主要应用对象为“s p ac e ” 。东南大学材料学院近年在材料制备方面已经取得了重大突破, 现在可以为航天工程应用提供多种形式的泡沫铝和铝合金材料:
( 1 ) 外表带有薄层蒙皮, 中间为泡沫形式;
( 2) 内部为通孔, 外表为闭孔的形式;
( 3) 为满足特定要求, 还可以在通孔材料中添加其它材料形成复合结构。
以上的结构形式为航天和其它领域的应用提供了坚实的基础。但是作为一种新兴材料,泡沫铝结构同以往的常用金属材料和复合金属材料有很大的不同, 它在应用方面必然存在很多需要验证和解决的问题。如在材料制备方面铸造的泡沫金属毛胚尺寸大小尚存在一定的限制。不过何题的存在从某种程度上也说明该种材料还存在着巨大的发展潜力, 如果材料的基础研究和应用研究能够积极进行并相互促进, 那么泡沫金属优良的综合性能将使它替代现在大量采用的铝和铝合金成为未来航天领域应用的主要材料
篇2:初探泡沫混凝土在建筑工程中的应用建筑工程论文
初探泡沫混凝土在建筑工程中的应用建筑工程论文
摘 要:目前很多新型材料被广泛应用到建筑工程当中,泡沫混凝土就是其中的一种,与传统混凝土相比在性能方面有了很大提升,而且降低了施工成本。因此,文章重点研究泡沫混凝土的主要特点及其在建筑工程中的应用,为今后同类工程施工提供参考。
关键词:泡沫混凝土;建筑;特点;应用措施
泡沫混凝土为一种新型材料,将其应用到建筑工程中,更符合环保节能理念,目前已经被广泛的应用到工程建设中。但是因为应用经验比较少,在实际施工中经常会因为技术处理不当,而出现质量隐患。为提高材料在建筑工程建设中应用效果,必须要基于材料特点,对施工技术进行优化分析,争取提高技术实施规范性,消除存在的各类隐患。
1 泡沫混凝土分析
泡沫混凝土为混凝土材料的分支,其主要是通过物理方法制备泡沫,然后向其中添加适量的凝胶材料、填料、粉煤灰、水以及外加剂等,并对其进行均匀充分搅拌,最后按照要求进行浇注成型,并采取措施将其制成多孔轻质材料。与常规混凝土材料相比,其内部含有大量封闭孔隙,在实际应用中具有隔热、保温、轻质、耐火等特点。对于材料在建筑工程建设中的应用,可以作为保温隔热现浇混凝土墙体材料,或者预制成轻质隔墙板与砌块,另外还可以作为建筑工程地基补偿、屋面、地面以及保护层等施工,下文将结合泡沫混凝土在屋面工程中的应用进行论述。
2 泡沫混凝土的施工前的准备工作
泡沫混凝土的施工与其他的材料有着相似之处,虽然在操作上是非常简单的,但是也需要做好准备工作,以下就是对泡沫混凝土在施工前的准备工作进行分析:
首先要对普通混凝土进行质量上的检查,泡沫混凝土就是在普通混凝土的基础上加入泡沫剂或者是外加剂构成的,因此,需要对混凝土的质量进行检查,只有普通混凝土的质量得到了保证,才能保证泡沫混凝土的施工质量;其次,要注意混凝土的配合比,混凝土的配合比与混凝土的强度有着很大的关系,如果没有将混凝土的强度控制好,是不能进行泡沫混凝土的配置的。
再次,要对原材料等进行检查,主要包括水泥、砂砾、泡沫剂或者是外加剂,水泥和砂砾等原材料要有厂家的检验报告,如果没有合格证明是不能使用的,泡沫剂在购买的时候也要符合相关的规定,泡沫剂是泡沫混凝土材料的.一种添加剂,作为生产厂家要有检验合格的证书,与水泥的要求有着相似之处,这些材料在采购人员采购之后,也不能直接的就使用,作为施工人员还要对这些材料进行重复性的检查,确保质量没有出现问题才能直接的使用。
最后就是要对施工作业环境进行检查,如果施工作业环境不符合要求是不能施工的,否则会影响着施工的安全性,在屋面的作I做好之后要对周围进行清理,否则屋面是无法使用泡沫混凝土进行浇筑的,还要注意最后的环节就是要对屋面进行养护,如果屋面的养护工作没有做好,就会影响着泡沫混凝土的施工质量,泡沫混凝土的厚度也要满足要求,达到相关的技术标准。
泡沫混凝土在施工之前就要营造一个良好的施工环境,将准备工作做好,这样在施工的过程中就能保证事半功倍,提高施工的进度,让屋面工程能够顺利的完工。
3 施工技术分析
3.1 做好基底的处理工作
基底在泡沫混凝土的施工中是比较重要的,只有将屋面基底处理干净,才能保证泡沫混凝土的顺利浇筑。将基底清理好之后,还要进行检查,确保基底已经清理干净,当确定基底处理干净就要洒水养护,这样的处理方式对施工的质量控制是更加有利的,另外还要在实际的工作中做好标高的测量工作,通知还要保证屋面的保温层和防水层都已经满足施工的相关标准和要求,为了保证施工中混凝土浇筑的质量,不会因为浇筑施工而出现屋面平整度不达标的现象,同时还要在施工的过程中使用一些砌块,将这些砌块固定在建筑结构当中,这样就可以为找平层施工的顺利进行提供更好的条件,保证找平施工的质量。
3.2 泡沫混凝土的配制
在已经确定了泡沫混凝土配合比之后,接下来就是要严格的按照这一配合比的要求进行实际的配制,在这项工作中,要对投料的顺序进行严格的控制,同时在投料之前,还要对投料的重量进行精确的称量,当然这一过程中也会受到很多因素的影响,从而出现一定的误差,在这样的情况下。我们需要在施工中将误差控制在合理的范围内,一般都是按照水泥、发泡剂和水的顺序进行投料,在这之后就是对混合料进行搅拌,在搅拌混合料之前,一定要首先用水将搅拌机湿润,之后再加入干燥的混合料,所有的材料都添加完毕之后就可以进行搅拌操作,搅拌的时间大约在2分钟左右,这样才能增强混凝土材料本身的和易性。
3.3 浇筑的注意事项
在屋面正式浇筑混凝土之前,首先要对所配制的混凝土进行试件性能检测,当检测性能符合设计要求时,方能开始进行混凝土的浇筑。在实际的屋面工程混凝土浇筑施工中,应该先以清水湿润屋面基底,继而在涂刷一道素水泥浆,以起到隔离作用,或者也可以使用界面结合剂。继而再把配制好的泡沫混凝土浇筑在屋面上。一般从屋面两侧边缘向中部浇筑,泡沫混凝土浇筑时分层进行,每层厚度100mm左右,第l层混凝土强度达到1.2MPa后方可进行下一层混凝土浇筑。由于浇筑面积过大,为防止泡沫混凝土干缩开裂,故设置6m×6m分格缝,按分隔缝分仓浇筑,分仓面积6m×6m。
3.4 质量控制
为了能够保证泡沫混凝土的施工质量,在进行施工中需要对其采取一定的质量控制措施。首先应该严格把关泡沫混凝土的配制质量。尤其要确定合理科学的泡沫混凝土配合比,必须要经过试验室试验来确定。其次要对泡沫混凝土的干密度、热导率、干燥收缩值以及抗压强度、吸水率等诸多参数按照一定的规定进行确定。
4 结语
泡沫混凝土在当今的建筑工程施工过程中是一个非常常见的施工材料,这种材料在应用的过程中可以体现出非常好的性能,同时它也可以很好的降低能源的消耗,对我国资源和能源的合理应用都有着十分重要的推动作用,因此其也具有非常好的发展前景。
参考文献
[1] 蒋晓曙,李莽.泡沫混凝土的制备工艺及研究进展[J].混凝土, (01).
[2] 邵春光.泡沫混凝土在地下室保温隔热工程中的应用[J].科技创新导报,(06).
篇3:微重力流体管理在航天工程中的应用
微重力流体管理在航天工程中的应用
本文详细解释了微重力流体管理的.概念产,阐明了微重力流体管理在推进系统、热控制系统、环境控制与生命保障系统、电源系统中的工程应用,指出了微重力流体管理面临的新挑战.
作 者:康琦 侯瑞 KANG Qi HOU Rui 作者单位:中国科学院力学研究所国家微重力实验室,北京,100080 刊 名:自然杂志 ISTIC PKU英文刊名:CHINESE JOURNAL OF NATURE 年,卷(期): 29(6) 分类号:V4 关键词:空间探索 微重力流体管理 工程应用篇4:沉井施工在工程中的应用论文
沉井施工在工程中的应用论文
摘要:本文对某工程采用沉井施工方法进行简单介绍。
关键词:沉井施工工程应用
0引言
沉井是修建深基础和地下深构筑物的主要基础类型,它具有结构截面尺寸和刚度大,承载力高,抗渗,耐久性好,内部空间可有效利用等特点,施工时不需要复杂的机具设备,对地质较复杂的状况下均可施工。缺点是施工工序较多,施工工艺较为复杂,技术要求高,质量控制要求严。下面对某工程采用沉井施工方法进行简单介绍。
1沉井施工工艺
基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。
2基坑测量放样
根据沉井设计图纸和工程地质报告所揭示的地质情况,沉井基坑开挖深度取2米,沉井刃脚外侧面至基坑边的工作距离取2米,基坑边坡采用1:1。整平场地后,根据沉井的中心座标定出沉井中心桩、纵横轴线控制桩及基坑开挖边线。施工放样结束后,须复核准确无误后方可开工。
3基坑开挖
基坑开挖边线确定后,即可进行挖土工序的施工。挖土采用1米3的单斗挖掘机,并与人工配合操作。基坑底面的浮泥应清除干净并保持平整和干燥,在底部四周设置排水沟与集水井相通,集水井内汇集的雨水及地下水及时用水泵抽除,防止积水而影响刃脚垫层的施工。
4刃脚垫层施工
刃脚垫层采用砂垫层和混凝土垫层共同受力。
4.1砂垫层厚度的确定
砂垫层厚度H可采用如下计算公式计算:
N/B+γ砂H≤〔σ〕
根据计算结果,无论是工作井还是接收井,砂垫层厚度H均为60(厘米)。砂垫层采用加水分层夯实的办法施工,夯实工具为平板式振捣器。
4.2混凝土垫层厚度的确定
混凝土垫层厚度可按下式计算公式计算:
h=(G0/R-b)/2
根据计算结果,混凝土垫层厚度h为10~15厘米(工作井为15厘米,接收井为10厘米)。混凝土垫层表面应用水平仪进行校平,使之表面保持在同一水平面上。
5立井筒内模及支架
由于顶管沉井高度达8米左右,因此,井身混凝土分三节浇捣,内模同样分三节按装。井筒模板采用组合钢模与局部木模互相搭配,以保证内模的密封性。刃脚踏脚部分的内模采用砖砌结构,宽度与刃脚同宽。井身内模支架采用空心钢管支撑。钢管支架必须架设稳固,如有必要,可采用对撑支架,增加内模的稳定性。
6钢筋绑扎
钢筋的表面应洁净,使用前将表面油渍、鳞锈等清理干净;钢筋应平直,无局部弯折,成盘的钢筋均应调直;预制构件中的主钢筋均采用对焊、焊接并按照有关规定抽样送检;钢筋接头应互相错开,并严格按照国家标准《混凝土结构工程施工及验收规范》(GB50204―92)中的有关规定执行;现场钢筋绑扎时,其交叉点应用21#铁丝绑扎结实,必要时用电焊焊牢。钢筋规格、尺寸应符合设计图纸要求和规定,绑扎钢筋时应采用撑件将二层钢筋位置固定,保证钢筋设计间距。为了保证保护层的厚度,应在钢筋与模板之间设置同强度标号的水泥砂浆垫块,垫块应与钢筋扎紧并互相错开。钢筋绑扎完成后,应上报监理工程师进行隐蔽验收。隐蔽验收合格后,方可进行立外模。
7立外模和支架
钢筋绑扎验收后,应进行架立外模和支架。井壁内外模用串心螺丝固定,串心螺丝采用φ16的圆钢,中间设置止水片,两端设置铁片控制井壁厚度尺寸,圆钢两端头上铰成螺纹,用定制钢螺帽固定,拆模时拆去钢螺帽,割去外露部分,再用同标号防水砂浆二度抹平,确保不渗水。外模支架必须稳、牢、强,保证在浇捣混凝土时,模板不变形,不跑模。
8浇捣混凝土
模板和支架工序完成后,必须经监理工程师进行验收。验收合格后,方可进行混凝土的浇捣。为缩短施工周期和保证工程质量,采用泵送商品混凝土。泵送混凝土可将输送管的软管直接放入浇捣段,距离浇捣面1米左右,保证混凝土不离析。混凝土浇捣前应严格检查各种预留孔、预留管和预埋件的'位置和几何尺寸,严禁漏放和错放。混凝土振捣采用插入式振捣器振捣,振捣棒插入时应离开钢筋,但应防止混凝土振捣不匀和振捣过密而产生混凝土离析现象的发生。混凝土在捣振时应注意和随时检查模板受力和钢筋受力的情况,防止模板因混凝土振捣的原因而跑模。
井身浇捣混凝土分三段施工:
工作井――总高度为8.43米,分三次浇捣完成,一次下沉。第一次浇捣刃脚部分,高度2.4米,标高-5.73~-3.33米;第二次浇捣高度3米,标高-3.33~-0.33米;第三次全部浇捣完成,浇捣高度3.03米,标高-0.33~+2.70米。
接收井――总高度为7.85米,分三次浇捣完成,一次下沉。第一次浇捣刃脚部分,高度2.0米,标高-5.15~-3.15米;第二次浇捣高度2.9米,标高-3.15~-0.25米;第三次全部浇捣完成,浇捣高度2.95米,标高-0.25~+2.70米。
采用分段浇捣混凝土时,严格按规范要求做好施工缝。施工缝做成凸缝,并在后浇时将连接处的混凝土凿毛,并用水清洗干净,浇捣时先用12%的UEA砂浆座浆,然后轻倒第一层混凝土并振捣密实,以免形成蜂窝,影响沉井的质量。
在混凝土浇捣过程中,还应做好混凝土的试块工作,保证质保资料的完善。
9混凝土养护及拆模
混凝土浇捣完成后应及时养护,养护方法可采用自然养护和塑料膜覆盖法。在养护过程中,对混凝土表面需浇水湿润,严禁用水泵喷射而破坏混凝土。养护时应确保混凝土表面不发白,至少养护七天以上。养护期内,不得在混凝土表面加压、冲击及污染。
在拆模时,应注意时间和顺序。拆模时间控制在混凝土浇捣后的3~4天内进行,过早或过晚的拆模对混凝土的养护都是不利的;拆模顺序一般是先上后下,小心谨慎,以免对混凝土表面造成破坏。对于分段浇捣混凝土部位,应保留最后一排模板,利于向上接模。
10封砌预留孔
严格按照设计图纸的要求,设置和封砌各种预留孔,并保证在沉井下沉过程中,预留孔内不渗水。
11井点安装及降水
为确保沉井平稳下沉,采用排水下沉法施工。用井点抽除地下水,降低地下水位,井点在基坑外周布置,并至少预抽七天后,方可开始挖土。
12凿除垫层挖土下沉
沉井下沉需待混凝土强度达到设计要求后,方可开始挖土下沉。下沉时,应先凿除刃脚下的混凝土垫层及砖砌内模。挖土工具采用蟹斗挖机挖土吊出井外。沉井挖土顺序应中间稍低于四周,沉井内的挖土高差控制在1米以内,禁止深锅底挖土,防止沉井突沉造成沉井倾斜的危险。另外,井壁外的灌砂必须均匀充实,使沉井下沉时四周摩阻力相近,均匀下沉。沉井下沉时,应防止倾斜,发现问题及时纠偏,若沉井下沉有困难时应另外想办法,不准大量挖深,造成突沉。沉井挖土三班制连续作业,中途不停顿,确保沉井连续、安全地下沉就位。当刃脚距离设计标高在1.5米时,沉井下沉速度应逐渐放缓,挖土高差控制在50cm内,当沉井接近标高时,应预先做好止沉措施。止沉措施可采用在刃脚四周间隔挖出设计标高的槽,填入方木,并应注意抛高系数,禁止超沉和超挖。
13沉降观测
沉井在下沉过程中,必须随时测定沉井标高,确保均匀下沉,并做好沉井下沉记录。沉井下沉至设计标高(包括抛高)后,应先清除表面浮泥等杂物,超挖的土方必须用碎石夹砂填实,不得用土填,井内不得有积水,并确保井点的正常工作,不允许发生停泵,同时加强对水位的观测,保证降水要求,地下水位必须距离垫层50cm以下。底板与刃脚的接触面,必须将表面混凝土全部凿毛并露出石子,便于新老混凝土的结合。当沉井在8小时内的累计下沉量不大于10mm时,方可浇捣底板碎石垫层。
14铺设混凝土垫层
在铺筑碎石层时,应确保井底内无积水、无流砂、无翻浆等现象。20cm的碎石层应做到平整,无坑塘,必须时应用水平仪抄平,保证碎石层的水平。碎石层铺筑完成后,即可在其上浇捣素混凝土垫层。在铺筑素混凝土垫层后,应保证表面平整,无地下水上冒现象。
15绑扎底板,浇捣底板混凝土
在素混凝土垫层完成后,就可在其上绑扎底板钢筋。钢筋在绑扎时,应保证刃脚钢筋与底板钢筋的连接、上下两层钢筋的间距,并将刃脚混凝土的表面凿毛露出石子,便于刃脚混凝土与底板混凝土的结合。
底板混凝土浇捣完成后应及时养护,确保其表面不露白,并应防止阳光及温差的剧烈变化,以免底板出现收缩裂缝,影响沉井的施工质量和使用功能。
篇5:浅谈GPS在工程测量中的应用论文
1 引言
由于GPS技术具有效率高、使用方便、精度高、便于验证等优点,使其在各种测量工作中得到防范地使用,并在很大程度上已经取代了传统工程测量技术,成为当前测绘工作人员进行工程测量工作中必须掌握的基础性技术。
2 GPS测绘技术概述
2.1 GPS测绘技术
全球定位系统(GlobalPositioningSystem,GPS)是一种可以定时和测距的空间交汇定位的导航系统,可以向全球用户提供连续、实时和高精度的三维位置、三维速度和时间信息等。GPS测绘技术的测量过程,主要是通过在固定位置安装GPS接收机,根据GPS卫星发出的导航电文,对某一时刻的GPS距离进行测量,形成三维坐标,以此来达到更加精确的定位。
2.2 GPS测量技术的优点
首先,GPS测量技术具有应用范围广的优点,GPS能够测量三维坐标,提供速度和时间等信息,因此GPS测量技术在大地测量、工程测量、控制测量、海洋测绘和水下测绘等领域可以得到广泛的应用。GPS测量技术的定位准度高,当前GPS卫星的定位精度已经控制在米级标准,这对于工程测量,特别是大尺度的控制性网点测量有着重要的作用。其三,GPS测量技术的速度快,对于无论是静态定位还是实时动态定位,GPS技术的观测时间只用几秒钟,这可以大大提高GPS测量工作的效率。其四,GPS测量技术操作简便,进行GPS测量工作时操作员只需在旁监视仪器工作状态,大大减轻可工程测量的劳动强度。最后,GPS测量技术具有全天候工作的优势,GPS测量技术可以自任何时间、任何递减进行测绘工作,扩大了测量工作的范和时间
3 GPS测绘技术在工程测绘领域发展的现状
随着科学技术的快速发展,测绘设备和方法也越来越多样化,GPS则是其中最为重要的一项内容。目前,GPS测绘技术已经受到越来越多的关注,而且越来越多的研究人员开始将重点转移到测量新技术和新方法的研究方面。GPS测绘技术在工程测绘中受到欢迎,主要是由于其具有测量精度高、成本低等特点,而且克服了传统测量技术必须要通视的弊端,可以在测绘工作中通过卫星定位系统的变更,获得及时的数据。我国在测绘工程领域采用了24颗美国发射的导航卫星,实现了地面三维坐标的测量。
社会和经济的快速发展也为现代测量工程带来了更多的挑战,GPS测绘技术有着很多的优势,因此其在工程领域中的地位也日渐重要。在测绘工程中,利用GPS实现静态测量是其最基本的应用,进而可以利用GPS测绘技术实现对渠道、堤坝、阀门的控制,而高级的应用则是利用GPS与RTK技术的有效结合,实现动态定位,以此增强工程测绘数据的精确性,促进工程测绘领域的持续发展。
篇6:浅谈GPS在工程测量中的应用论文
目前,GPS测绘已经在工程测绘领域中获得广泛的应用,而且在不同的领域中都可以实现有效的测量,如建筑工程、铁路工程、水利工程等,都可以获得准确的测量结果。具体的说,GPS测绘技术在工程测量中的应用,可以从以下几个方面分析:
4.1 测量工程变形的GPS测量技术
工程建设中经常会遇到人为原因或者地壳运动而造成的建筑物位移,称之为工程变形,其变形类型有陆地工程的变形、资源开采地区的地表沉降和围堰大坝的变形等,这类变形通常都会造成巨大的经济损失和人员伤亡。GPS测量技术在工程变形监测共要重点对基准设计、结构强度、观测时段设、监测周期等关键和环节展开技术讨论,使GPS测量技术能够正确完整地应用。
4.2 施工水准点的测定
通常,工程项目的设计单位都是采用比较传统的测量技术对工程的水准进行测量,而这种传统的测量方法是没有经过实地的考察和合理的预算的,因此,测出来的水准点距离比较大。利用传统测量方法水准点的距离理想的较大,不够精确,经常给工程的施工带来了很严重的影响。如果是采用GPS技术来确定水准点,能够通过GPS接收机接收GPS卫星传回来的信号,测量、计算出精确的水准点。运用GPS技术来确定水准点,能够确保工程测量的质量,以协调建筑工程施工的进度。如果是要在大型的公路上实地测量,也需要利用GPS技术,通过对路基的全面分析,根据建筑工程对实际路段的勘测,在距离相同的位置设立临时的水准点。
4.3 GPS外业测绘
在进行GPS外业测绘时,需要选择一个准确的测量点,这也是保证测绘结果准确性的基础。测量点的选择和确定,直接影响整个测绘工作的进度和测绘结果的准确性,因此在进行测量点选择之前,首先要做好充分的准备工作,包括对测绘区域的地理位置、标架的确定等,这也是保证GPS测绘技术有效应用的前提。GPS技术在测绘的过程中主要是依靠开机观测和无线安置的方式来实现,这与传统的测量技术相比,有着很强的优越性。同时,在GPS测绘的过程中,由于已经确定了准确的测量点,所以只要将GPS设备准确的安置在测量点定位,便可以得到准确的测量结果。另外,需要对三个不同方向上的测量设备进行固定,以此来保证天线基座与标志中心位置的准确相对。
5 工程测量观测时间的确定
GPS定位技术主要是利用几颗GPS卫星的瞬间空间位置作为已知点,通过GPS接收机接受卫星信号来确定接收机和GPS卫星的距离,再通过空间的距离交会来求得GPS接收机的三维坐标。要使得监测的'精度能够更高,除了要有足够的可视GPS卫星之外,还要对卫星观测的时间把握好,因为大气的折射会影响观测的结果。所以在运用GPS技术观测的时候,一定要对多方面进行考虑,使得监测的数据更为准确。
6 实时动态测绘方法
针对某些已经经过检测点之上的新基站进行设定,同时需要安装一台GPS接收设备,便可以实现在该区域内的现场测绘。通过无线电传送的方式,可以将GPS测绘结果及时传递到信息接收站。观测现场的流动站在接收来自不同发送站的信息的同时,也可以依靠基站传输的数据进行定位,这时基准站及流动站将该数据与本身观测到的数据进行差分解算,从而得到两观测站之间的相对位置,解算出流动站所在位置的三维坐标并实时存储和输出。
7 结束语
总之,本文主要对GPS测绘技术的工作原理、特点以及其在工程测绘中的应用进行了简单的分析。GPS测绘技术在工程测绘工作中有着十分广泛的应用,而且在提高测绘结果的精确性和准确性方面都有着显著的优势。需要注意的是,在应用GPS测绘技术的过程中,要将其测量结果有效的运用到工程测绘工作中,才能充分发挥其作用。随着科学技术的快速发展,GPS测绘技术也将不断的完善,对于促进我国测绘工程的持续发展,有着重要的意义。
参考文献:
[1]孙玉松.论GPS测绘技术在工程测绘中的应用[J].黑龙江科技信息,.
[2]薛会元.浅析GPS测绘技术在工程测绘中的应用[J].科技与企业,.
[3]张延忠.GPS测量技术在工程测绘中的应用及特点[J].科技传播,.
篇7:水解(酸化)反应器在工程应用中的研究与展望
水解(酸化)反应器在工程应用中的研究与展望
在工业废水处理中,作为预处理单元的水解(酸化)反应器,不但降低了废水的CODCr,而且提高了废水的可生化性.作者论述了水解(酸化)反应器的`特点及原理;介绍了水解(酸化)反应器的类型及其在工程应用中的效果;讨论了影响水解(酸化)反应器运行的主要因素及其设计要点;展望了水解(酸化)反应器的应用前景及研究领域.
作 者:程凯英 黄石峰 邓耀杰 Cheng Kaiying HUANG Shifeng Deng Yaojie 作者单位:程凯英,黄石峰,Cheng Kaiying,HUANG Shifeng(中山市恒雅环保工程有限公司,广东,中山,528403)邓耀杰,Deng Yaojie(中山市环境科学研究所,广东,中山,528403)
刊 名:工业水处理 ISTIC PKU英文刊名:INDUSTRIAL WATER TREATMENT 年,卷(期): 25(3) 分类号:X703.1 关键词:水解(酸化) 化学需氧量 可生化性 工程应用篇8:沥青碎石在大修工程中的应用论文
沥青碎石在大修工程中的应用论文
施工工艺
1.混合料拌合采用LB-型沥青拌和楼拌和。按照目标配合比对冷料仓采用筛分进行初配,再对热料仓进行试配,对热拌沥青混合料进行还原筛分试验,确定生产配合比石料最佳级配和最佳油石比,通过铺试验段,验证生产配合比,最终确定生产配合比为1#:2#:3#:4#为20:50:10:20,最佳油石比3.5%。沥青加热温度控制在160℃~170℃,石料温度控制在高于沥青10℃~20℃,出料温度控制在165℃~180℃。
2.混合料的摊铺本项目LSPM-25沥青稳定碎石柔性基层设计厚度为8.0cm,路面宽度为9.0m,施工时采用两台ABG423摊铺机同时作业联合摊铺的方式:前行的第一台摊铺机靠地方分开带一侧,边沿采用钢丝绳拉线,一侧传感器搭正在钢铰线上,另一侧用浮动基准梁,后行的第二台摊铺机靠软路肩一侧,一侧传感器搭正在钢铰线上,另一侧用滑动传感器,两台摊铺机相距5m~10m,横向搭接宽度10cm-15cm,把滑动传感器放正在前一台摊铺机铺出的基准面上,调整好横坡,进行摊铺。正常松铺系数为1.15~1.30,通过试铺得出LSPM-25沥青稳定碎石混合料松铺系数为1.19,摊铺速率为1.2m/min。
3.混合料的压实成型压实的指标是提高沥青混合料的强度、稳定性和抗疲劳性。压实不到位,导致路面空隙率增大,从而加快沥青混合料的老化。压实程序按初压、复压和终压三道工序。要留意初压的及时性;复压的指标是使沥青混合料密实、稳定、成型,沥青混合料的密实水平取决于这一道工序,必须取初压紧密衔接;终压是为了消除轮迹、收光,最初构成平整的压实面。为了保证混合料的密实、平整及形状规则,碾压作业按如下进行:(1)压实程序初压时采用一台双驱双振钢轮压路机(13t)碾压一遍,前进时关闭振动,退却开启振动。对付LSPM-25沥青稳定碎石混合料,由于集料粒径较大,复压采用双振压路机和轮胎压路机联合碾压的组合方式,正在复压时先采用一台轮胎压路机(26t)碾压二遍。终压采用一台钢轮压路机(14t)碾压两遍进行收光。(2)压实方式碾压时压路机当由路边压向路中。每次相邻重叠宽度为:双驱双振钢轮压路机30cm,轮胎压路机20cm,钢轮压路机60cm。(3)压实温度压实温度的高低,直接影响沥青混合料的压实质量。在摊铺完毕后要及时进行碾压,摊铺机后面的碾压作业段长度以30m左右为宜。到达了密实度后,再以最少的碾压遍数进行表面修整收光,此时压路机可离摊铺机近一点。实践证实,沥青稳定碎石混合料的最佳压实温度为120~130℃之间,也就是说能在120℃前完成复压做业是最理想的。
4.混合料离析及其预防方法
(1)大粒径沥青碎石柔性基层在生产和施工过程中非常容易产生离析,离析的后果会导致路面早期粉碎,大大缩短了其使用寿命。因此预防离析就成为了技术控制的重点。
(2)加强材料管理,由于沥青稳定碎石LSPM-25集料较粗,粒径大,在生产、推铺时比较容易产生离析,因此要从集料的源头开始控制其级配的变异性,从各个环节减少和避免混合料离析现象。各种级配的石料除正确的、严格的分类堆放外,规格大的集料应放在石料堆的下部;针片状石料和细料滚动较慢,因此应放在石料堆的中间。集料在运输到拌和的过程中,会产生同样的离析。因此原材料的稳定性是混合料离析的首要因素。原资料如果不稳定,变异性较大,将会导致混合料的级配不稳定,使混合料过粗或细致,产生离析。各种规格集料仓之间用片石砌隔墙隔开,以免混料,场地应进行硬化,细集料必须用防雨布进行覆盖。每批材料进场都要按规范要求进行取样筛分,严格控制各档集料的变异性。在料场容许的状况下,尽可能降低料堆的高度。料堆底部的粗集料上料时先用装载机将料重新拌和。加强料场的管理,是减少随机离析的'关键。
(3)在矿料设计时,19~26.5mm筛孔的通过率尽量靠正在上限,那样就减少了最大粒径的用量,而骨架主要由19~26.5mm的集料撑起,那样能够有效地防止施工过程中由于粗集料过多引起的离析。在生产之前,试验工程师应对各料仓的流量进行标定,确定风门的开启度,以确保沥青混合料在生产的过程中,级配达到设计要求。在生产过程中特别要控制好31.5mm、4.75mm、2.36mm和0.075mm那几个关键筛孔的通过率,这几档集料对混合料的均匀性影响较大,必须达到设计级配。在施工过程中试验工程师应当在上、下午对混合料进行取样筛分,对混合料的变异进行微调。
(4)施工过程控制。摊铺机螺旋送料器的下缘距下承层顶面的高度应调到10~12cm之间。两台摊铺机的锤振击力保持一致。摊铺过程外,摊铺机速率保持2.0m/mim均匀行驶,尽量减少粗料滚向两侧而带来的离析,减少摊铺机收料斗的收料频率。碾压中,要确保压路机滚轮湿润(但要防行水量过大引起沥青混合料温度的骤降),以免粘附沥青混合料。轮胎充气压力不小于0.5MPa,必须均匀一改。并为了防行碾压过程外集料被过多压碎,振动压路机的压实后温度不宜低于100℃。
数据检测
1.弯沉检测经现场检测,沥青碎石基层代表弯沉为27.172(0.01mm)<50(0.01mm),满足设计要求。实测弯沉见表1。
2.马歇尔试验马歇尔试验检测见表2。
施工中应注意的事项
(1)柔性基层新技术,在施工过程中,应严格施工程序,分阶段性进行检测,做到以试验数据为依据。
(2)大粒径沥青碎石柔性基层作为补强层最小厚度为8cm,对于旧路弯沉特异值的点应作特殊处理,要保持旧路强度均匀。
(3)压路机碾压顺序一定要正确,碾压遍数要达到。
(4)混合料离析问题是施工控制的难点和关键环节。从混合料的拌合、运输、摊子等各个环节严把质量关,在拌合过程中,严格控制好级配,不能随意变化料源,随意调整生产配合比,保持拌合时级配稳定。在运输过程中,料车要尽量保持匀速行驶,连续摊铺。
后期效果
1.由于大料径沥青碎石中大碎石的骨架结构和大孔隙率,使破碎后的旧砼板块之间的集中应力在大碎石的孔隙中被消解分散,达到了最终解决“反射裂缝”上延的目的。
2.由于沥青路面渗透性的存在,路面结构层间水常常导致高等级公路的过早水损坏,所以LSPM的大孔隙同时起到疏导、排除路面结构层间水的作用。
3.由于粗集料形式是完整的骨架嵌挤结构,具有较强的抵抗车辙变形能力。
4.施工工期缩短,降低了原材料的消耗量,减少了后期的维修成本。
结束语
LSPM-25大粒径沥青碎石柔性基层,有较强的抗疲劳性和抗车辙性,减少了水泥稳定碎石的反射裂缝,缩短了施工工期,特别在边通车边施工的大修路段,大大地减少了因施工带来的交通的压力。施工过程对离析的产生,和加强路面以外的路基的排水是对大粒径柔性基层结构成功的关键。
篇9:统计学及其在岩土工程中的应用概述论文
统计学及其在岩土工程中的应用概述论文
随着科学技术的日益发展,统计学在岩土工程中愈发发挥出重要的作用,这对地质统计提出了更高的要求。文章从地质统计方法入手,简要阐述了地质统计学发展的现状,并简单描述了统计学方法在岩土工程中的重要作用及其应用。
1 地质统计学简述
地质统计学是在矿山储量计算工作中慢慢发展起来的,是二十世纪六七十年代法国著名统计学家G.Matheron大量理论研究基础上形成的数学地质学科的一个分支,他的专著《应用地质地计学》的问世标志着地质统计学作为一门新兴学科的诞生?。地质统计学是和采矿业的发展同步兴起的学科,它是以变差函数为主要工具,以区域化变量理论为基础,研究在空间分布上既有结构性又有随机性的自然现象的一门科学。
2 地质统计学发展现状
2.1 两大学派
地质统计学发展至今,大致形成了了两个学派。一个是以A.G Journal为首的“斯坦福地质统计学派”。这一学派研究了不需要对数据的分布做假设的快速条件模拟、指示克立格法和概率克立格法等方法,并且研究了软数据的相关使用问题。另一个以马特隆教授为首,他们开展了以正态假设为基础的析取克立格法和条件模拟研究,把协同克立格法和主成分分析进行有效结合,形成简单克立格法、析取克立格法、泛克立格法和普通克立格法等一系列的理论和方法,这些方法都要用实际的样品数据为基础,也称“参数地质统计学”?。
2.2 多学科渗透形成新克立格法
目前,对于含有一些特异值、接近了高斯分布的具体数据,就要把稳健统计学思想应用到求变差函数当中,继而提出了稳健克立格法;把多元区域化的变量引到指示克立格法中,继而得到了协同指示克立格法;把多元区域化的变量引到克立格法中,运用两个或两个以上有相关性的变量对某一个变量估值,继而产生了协同克立格法。
3 地质统计方法在岩土工程中的作用
随着国家工程建设的飞速发展,统计方法运用在岩土工程是时代潮流发展的必然。以前在计算矿产资源的储量时,常用不同级别储量的工程密度,用稀密法得到相对误差来论证矿产资源储量的可靠程度,并将相对误差值作为衡量矿产资源储量精度的标准。然而,这种方法缺乏科学根据,被许多人置疑,地质统计方法的出现很好地解决了这类问题。地质统计不但可以整体估计,还能对局部进行估计,对原有的数学方法和理论进行选择性创新,把更好地解决面临的地质问题作为目标。地质统计估计的克立格方差是一个很好的估计精度,其估计精度高较高。地质统计的随机模拟能很好的再现出地质变量变化,从而为定量研究地质体提供一个有利的`基础和可靠的保障。
4 一维变差函数
可以假设空间中一点只在一维数轴x上变化,把区域化变量Z(x)在x,x+l两点处的数值的差的方差的一半定义成区域化变量Z(x)在x方向上的变差函数,记为:φ(x) = V[Z (x) - Z (x+l)] = E[Z(x) - Z(x+l) ]2 -{E[Z(x)]-E[Z(x+l)]}2。公式中,φ(x)表示变差函数;E表示期望值,V表示方差。变差函数的函数值仅依赖于x和l两个自变量。在本假设条件下,变差函数仅依赖于分割它们的距离l和方向,因而变差函数可定义成:变差函数是在任一方向,相距l的两个区域化变量[Z(x)和[Z(x+l)的增量的方差的一半。变差函数是一个有关距离的函数,描述不同位置变量的相似性,φ值越大,变量的相关性越差。通常情况下,φ值随着距离矢量l的增大而增大,直到到达一定值时φ达到极大值,之后保持不变。
5 统计方法在岩土工程中的应用
5.1 用于不确定性描述
油藏的复杂变化,很难通过动态或静态的确定性模型来反映。只有运用地质统计方法,用不确定性的描述,才能反映出真实的复杂油藏模型。地质统计方法最大的一个优点就是可以很方便地把不同的资料有效整合应用,如生产、测井、地震、地质等方面信息,这些对于油藏准确的描述是非常关键的。这种不确定性的描述可以给油藏工程师一个可选择的参考,帮助他们全面分析,制定一个合理的科学的开发方案。
5.2 用于储层的预测
石油地质学研究中的一个重点难点和热点,就是对储层的参数进行一个有效的科学预测。我国原先利用的是传统数理统计的方法,这种方法是纯数学的方法,没有充分考虑到储层参数间相关性和空间连续性的问题,也不附带任何的地质意义。因此,对储层的参数预测有较大局限性。使用地质统计方法就可以有效解决这一问题,它以区域化的变量理论作为基础,对地质参数的空间变化方向性和趋势都有了充分的全面的考虑,再用克里金方法的外推和插值的功能,算出了与地质规律吻合的统计方法和模型,继而表征储层参数的规律变化,利用这规律,针对孔隙度和渗透率等参数的空间展布开展有效又合理的预测。
5.3 用于数据整合
地质统计方法通过随机模拟方法和油藏数值模拟相结合,继而预测出油藏动态的特征,为调整和制定开发决策和提高最终的采收率提供一个合理的依据。
6 结语
统计学在岩土工程应用中经过多年发展,已初显成效,而且其应用范围正在逐渐扩大。我们有理由相信,随着地质统计学方法的不断完善,其必将发展成为一个通用性工具性的科学。
篇10:工程测量在电力工程设计中的应用论文
1引言
电能是社会发展的重要能源,在社会发展中具有不可替代的作用。电力工业是社会经济发展和人民生活正常运转的基础,而电力工程设计是电力工程前期工作的重要组成部分,电力工程的设计必须做到合理,确保其电力的安全、可靠。工程测量通过采用一定的设备仪器解决工程建设中实际问题,这是现代工程建设必不可少的质量保证,因此,下文就对测量在电力工程设计的作用和具体应用进行详细的介绍。
篇11:LED在照明工程中的应用-LED技术论文
过去来,LED在颜色种类、亮度和功率都发生了极大的变化。LED以其令人惊叹而欣喜的应用在城市室内外照明中发挥着传统光源无可比拟的作用。LED寿命长达10万小时,意味着每天工作八小时,可以有35年免维护的理论保障。低压运行,几乎可达到100%的光输出,调光时低到零输出,可以组合出成千上万种光色,而发光面积可以很小,能制作成1平方毫米。经过二次光学设计,照明灯具达到理想的光强分布。快速发展的LED技术将为照明设计与应用带来崭新的可能性,这是许多传统光源所不可能实现的。
认识LED的特点 今天似乎全世界的目光都聚焦在LED这个新型的光源上,被誉为21世纪的绿色照明产品,甚至人们预言未来会大部分取代传统的光源。因为它具有寿命长、启动时间短、结构牢固、节能、发光体接近点光源(有利于LED的灯具设计)、薄型灯具,灯具材料选择范围大,不需要加反射器,低压,没有紫外辐射,尤其在公共环境中使用更加安全等特点。再加上LED光源的生产可实现无汞化,对于环境保护和节约能源更具有重要意义。 传统的LED主要应用于信号显示领域、建筑物航空障碍灯、航标灯、汽车信号灯、仪表背光照明,如今娱乐、建筑物室内外、城市美化、景观照明中应用也越来越广泛。但是目前LED光源的寿命还不能达到所标出的100,000小时,实际寿命约在50,000小时左右,这主要与其散热方面的.问题有关。在很小的空间里,随着功率的加大,半导体组件就会过热。再者,白色LED还不能达到普通灯泡所具有的亮度。
篇12:顶管技术在工程中的应用论文
摘 要:随着我国现代化城市建设的不断发展,水利工程基础建设步伐的逐步加快,地下空间开发工程逐步增多,各种地理环境的特殊性也增加了地下工程建设的难度。本文结合工程实例对水利工程中的顶管施工技术进行了阐述。
关键词:水利工程;顶管技术;设计;施工
顶管技术又称非开挖管道敷设技术,它具有不需要开挖面层,就能穿越地面构筑物和地下管线吸公路、铁路、河道的特点,相比开挖敷设技术,投资和工期将大大节省。同时,顶管施工技术可以降低噪音,减少粉尘,减轻对城区的交通条件和环境状况的干扰和破坏,属于真正的无污染、高效率的施工技术,故顶管施工必将在城市建设中得到广泛的应用和发展。为了更好地保护城市环境,方便居民,生活,减少施工造成的交通影响,目前各个城市都在积极推行顶管施工技术。
1 工程实例
2 主要工程技术
顶管施工是一种不开挖沟槽而敷设管道的工艺,它运用液压传动产生强大的推力使管道克服土壤摩阻力顶进的施工技术,主要难点是临近渠道水体,渠道水下渗引起的开挖面涌水或塌方破坏问题。
2.1 施工工序
现场调查→工程降水→测量放线→工作井定位与开挖→工作井基础、导轨及附属设施施工→后背设计与施工→顶进设备与设施准备→渠道必要的加固或停水→下管→挖土→顶进→测量校对→接口→附属工程施工→压浆。
2.2 前期准备
顶管施工属于地下工程,影响施工的因素很多,施工前应探明地质,组织施工人员认真学习施工技术文件,了解施工范围、管道沿线的地形、地质水文地质条件,完成作业范围内地下管线等调查并保护,编写好顶管施工技术组织设计,制定好可靠的进洞措施。
顶进施工前应根据设计资料,结合地形、地质情况,对涵管位置、方向、长度、出入口高程等进行校对,施工期应避开渠道供水高峰期和雨期。
工作井要保证施工期间连续排水要求,顶进作业应采取降水措施,地下水位应降至基底以下0.5~1.0m,经常保持顶管掘进机底部无积水现象,如遇积水,应及时排除,以防止土体基底软化,雨期施工还应做好地面排水。
对涵管同时布置监测点,必要时监测顶进施工期间的渠底沉降量。
管道接口形式选择钢承口管(F型)接口形式,钢套环与混凝土管处采用水膨胀橡胶止水圈止水,以防止结合面产生渗漏。施工前应检查管道接口处护口铁和承插口,钢套环接口无疵点,焊接接缝平整,并经防腐处理,承插口处不得有缺棱掉角,对外观质量及回弹强度不合格的管材应予立即退场。
2.3 总推力复核
总推力的大小确定,是以工作井能承受的最大推力、管材所能承受的最大推力和全程顶进所必须具有的推力这三者中的最小值为依据的,顶进施工前应进行复核。
根据地质勘探的结果确定管线穿越的土层的最大顶力计算公式为:
P=frD[2H+(2H+D)tan2(45°-φ/2)+ε/(rD)]L
式中:P为计算总顶力,kN;r为管道所处土层的重力密度,kN/m3;D为管道的外径,m;H为管道顶部以上覆盖土层的厚度,m;φ为管道所处土层的内摩擦角,°;ε为管道单位长度的自重,kN/m;L为管道的.计算顶进长度,m;f为管壁与土间的摩擦系数。
考虑到顶管顶进采用人工在管前端开挖,因此,计算最大顶力时只考虑管道自重及土的侧面土压力和管道与土的摩擦力即可。
核算后背1m宽度上土壤的总被动土压力,使土壁单宽上受力不大于土壤的总被动土压力,1m宽度土壤的总被动土压力计算公式为:
P=0.5rh2tan2(45°+φ/2)+2Chtan(45°+φ/2)
式中:r为土壤的重度,kN/m3;h为天然土壁后背的高度,m;φ为土壤的内摩擦角,°;C为土壤的黏聚力,kN/m2。
管材所能承受的最大顶进力(许用顶力)计算公式为:
式中:
[Fr]为许用顶力,kN;
σc为管体抗压强度,kN/m2;
A为加压面积,m2;
S为安全系数,取S=2.5~3.0。
3 技术要点
管涵顶进采用前高后低,坡度控制在3%左右,地下水位以下顶进时,工作坑要设在涵管下游,逆管道坡度方向顶进,有利于施工期间管道排水需要。
(1)顶管采用在管前先挖土,后顶进的手工掘进顶管法作业,开挖从上往下开挖,开挖面的坡度控制在1:0.75,轴线超挖量≤0.3m,渠底下适当减短,管节上部超挖量≤15mm,管节下部135°范围内不应超挖,严禁扰动基底土壤,在顶进过程中应采取随挖随顶的原则和“勤测量、多微调、紧封闭”的操作方法。
(2)为控制顶进方向,应在涵管外50~100m处设置导向墩,控制点应设在不易扰动、视线清楚、方便校核、易于保护处。管节顶进中,每一顶程都要对中线和高程进行观测,发现偏差及时纠正,左右偏差可采用挖土校正法和千斤顶校正法调整,上下偏差可采用调整刃脚挖土量或铺筑石料等方法调整。
(3)液压设备启动时应空转一段时间,检查系统无异常后顶,顶进开始时,应缓慢进行,待各接触部位密合后,再按正常顶进速度顶进,液压千斤顶顶紧后(顶力约为0.1倍结构自重),应检查顶进设备、后背设施和工作坑周围土体稳定情况,无异常后分级加压(5~10MPa为一级)试顶,并严密监测,当顶力达到0.8倍结构自重时涵管未启动,应停止顶进,待找出原因采取措施后才可以重新加压顶进,顶进中若发现油压突然增高,应立即停止顶进,检查原因并经处理后方可继续顶进,顶进作业面上还应设专人监护。 (4)顶进作业应昼夜三班不间断连续进行,不得长期停顿,防止造成阻力增大,增加顶进难度,或因中途停置地下水渗出,造成坍塌破坏。涵管顶进作业停顿时应使刃角有足够的吃土量,当停顿时间较长,为防止开挖面的松动或坍塌,应对挖掘面及时采取正面支撑或全部封闭措施。
(5)在管道顶进施工中,应不间断的测量并详细记录以下工艺参数:①顶进力;②管道在垂直高程和侧向位置的偏离情况;③管道顶进长度等。记录数据中必须包括如下信息:施工时间、施工现场的详细位置、地层和地下水条件等,异常应停止顶进,分析原因并处理后方可继续顶进。顶进中的施工记录是提高顶进质量的保证,每班组按规范要求真实、清晰、完整地填写好顶管记录表格和施工中的情况,交接班时,必须认真交接清楚记录,交清管道轨迹和纠偏趋向,并说明在顶进操作中所出现的问题及处理情况。
为了顺利完成顶管接收工作,进洞口土体应采用门式加固法进行加固封门,即对所顶管道破堤处两侧和顶部一定宽度和长度范围内的土体进行加固,以提高这部分土的强度,从而使涵管在进洞中不发生坍洞或涵管管顶不带出土方现象。洞口加固采用低标号混凝土砌堵砖封门,也可用低标号的混凝土取代砖头,涵管到达时把封门拆除。
4 结束语
顶管是非开挖埋设地下管道的工程技术之一, 对于开槽埋管从社会效益与经济效益上来讲更具有优越性。不需要修建围堰或断水进行施工,不破坏环境,施工受气候和环境的影响较小,不影响管道的段差变形,降低工程造价显著等优点,加强对工程实施过程中的监督管理,抓住关键问题和重要工序,严格遵守设计,旨在不断地加强施工技术水平及保证工程的质量。
参考文献
[2] 马奋涛等. 市政给排水工程中的顶管施工技术[J].科技创新报,2009,(19)












