“梦境与重生”通过精心收集,向本站投稿了13篇《代数式的值》说课稿,以下是小编精心整理后的《代数式的值》说课稿,供大家阅读参考。

篇1:代数式的值
教学目标
1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学建议
1.重点和难点:正确地求出代数式的值。
篇2:代数式的值
(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式 ;当 时,代数式 的值是0;当 时,代数式 的值是2.
(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 中 不能取1,因为 时,分母为零,式于 无意义;如果式子中字母表示长方形的长,那么它必须大于0.
3.求代数式的值的一般步骤:
在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.
4。求代数式的值时的注意事项:
(1)代数式中的运算符号和具体数字都不能改变。
(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。
5.本节知识结构:
本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.
6.教学建议
(1) 代数式的值是由代数式里的字母所取的值决定的,因此在教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念.
(2) 列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.
教学设计示例
篇3:代数式的值
答案:1.(1)3; (2) ; 2.?(1) ;(2) ; 3. .?
四、师生共同小结
首先,请学生回答下面问题:
1?本节课学习了哪些内容?
2?求代数式的值应分哪几步?
3?在“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.?
五、作业
当a=2,b=1,c=3时,求下列代数式的值:
(1)c-(c-a)(c-b); (2) .
篇4:代数式的值
教学目标
1.使学生掌握代数式的值的概念,会求代数式的值;
2.培养学生准确地运算能力,并适当地渗透对应的思想.
教学重点和难点
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式.
难点:正确地求出代数式的值.
课堂教学过程 设计
一、从学生原有的认识结构提出问题
1.用代数式表示:(投影)
(1)a与b的和的平方;(2) a,b两数的平方和;
(3)a与b的和的50%.
2.用语言叙述代数式2n+10的意义.
3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的.数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.
二、师生共同研究代数式的值的意义
1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.
2.结合上述例题,提出如下几个问题:
(1)求代数式2n+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式
里字母的取值的确定而确定的”之后,可用图示帮助
学生加深印象.
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)
例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.
注意:如果代数式中省略乘号,代入后需添上乘号.
解:(1)当a=4,b=12时,
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.
最后,请学生总结出求代数值的步骤:
①代入数值 ②计算结果
三、课堂练习
1.(1)当x=2时,求代数式x2-1的值;
2.填表:(投影)
(1)(a+b)2; (2)(a-b)2.
四、师生共同小结
首先,请学生回答下面问题:
1.本节课学习了哪些内容?2.求代数式的值应分哪几步?
3.在“代入”这一步应注意什么?
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
1.当a=2,b=1,c=3时,求下列代数式的值:
2.填表
3.填表
课堂教学设计说明
由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程 中,注意渗透对应的思想,这样有助于培养学生的函数观念。
篇5:代数式的值
(2)当x=,y=时,求代数式x(x-y)的值?
2?当a=,b=时,求下列代数式的值:
(1)(a+b)2; (2)(a-b)2?
篇6:《代数式的值》教案
《代数式的值》教案
【学习目标】
1、了解代数式的值的意义,能准确地求出代数式的值;
2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;
3、通过字母取不同的值的变化来认识世界发展变化及全面的观点.
【学习重点】能准确地求出代数式的值.
【学习难点】能准确地求出代数式的值.
【学习过程】
『问题情境、研讨』
情境一:某公园依地势摆若干个由大小相同的正方形构成的.花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛,
(1)填写下表
图形编号 (1) (2) (3) (4)
盆花数
(2)若要求第100个图案要用多少盆花,怎样去解答?
情境二:
(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?
(2)当x=9时,工人过了40岁了吗?
(3)想一想:当x=6时工人的年龄呢?
结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值.
『例题讲评』 P70/例1、P/71议一议
『学生练习』 P71/练一练:1、2
补充:(1)当x=1时,求代数式4 -x+x2的值.
(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2.
(3)当x+y=-2,xy=-4时,求代数式 - 的值.
3.3 代数式的值(1)随堂练习
评价_______________
1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为( )
A.MN B.M
2.当a=-2时,代数式-a2的值是( )
A.4 B.-2 C.-4 D.2
3.已知a-b=-2,则代数式3(a-b)2-b+a的值为( )
A.10 B.12 C.-10 D.-12
4.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________.
5.如果a+b=-3,ab=-4,代数式的 值为__________.
6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = .
7.已知:a= ,b= ,则a2-2ab+b2= .
8.当m-n=5,mn= -2时,则代数式(n-m)2-4mn= .
9.已知:x2+xy=1,xy-y2=-4,则x2+2xy-y2= .
10.若m2+3n-1的值为5,则代数式2m2+6n+1的值为 .
11.当a=-2,b=3时,求下列代数式的值:
⑴ 3(a-b) ⑵ 3a-3b ⑶ ( )2 ⑷
⑸ (a-b)2 ⑹ a2-2ab+b2 ⑺ (a+1)(b+1) ⑻ ab+a+b+1
12.已知x,y互为相反数,a,b互为倒数,t的绝对值为2,求代数式(x+y)+(-ab)+t2的值.
13.已知 =2,求代数式 的值.
篇7:代数式的说课稿
代数式的说课稿
【教材分析】
《代数式》是浙教版七上实验教材第四章第二节课程。本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。
【学生情况分析】
在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。
【教学目标】
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平确定的。
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。
【重点难点】
教学重点:代数式的概念及用代数式表示常用的数量关系。
教学难点:用代数式表示实际问题中的数量关系。
【教法学法】
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。
【教学过程】
1、创设情境,引出问题
我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题。
如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的.兴趣,并渗透了乡土人文教育。同时,旅程的开始也就意味着学习的开始。
在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:
首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中。到了纪念馆门口,自然遇到了买门票问题。
此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义。
进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决。如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性。教学时应引导学生正确书写,指出书写的简约美。
接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式 ,提出问题:它们与我们以前学过的算式有什么区别呢?
使学生造成认知上的冲突,激发其探究的内驱力。
2、对比析误,感知问题
从而水到渠成地得到概念. 教师在板书概念后点出课题。
此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性。
至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理。而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索。
3、双向建构,探索问题
(1)大家一起来列式:
列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序。教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验。我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流。
(2)聪明才智共编式
如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点。估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心。可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台。由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的。此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮。
为乘机促使思维进一步发展,让学生跳一跳能摘到桃子,我设计了如下的探究活动。
4、合作交流,解决问题
(1)开动脑筋齐探索
请学生以小组为单位,选取下列的1个主题,先自主探索,再在组内交流。然后通过视频展示台展示研究成果。
主题1是为了培养学生动手操作和规律探索能力,渗透特殊到一般的思想而设置的。估计学生对此题会有不同的解决方法,从而得到不同的代数式,教师要细心聆听学生的讲解,充分肯定小组合作的成果,并点明这些代数式最后都可化为同一形式,为后续内容学习埋下伏笔。
主题2是为了让学生感受数学美,渗透数学人文和数形结合思想,并为勾股定理等后续内容的学习打下基础。
在此把研究性学习引入课堂,是为了给学生思考、探究、发现和创新提供最大的空间。同时通过展示研究成果,师生共同从语言表达、动手操作、参与合作等方面进行评价,使同学们在多元评价中感受自主探究的乐趣。预计这里又能达到一个高潮。
(2)游戏之中验真知
经过前面的两次高潮,估计学生的思维已有些疲劳,根据注意的转移规律,借鉴中央台的非常6+1栏目,我设计了游戏活动-砸金蛋。8个金蛋内设计了5个题目和 3朵彩花,其中问题的顺序已作了充分的预设,不管怎么砸,问题都按照先简后难的固定顺序出现,从而使高层次的问题在思维最活跃时得到解决。
此游戏的开展,吸引了学生的有意注意,舒缓了疲劳,起到了课堂调节剂的作用,使学生在愉快活跃的氛围中主动参与知识的巩固、深化过程,仿佛学中玩,玩中学。最后一题的情境设计突出了参观主线,并暗示参观已结束,进入返程。而在乘车返校途中,又自然而然地引出了实际问题。
(3)返程路上解疑问
如此设计,使问题与情境相融,做到首尾呼应,参观情节贯穿整节课。在讲解时可引导学生在观察动画演示的基础上先独自解决,后请学生代表作分析,以暴露思维过程,教师应及时进行鼓励和评价,使学生在问题解决的过程中体会成功的喜悦。其中拓展问题的设计为下节课的学习作了铺垫。
5、反思小结,拓展问题
(1)你说我讲共交流
小结由师生互动完成,我引导学生从以上几方面进行交流。前三方面对应了本节课的三维目标,第四方面的设计能促使学生进行全面反思,使课堂得到延升。
(2)课后延伸促提高
作业分为阅读作业、书面作业和拓展作业,其中根据学生的发展情况,书面作业又分为必做题和选做题,如此设计的目的,是为了使不同的人在数学上得到不同的发展。
【设计说明】
1、预设
(1) 教学特色:本节课的设计是以问题为主线,以“参观”为形式,参观情境贯穿整节课,而实质是数学本质的渗透,抽象的数学学习与有趣的参观情境有机相融,让学生在这个特殊的“旅程”中感受地方人文,体念学习过程,体会思想方法,突出了数学学习的生活化,使学生真正成为课堂的主角。
(2)重、难点的处理:
 突出重点措施:
突出重点措施:
①、通过列式——比较——辨别——概括等环节,让学生经历代数式概念的产生过程,
②、通过“由文字语言到符号语言”再“由符号语言到文字语言” 让学生从正反两方面双向建构。
突破难点策略:
①、分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力。
②、适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈。
2、生成
预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程。让预设与生成齐飞。
篇8:课题代数式说课稿
课题:《代数式》一节的说课
教材:浙江版七年级上册
一、说教材:
代数式是在学生学习了用字母表示数的基础上,进一步拓宽知识,它既是有理数的概括与抽象,又是整式运算的基础,也是学习方程应用题,进一步学习函数知识等的基础。列代数式,即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验,使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换。它可以帮助人们从数量关系的角度更准确清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的紧密联系。
二、说目标:
2.1教学目标
根据学生已有的知识基础,依据课程标准和教材分析,确定本节课的教学目标:
1、知识与技能目标:了解代数式的概念,会列出代数式表示简单的数量关系,发展符号感,掌握代数式的有关书写格式。
2、过程与方法目标:在具体情境中让学生经历代数式概念的产生过程,分析归纳得出代数式的概念,从而学会用代数式将问题中的数量关系表示出来,并通过合作,比较总结出列代数式的注意事项。
3、情感态度与价值观:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间,通过列代数式表示生活中的简单数量关系,使学生体验列代数式的实际意义与建模思想方法的实际应用价值。
2.2重难点
代数式的概念是代数学的最基本的概念,是今后学习各类代数式的基础。列代数式是学习列方程的基础,因此代数式概念与列代数式是本节的重点。如何引导学生分析实际问题中的数量关系列出代数式,是本节难点。
教师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
三、说教法:
3.1教法分析
针对初一学生的年龄特点和心理特征,结合他们的认知水平,采用启发式,讨论式等教学方法。在教学中注重情境的设置,过程的体验,数学思想的渗透,让学生有充分的'思考机会,便课堂气氛活泼,有新鲜感。
3.2学法分析
“授人以鱼,不如授人以渔”。教给学生如何学习是教师的职责。因此在“代数式”教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松、愉快的课堂气氛中亲身体验知识的形成过程。
3.3教学手段
采用多媒体辅助教学,增大课堂教学容量,使学生能充分地学习数学,提高课堂教学效率。利用投影仪进行集体交流,及时反馈信息。
四、说设计:
4.1导入设计
1、创设情境,引入新课(用多媒体展示)
①搭个这样的正方形需要多少根火柴棒?
②每根火柴棒的长为,则一个正方形的周长为,两个正方形的面积为
③一个正方形的面积是个正方形面积的
④一个正方形面积为则它的边长为
先独立思考,再小组交流(四人小组),目的:①把不规范的写法列举出来;②写出正确结果。
通过上面四题,还有加减乘除,乘方,开方六种运算,再通过一题多变为代数式概念的得出作铺垫。
2、展示新知:
问:这些式子有什么共同特征?
请学生发表自己的见解,归纳得出用运算符号把数或表示数的字母连结而成的式子叫代数式。注意教师强调:单独的一个数或字母也是“代数式”。
书写代数式请注意以下几点:
(1)通常写为·或(乘号省略)
(2)通常写作(除号用分数线表示)
(3)数字写在字母的前面。如不写成
3、应用新知
为了及时巩固,帮助学生对所学概念理解,讲完概念后,教师先不忙着讲例题,而是根据学生的实际情况和他们的心理特点,设计了三个习题。
(1)判别
①不是代数式;
②是代数式;
③是代数式;
④是代数式。
判别的时候要紧扣定义,定义其实由两部分组成:
①用运算符号把数或表示数的字母连结而成的式子叫代数式;
②单独的一个数或字母也是代数式。含有“=”或“”这类符号的式子都不是代数式。
(2)下列式子中符合代数式书写要求的是
(3)用代数式表示米与厘米的和的式子:
①厘米②厘米③米④厘米,四个式子中正确的是()
(a)①②(b)③④(c)①③(d)②③
4.4例题教学
例1.用代数式表示:
(1)的3倍与3的差;
(2)的2倍与的的和;
(3)与的和的平方;
(4)与的平方的和;
(5)与两数平方的和;
(6)的立方根。
例1的目的是让学生体会代数式可以简明地,具有普遍意义地表示实际问题中的量,给数量关系的研究带来方便。设计由浅入深,从倍分和差到平方、立方根,从低级到高低,符合学生的认知规律。另一方面,要求学生书写规范。
例2.一辆汽车以80千米/小时的速度行驶,从a城到b城需小时。如果该车的行驶速度增加v千米/小时,那么从a城到b城需多少时间?
为了帮助学生更好的理解,突破难点,我把例2分解成下面几个问题:
①这是小学学过的哪类应用题?
②行程问题中的三个主要量的关系如何?
③一辆汽车以80千米/小时的速度行驶,从a城到b城需小时,则a城到b城总路程是多少千米?
④这辆汽车原来的速度为80千米/小时,其速度增加v千米/小时后,该车的速度是多少?
⑤在总路程不变的前提下,那么汽车提速后从a城到b城需多少时间?
在层层设问的前提下,引导学生如何分析,起到潜移默化的作用。
以上题目均由多媒体展示,所有过程均采用学生自由讨论,单独作答的形式。
4.5练习:
1、列代数式:
(1)a、b两数的和与它们的差的乘积;
(2)a、b两数的和与它们的差的商;
(3)a、b两数的平方和减去它们乘积的2倍;
(4)a、b两数的和的平方减去它们的差的平方;
(5)用代数式表示奇数、偶数。
2、填空:
(1)大米的单价为元/千克,食油的单价为元/千克,买10千克大米,2千克食油共需元;
(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度分别是,则日平均气温的摄氏温度数是;
(3)一个五彩花圃的形状如图,花圃的面积为。
(4)一隧道长米,一列火车长180米,如果该列火车穿过隧道所花的时间为秒,则列车的速度是多少?
进行课堂练习,巩固概念,强化学生对这节课的掌握,根据练习情况,如果错误及时改正。
4.6课堂小结
小结本节课的主要内容,使学生理清这节课的重点内容。
4.7布置作业。
五、说评价:
(1)本节课的教学目标是多元的,涉及知识和能力,过程与方法,情感态度与价值观三方面,体现了“以学生发展为本的教育理念”。
(2)精心设计问题情景,积极引导学生自主讨论,体验过程,获取知识,提高分析问题的能力。
(3)充分利用现代化信息技术,提高课堂效果,活泼学生学习兴趣和学习积极性,使教与学在和谐、愉悦的氛围中进行。
篇9:代数式的值的教学设计
1、教学目标:
知识与技能:
⑴、会求代数式的值,感受代数式求值可以理解为一个转换过程或种算法。
⑵、能解释代数式值的实际意义。
⑶、会利用代数式求值推断代数式所反映的规律。发展符号感,渗
透函数思想。
过程与方法: 让学生在实际情境中经历探究思考、合作交流的过程,体会获取
知识的方法,积累学习的经验,感受数学的生活化。
与创造,让他们在学习活动中获得成功的体验,建立自信心,从
而使学生更加热爱数学、热爱生活。 情感、态度与价值观:使学生认识到数学与生活紧密相连,数学活动充满着探索
教学重难点:
重点:求代数式的值.
难点:理解代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
教学过程:
一、创设情境:
请四个同学来做一个传数的游戏
游戏规则:
请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。
(设计说明:让同学们在游戏中发现,代数式中的字母可以用数字代替求出固定的结果,初步体会从一般到特殊的过程。)
二、新知探索及内化:
1、说一说:你能由上面的游戏说一说什么是代数式的值吗?
用数值代替代数式里的字母,按照代数式中运算关系计算得出的结果,叫做代数式的值。
2、试一试:
同学们:你想知道你每天需要的睡眠时间吗?
一项调查研究显示:一个10―50岁的人,每天所需要的睡眠时间t
110nh与他的年龄n岁之间的关系为:例如,35岁的人每天所需的睡眠时10110?35间是t==7.5h 10
算一算,你每天所需要的睡眠时间?
(设计说明:以和学生息息相关的睡眠时间问题讲解分析代数式的值的概念,对学生兴趣的培养.学习目的的端正都是有益的.这里应注意学生活动,师不能越俎代庖。
注意:代数式中的字母在取值时必须保证在取值后代数式有意义。如:在代55数式 中,字母a不能取C3。因为若a= C3时,代数式 的分母零,a?3a?3
代数式无意义。
三、新知运用
1、例:堤坝的横截面是梯形,测得梯形上底为a=18m,下底b=36m,高h=20m,
求这个截面的面积。
2、例:根据所给x的值,求代数式4x+5的值:(1)x=2(2)x=-3.5 (3)1x=2 2
师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?
学生活动:积极思考,相互讨论,找出方法:
求代数式的值的步骤:
(1)写出条件:解:当??时,(2)抄写代数式(3)代入数值(4)计算出结果
(设计目的:由学生探索方法大胆实践有利于培养学生开拓进取精神,养成善于思考总结规律的习惯。)根据下列各组x、y 的值,求出代数式 的值:
(1)x=2,y=3;(2)x=-2,y=-4。
师:你能从上面的运算过程说一说代数式的值在计算时需要注意哪些问题吗? 交流得:注意:①代入数值后“乘号”要填上;②要按数的运算法则进行运算③如果字母的值是负数、分数,代入时应加上括号④解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当??时”写出来。
(设计说明:一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力。)
五分钟检测:
1.若x+1=4,则(x+1)2=
2. 若x+1=5,则(x+1)2-1=
3. 若x+5y=4,则2x+10y=
4. 若x+5y=4,则2x+7+10y =
5. 若x2+3x+5=4,则2x2+6x+10=
2.思考:一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L. ⑴用代数式表示行驶xh后,油箱中的剩余油量Q=______;
⑵计算行驶2h,5h,8h后,油箱中的剩余油量。
⑶这里,能求x=12h时剩余油量Q的值吗?
(设计说明:代数式里的字母虽然可以取不同的数值,但是这些数值不能使代数式和它表示的实际问题失去意义。本题中的x不能取负数和大于10的值,为什么?)
(四)归纳小结: 本节课学习了哪些内容?
1、求代数式的值的步骤:
(1)代入,将字母所取的值代入代数式中时,注意:①不要犯张冠李戴的错误;②注意整体代入。
(2)计算,按照代数式指明的运算进行,计算出结果。
2、求代数式的值的注意事项:
(1)由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值
写出来。(2)如果字母的值是负数、分数,并且要计算它的乘方,代入时应加上括号;
(3)代数式中省略了乘号时,代入数值以后必须添上乘号。
3、相同的代数式可以看作一个字母――整体代入。
4、代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。
(五)课堂作业:
[代数式的值的教学设计]
篇10:代数式的值的同步试题
代数式的值的同步试题
代数式的值的同步试题
代数式的值同步训练试题(含答案)
随堂检测
1、当a=2,b=1,c=3时, 的值是 。
2、当a= , b= 时,代数式(a-b)2的值为 。
3、如果代数式2a+5的值为5,则代数式a2+2的值为 。
4、如果代数式3a2+2a-5的值为10,那么3a2+2a= 。
5、某电视机厂接到一批订货,每天生产m台,计划需a天完成任务,现在为了适应市场需求,要提前3天交货,用代数式表示实际每天应多生产多少台电视机。并求当m=1000,a=28时,每天多生产的台数。
典例分析
例:(1)a、b互为倒数,x、y互为相反数,且y0,则(a+b)(x+y)-ab- 的值为 。
(2)若 ,求 的值。
(3)如图:正方形的边长为 a。①用代数式表示阴影的面积;
②若 a=2cm 时,求阴影的面积(结果保留)。
解:(1)0
(2) =3 5 +3=
(3)① ;②当a=2时,上式=2- 。
答:阴影部分的面积为(2- )cm2。
评析:(1)解决本例的关键是:由a、b互为倒数得ab=1,由x、y互为相反数得x+y=0和
(2)本例采用的是整体代入的数学思想;
(3)本例主要是用规则图形的面积去解决不规则图形面积的求解问题。
课下作业
●拓展提高
1、填表
x -4 -3 -2 -1 0 1 2 3 4
2x+5
2(x+5)
(1)随着x值的逐渐增大,两个代数式的值怎样变化?
(2)当代数式2x+5的值为25时,代数式2(x+5)的值是多少?
2、已知代数式 的值是8,那么代数式 的值是( )
A、37 B、25 C、32 D、0
3、已知 ,代数式 的值为( )
A、6 B、C、13 D、
4、小明在计算41+N时,误将+看成-,结果得12,则41+N= 。
5、已知:a+b=4,ab=1,求 2a+3ab+2b 的值。
6、当x=3时,代数式px3+qx+1的值为。
求:当x=-3时,代数式px3+qx+1的'值为多少?
●体验中考
1、(福建漳州中考题)若 ,则 的值是_______________。
2、(20福建福州中考题)已知 ,则 的值是 。
3、(2009年江苏省中考题)若 ,则 。
4、(江苏泰州中考题改编)根据如图所示的程序计算,若输入的x的值为1,则输出的y值为 。
参考答案:
随堂检测
1、2、3、2 4、15 5、实际每天应多生产 台电视机;120台。
课下作业
●拓展提高
1、
x -4 -3 -2 -1 0 1 2 3 4
2x+5 3 1 1 3 5 7 9 11 13
2(x+5) 2 4 6 8 10 12 14 16 18
(1)随着x值的逐渐增大,两个代数式的值也逐渐增大。
(2)由代数式2x+5的值为25,得x=10。
所以代数式2(x+5)的值是30。
2、A 3、B 4、70 5、11
6、当x=3时,33p+3q+1=2009。
所以,33p+3q=。
当x=-3时,(3)3p+(3)q+1=2008+1=。
●体验中考
1、2009 2、5 3、1 4、4
篇11:七年级代数式的值练习题
七年级代数式的值练习题
1、单独一个数如-不是代数式
2、s=πr2是一个代数式()
3、当a是一个整数时,总有意义()
4、代数式的值不能大于1
5、x与y的平方和与x、y的和的平方的差为(x+y)2-(x2+y2)
6、某工厂第一个月生产a件产品,第二个月增产x%,两个月共生产a+ax%
二、填空:’
1、设甲数为x,乙数比甲数的3倍多2,则乙数为
2、设甲数为a,乙数为b,则它们的倒数和为
3、能被3和4整除的自然数可表示为
4、a是一个两位数,b是一位数,如果把a放在b的左边,则所在的三位数是
5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再加入做a天,这时完成的工程为
6、一辆汽车从甲地出发,先以a千米/时速度走了m小时,又以b千米/时的速度走了n小时到达乙地,则汽车由甲地到乙地的平均速度为千米/时
7、一件商品,每件成本a元,将成本增加25%定出价格,后因仓库积压调作,按价格的92%出售,每件还能盈利
8、有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(n>m)时共数了个数。
9、某项工程,甲单独做需a天完成,乙单独做需b天完成,则
(1)甲每天完成工程的
(2)乙每天完成工程的
(3)甲、乙合做4天完成工程的
(4)甲做3天,乙做5天完成工程的
(5)甲、乙合做天,才能完成全部工程。
三、选择题:
1、下列代数式中符号代数式书写要求的有()
①②ab÷c2③④⑤2×(a+b)⑥ah2
A、1个B、2个C、3个D、4个
2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为()
A、B、C、D、
3、矩形的.周长为s,若它的长为a,则宽为()
A、s-aB、s-2aC、D、
4、当a=8,b=4,代数式的值是()
A、62B、63C、126D、1022
5、若代数式2y+3y+7的值为8,则代数式4y2+6y-9的值是()
A、13B、-2C、17D、-7
6、若a、b互为相反数,p、q互为倒数,m的绝对值为5,则代数式的值是()
A、-6B、-5C、-4D、0
四、求代数式的值
1、当a=7,b=9求值
①4a+b②③④
2、当时求代数式(ab+c)(2ac-b)的值。
3、当时,求代数式的值。
4、已知a=3b,c=,求的值。
5、已知a+19=b+9=c+8求代数式(a-b)2+(b-c)2+(c-a)2的值。
篇12:初中数学说课稿《代数式》
苏教版初中数学说课稿《代数式》
【教材分析】
《代数式》是浙教版七上实验教材第四章第二节课程,本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。
【学生情况分析】
在本节内容学习之前,学生已具有了如下的“现有发展区”。但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。
【教学目标】
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平确定的。
过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。
【重点难点】
教学重点:代数式的概念及用代数式表示常用的数量关系。
教学难点:用代数式表示实际问题中的数量关系。
【教法学法】
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的.情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。
在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”,
【教学过程】
1、创设情境,引出问题
我先引导学生欣赏鲁迅纪念馆的一组照片,简单介绍鲁迅其人其事,结合金秋十月,营造秋游氛围,并请学生做导游,教师用富有激情的语言激励学生,做好一名导游可得解决旅程中的许多问题。
如此创设情景,是因为绍兴是鲁迅的故乡,把鲁迅做为背景,可以迅速激发学生的自豪感和学习的兴趣,并渗透了乡土人文教育。同时,旅程的开始也就意味着学习的开始。
在“导游”这个角色的促使下,学生自然会积极主动地思考旅程中遇到的一系列问题:
首先是出发时的行程问题,学生很快进行了解决,教师把所得算式收藏到收藏箱中。到了纪念馆门口,自然遇到了买门票问题。
此时,可通过分析,让学生感知( 60a +40b)所代表的普遍意义。
进入参观后,根据纪念馆的情况又出现了一系列问题,学生一一进行解决。如此设计可使问题与情境有机相融,同时教师又充分考虑到了样例形式的丰富性,使学生意识到学习代数式的必要性。教学时应引导学生正确书写,指出书写的简约美。
接下来教师把收藏箱里的式子全部展示出来,并引导学生观察这些旅程中所得的算式 ,提出问题:它们与我们以前学过的算式有什么区别呢?
使学生造成认知上的冲突,激发其探究的内驱力。
2、对比析误,感知问题
从而水到渠成地得到概念. 教师在板书概念后点出课题。
此时学生对代数式只是一个感性认识,于是我又设计了如下的辨析题,通过析误帮助学生区分可能会与代数式混淆的几个关系式,从而加深对代数式构成的理解,使学生的认识有感性上升到理性。
至此学生已经历了代数式概念产生的整个过程,完成了特殊到一般的转化,教学的一个重点已得到了妥善的处理。而教学的另一个重点是用代数式表示数量关系,我打算从列代数式和编代数式两方面让学生进行探索。
3、双向建构,探索问题
(1)大家一起来列式:
列是要求学生把文字语言转化为符号语言,考虑到学生转化时可能在关键词意义理解、运算顺序等方面容易出错,我对课本例题进行了重组,并精心设计了变式题,让学生通过对比、辨析,理解关键词的意义,分清运算顺序。教学时应鼓励学生大胆尝试,通过析误让他们得到内化,形成经验。我又及时安排了巩固练习,使学生在练习和集体评析中掌握列式技能,体念成功乐趣.接下来让学生创造性地编代数式,并用文字语言进行描述,再赋予代数式实际背景和几何意义,并在小组合作的基础上通过视频展示台进行交流。
(2)聪明才智共编式
如此设计的意图,是为了让学生从文字语言到符号语言,再从符号语言到文字语言两方面进行建构,强化代数式的概念,提高列式技能,突出了重点。估计此时学生会编出各种不同的代数式,教师要一一予以肯定,尤其是要乘机对学困生进行鼓励和赞赏,让他们感受成功的喜悦,增加学习的信心。可能有些学生会感到困难,而小组合作与交流为他们聆听他人思维,产生共鸣创造了一个很好的平台。由于不同生活经验的学生可以对同一代数式作出不同的解释,如5a可赋予不同的背景,所以此问题的设计为不同的人在数学上得到不同的发展创造了条件,同时让学生体会到代数式的模型思想,达到分散难点的目的。此时学生的思维应该非常活跃,交流此起彼伏,达到了预设中的小高潮。
篇13:初中数学代数式说课稿
初中数学代数式说课稿
大家好!今天我说课的题目是《义务教育课程标准实验教科书· 数学》(人教版)七年级上册第五章第二节《代数式》这一课的内容。根据《课程标准》对这部分内容的要求及本课的特点,结合学生的实情,我将本节课分为五部分:教材分析、教法分析、学法分析、教学过程分析,几点说明。
一、教材分析
(一)教材的地位和作用
1.代数式是学生在学习了用字母表示数的基础上,进一步拓宽知识,是对上一节内容的深化,通过这节课要培养学生合理、规范、准确的数学表达方式和书写习惯,这是体验数学的美感和锻炼数学逻辑思维的必不可少的步骤。
2.代数式既是有理数的概括与抽象,又是整式运算的基础,也是学习方程及函数知识的基础。列代数式即用字母把数和数量关系简明地表示出来,结合学生已有的生活经验使学生的思维实现由数到式的飞跃,数学的文字语言与符号语言的转换,它可以帮助人们从数量关系的角度更清晰地认识、描述和把握现实世界,使学生体验到数学与现实生活的密切联系。
(二)教学目标及确立的依据
本教案力求通过富有吸引力、生动有趣的教学过程,充分体现以“教师为主导,学生为主体”的教学原则,调动学生的积极性,在教学中,引导学生自主探究,合作交流,引导学生在获取知识的过程中,学会观察、探究、概括、表达等数学方法,所以本节课我确定了三个教学目标。
1.知识目标:通过实例让学生经历代数式概念的产生过程,了解代数式的概念,学会用代数式表达简单的数量关系,深化符号感,掌握代数式的有关书写格式。
2.能力目标:通过丰富的例子使学生体验从语言叙述到代数表示,从代数表示到语言叙述的双向过程,能解释一些简单的代数式的实际背景或几何意义,培养学生的分析问题能力、数学语言表达能力、自主学习的能力、合作与探究的意识。
3.情感目标:提供多个实际生活情景,吸引学生的注意力,激发学生的学习兴趣,在合作交流中享受广阔的思维空间。通过列代数式表示生活中简单的数量关系使学生体验到代数式的实际意义及建模思想方法的实际应用价值,与同学互动过程中学会和人交流和合作,体验互相支持互相关怀的美好情感。
(三)教学的重点及难点
1.教学重点:代数式的概念和如何根据文字的意义列代数式。
2.教学难点:学生自己构造现实情境,去解释不同代数式的意义。
突破重难点的方法是:通过探究性教学方法激发学生兴趣和好奇性,引导学生积极主动地去领悟新知识,并让学生在主动思考探究的过程中自然地获取知识,去亲身体会学习知识的过程,从而加强学生主动探索,敢于发现的科学精神,充分运用多种教学手段,设置问题,探究讨论,例题讲解,课后小结,布置作业,突出主线,层层深入,逐一突破重难点。
二、教法分析
1.学生以自主合作的方式为主进行学习,教师以启发等方式进行引导,课堂以小组合作学习为主要的教学组织形式。遵循因材施教,循序渐进以及理论联系实际的原则,突出体现了“全面参与、全员参与、全程参与”与“自主性、互助性、创造性”的教学思想,逐步培养了学生运用基本的数学思想方法去发现问题、分析问题和解决问题的能力,全面提高学生的综合素质。
2.通过“激发兴趣、引入新课,观察联想、形成概念,应用拓展、巩固概念,反思辩论、深化概念,纵横发散、智能升级,学以致用、运用知识,自我反思、课外拓展”的教学程序,优化教育教学过程,提高教学三位目标的达成度。
三、学法分析
古人言:“授人以鱼,供一饭之需,教人以渔,则终身受用无穷。”教给学生如何学是教师的职责。因此在本节课的教学中,让学生主动观察、比较、分析、讨论、交流,使学生的手、脑、嘴充分调动起来,在轻松愉快的课堂气氛中亲身体验知识的形成过程。
四、教学过程分析
(一)创设情境,授之以欲
师(热情地):同学们喜欢做游戏吗?老师今天就来和同学们做一个猜数的游戏好不好?下面我来讲解一下游戏的规则--同学们任意想好一个数,不要说出来,然后先把向好的这个数乘以2结果加上8,再除以2,最后减去所想的数。现在由老师猜同学们的计算结果(教师同时给几个学生发放事先写好答案的纸条)。请这几位同学告诉大家,老师猜的对吗?谁能找到老师猜对答案的奥秘呢?
用字母表示数是跨入代数大门的第一步,代数的重要特点是广泛地应用字母表示数,它是数学发展的一个飞跃,是我们进一步研究和解决许多数量关系的基础。我国古代“代数思想”的出现是领先世界的(可向学生简单介绍代数学的发展史),我们在为先人做出的成就感到骄傲的同时,也要反思一下未来我国数学发展的责任要落到谁的肩上你?大家想不想进一步学习知识呢?
【设计意图】
创设愉悦宽松的游戏氛围,让学生在完全放松的情绪下感知生活,增加新鲜感,激发学生兴趣,锻炼学生的反应能力,体会代数式的重要意义。产生学习代数的兴趣,激发学习数学的热情,同时也进行了思想及责任感教育。教育家霍姆林斯曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
(二)形成概念,授之以渔
1.实例引领
例:用代数式表示(1)乙数比甲数大3;(2)甲乙两数的和为10;(3)甲数是乙数的5倍;(4)乙数比甲数的平方少2.(5)某班有共青团员m名分成两个小组,第一组有x人,第二组由有多少人?(5)已知正方体盒子的棱长为b厘米,则该盒子的体积是多少立方厘米?表面积是多少平方厘米?
(学生独立完成,请一生板演答案,师生共同纠错,重点强调做题的细节,如(4)题中的括号不能漏掉,(5)题中用乘方来表示)
【设计意图】英国数学教育心理学家斯根普指出:概念教学应该从大量实例出发,用实例直观地帮助完成定义而不是就定义教定义。因此,教师在课本已有的加、减、乘、除的基础上适当地增加了两个实例,(4)是减法运算,(5)是乘方运算,这位后面概括代数式的意义及代数式的书写规则做了一定的准备,并进一步体现了字母代数的数学思想,有利于突破教学难点。
2.概念生成
(1)观察:上述问题中出现的式子:a+3,10-a,1/5a……这些都称为代数式。
(教师指导学生观察,小组讨论并发言,应适时进行点拨,目的是让学生归纳出上述式子的共同特点,并总结出怎样的式子是代数式。
(2)联想:如50,a等单独的一个数或者一个字母是不是代数式?(学生思考讨论并举手发言)
(3)质疑:何为运算符号?运算符号是+,-,*,/,乘方,开方。而=,大于,小于,等等是关系符号而不是运算符号,凡由这些符号连结的式子都不是代数式而符号两边的式子是代数式。
(4)归纳:
代数式的特征
a.代数式是用运算符号把数或表示数的字母连接而成;
b.单独一个数或字母也是代数式.
c.代数式中不含等号和不等号。(学生归纳,教师板书,概括要点和关键字)
【设计意图】此阶段通过“观察-联想-质疑-归纳-表达”展现知识的形成过程和学生的思考过程,发展学生的智力品质,让学生在获取知识的.同时领会一定的数学思想和思维方法,实现学法指导的目的。
3.巩固联系,联系实际,贴近生活
学生独立做课本上第120页1题,两生板演答案,师生共同纠正书写问题。
【设计意图】设计此练习,让学生积极主动自我尝试、剖析、修正和反思,使其真正理解代数式概念的内涵。让学生能在实际情境中准确地用代数式解决实际问题,并记住相关题目对学生进行勤俭节约教育和刻苦学习的教育。
(三)自我归纳,授之以鱼
1.结合上面的练习中出现的问题,组织学生思考小组讨论后总结出代数式的书写规则,请代表发言补充.
(探索归纳出)书写代数式请注意以下几点:
(1)x×y×z通常写为x·y·z或xyz(乘号省略)
(2)把数字写在字母的前面,如6*b常写作6·b或6b。如果数字是带分数的要写成假分数。
数字和数字之间相乘用*
(3)10÷m通常写作 (除号用分数线表示)
(4)若最后结果是加减关系的须写单位时,则将整个式子括起来再写单位。
(5)相同字母或因式的积,要写成乘方的形式。
2.补充练习
下列代数式中符合书写要求的是A.xy2 B.1-x C.-x2y D.xy/2
【设计意图】一是培养学生勤于动脑思考,善于总结归纳的良好数学思维品质和语言表达能力;二是可使学生运用批判性的思维找出代数式书写中的错误,进一步加深理解代数式的书写规则。
3.纵横发散,自主创新
人人来当老师
(1).请同学们用10x+5y赋予实际生活背景或几何背景设计一道数学题!
(教师可类比英语中的英汉互译,使学生明白此题与前面的练习是一个双向的过程,是互逆思维,鼓励学生结合生活经验大胆想象出此代数式的实际背景.)
(2).抛砖引玉,分组竞赛
让学生结合生活经验对下列代数式做出解释。a+b,ab,6p.
【设计意图】通过同一代数式让学生说出不同的生活意义,以培养学生的发散思维能力和语言表达能力,培养学生的自主创新精神。
4.学以致用,关爱生命
例:现代营养专家用身体质量指数来判断人体的健康状况。这个指数等于人体质量(千克)与人体身高(米)平方的商。一个健康的人身体质量数在20-25之间,身体质量指数低于18属于不健康的瘦,高于30属于不健康的胖。(1)设一个人的质量w(千克)身高为h(米)求他的身体质量指数。(2)老师的身高是1.60米,体重是55千克,帮老师计算一下我的身体状况属于哪一类型?(3)请同学们判断自己的身体状况属于哪一类型?
【设计意图】人们越来越关注生活质量,关注健康,此应用题的教学使学生体验到数学与现实生活的密切联系。同时也为下一节列代数式及后面要学习的代数式的值做延伸和铺垫。
(四)课堂小结
1、谈谈你的收获;
2、谈谈你的疑问,
3、解疑。
(小组畅所欲言,互讲本节课的内容,总结本节课所学习的知识和应注意的问题,教师对小组总结情况进行评价)
【设计意图】在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而不所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力。
(五)分层作业,自由拓展
(1)必做题:课本105页2、3题
(2)选做题:课本121页1题
【设计意图】由于学生在知识、技能、能力等方面的发展不尽相同,所以分层次布置课外作业,兼顾学习有困难的和学有余力的学生,使他们都能达到数学标准中规定的基本要求并使部分学生能发展他们的数学才能。
五、几点说明
1.板书设计
(1)代数式的特征
(2)书写代数式请注意以下几点
(3)补充练习
2.时间安排
(1)创设情境,授之以欲 (5分钟)
(2)形成概念,授之以渔(15分钟)
(3)自我归纳,授之以鱼(15分钟)
(4)课堂小结 (5分钟)
3.设计特色
在探究过程中确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,真正焕发教学活力,让他们自己往前走,自己去锻炼去创造。
始终把素质教育思想渗透在课堂教学中,始终做到面向全体学生,关注个性差异,让每个学生在生动活泼的学习气氛中获取知识,提高能力,发展智力,培养正确的情感态度和价值观。











