“小辣椒”通过精心收集,向本站投稿了12篇数学教案-课题:一元二次方程根的判别式,下面是小编为大家整理后的数学教案-课题:一元二次方程根的判别式,如果喜欢可以分享给身边的朋友喔!

篇1:课题:一元二次方程根的判别式
大于镇中 赵从品
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标 :
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的判别式。
(2)用根的判别式解决实际问题。
7、教学难点 :
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导――发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x =-1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
ax2+bx+c= -c
x2+ x =-
x2+ x+( )2=( )2 ―
2
(x+ ) 2= 2
2
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式。
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业 本上。
2、有余力的.同学把练习题整理在作业 本。
四、教学后记:
篇2:数学教案-一元二次方程的根的判别式一
数学教案-一元二次方程的根的判别式(一)
1. 知识结构:
2. 重点、难点分析
(1)本节的重点是会用判别式判定根的情况.一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点.
(2)本节的难点是一元二次方程根的三种情况的推导.教科书首先将一元二次方程用配方法变形为 .因为,所以方程右边的符号就由来确定,而方程左边的不可能是一个负数,因此,把分三种情况来讨论方程根的情况.推导过程中利用了分类的思想方法,对于分类讨论学生感觉到较难,老师应该讲明分类的基本思想。
3. 教法建议:
(1)引入要自然、合理
新课引入前,作一个铺垫:前面我们讲了一元二次方程的解法,我们掌握了开平方法、公式法和因式分解法后,就可以解任何一个一元二次方程,但是,存在这样一个问题,并不是所有的一元二次方程都有解,我们可以通过把解求出来,来解方程,也可以通过判定方程无解,来解方程,这样我们就面临着一个问题,什么时候方程有解?什么时候方程无解?我们不解方程能不能判定根的情况?那就是我们本节所要研究的问题.让学生首先感觉到所要学习的知识并不突然,也显露了本节课的重点.
(2)利用多媒体进行教学
本节是根的判别式结论的推导,比较抽象,为了便于学生理解,使用所提供的动画,有助于学生对所讲内容的理解,调动学生主动思维的积极性,活跃课堂气氛,提高学习效率.
(3)本节在推导根的判别式的结论时,利用了分类的思想,对于学生这是一个难点,一定给学生讲清楚分类的依据,分类的.基本思想,使学生对所得结论深信不疑.
一、教学目标
1. 理解一元二次方程的根的判别式,并能用判别式判定根的情况;
2. 通过根的判别式的学习,培养学生从具体到抽象的观察、分析、归纳的能力;
3.通过根的情况的研究过程,让学生深刻体会转化和分类的思想方法.
二、重点·难点及解决办法
1.教学重点:会用判别式判定根的情况。
2.教学难点:一元二次方程根的三种情况的推导.
3.解决办法:(1)求判别式时,应先将方程化为一般形式,确定a、b、c。(2)利用判别式可以判定一元二次方程的存在性情况(共四种);方程有两个实数根,方程有两个不相等的实数根,方程有两个相等的实数根,方程没有实数根。
三、教学步骤
(一)教学过程()
1.复习提问
(1)平方根的性质是什么?
(2)解下列方程:① ;② ;③ 。
问题(1)为本节课结论的得出起到了一个很好的铺垫作用。问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用。
2.任何一个一元二次方程 用配方法将其变形为 ,因此对于被开方数 来说,只需研究 为如下几种情况的方程的根。
(1)当 时,方程有两个不相等的实数根。
即
(2)当 时,方程有两个相等的实数根,即 。
(3)当 时,方程没有实数根。
教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?
答: 。
3.①定义:把 叫做一元二次方程 的根的判别式,通常用符号“ ”表示。
②一元二次方程 。
当 时,有两个不相等的实数根;
当 时,有两个相等的实数根;
当 时,没有实数根。
反之亦然。
注意以下几个问题:
(1) 这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况。正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫。在这里应向学生渗透转化和分类的思想方法。
(2)当 ,说“方程 没有实数根”比较好。有时,也说“方程无解”。这里的前提是“在实数范围内无解”,也就是方程无实数根的意思。
4.例题讲解
例1 不解方程,判别下列方程的根的情况:
(1) ;(2) ;(3) 。
解:(1)
∴原方程有两个不相等的实数根。
(2)原方程可变形为
。
,
∴原方程有两个相等的实数根。
(3)原方程可变形为
。
∴原方程没有实数根。
学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的(2)计算 的值;(3)判别根的情况。
强调两点:(1)只要能判别 值的符号就行,具体数值不必计算出。(2)判别根据的情况,不必求出方程的根。
练习:不解方程,判别下列方程的情况:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6)
学生板演、笔答、评价。
(4)题可去括号,化一般式进行判别,也可设 ,判别方程 根的情况,由此判别原方程根的情况。
例2 不解方程,判别方程 的根的情况。
解: 。
又 ∵ 不论k取何实数, ,
∴ 原方程有两个实数根。
教师板书,引导学生回答。此题是含有字母系数的一元二次方程。注意字母的取值范围,从而确定 的取值。
练习:不解方程,判别下列方程根的情况。
(1) ;
(2) ;
(3) 。
学生板演、笔答、评价。教师渗透、点拨。
(3)解:
∵ 不论m取何值, ,即 。
∴ 方程无实数解。
由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值。
(二)总结、扩展
1.判别式的意义及一元二次方程根的情况。
(1)定义:把 叫做一元二次方程 的根的判别式,通常用符号“ ”表示。
(2)一元二次方程 。
当 时,有两个不相等的实数根;
当 时,有两个相等的实数根;
当 时,没有实数根。反之亦然。
2.通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法。
四、布置作业
教材P27A1~4。
5.不解方程,判断下x的方程的根的情况
(1)
(2)
五、板书设计
篇3:一元二次方程根的判别式
一、教材分析
1、教材所处的地位和作用:本课是阅读教材P39页的有关内容,虽然新课程标准没有要,教材上也作为阅读教材,但由于其内容太重要了,因而必须把它作为一堂课来上。它的作用在于让学生能尽快判定一元二次方程根的情况。
2、教学内容:本课主要是引导学生通过对一元二次方程ax2+bx+c=0(a≠0)配方后得到的(x+ )2 = 2 的观察,分析,讨论,发现,最后得出结论:只有当 2
b2-4ac≥ 0 时,才能直接开平方,进一步讨论分析得出根的判别式,从而运用它解决实际问题。
3、新课程标准的要求:由于根的判别式作为删去内容,虽然其内容重要,因而在处理这部分内容时,只能要求作了解性深入,练习尽可能简捷明确。
4、教学目标:
(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的.情况;根据根的情况,探求所需的条件。
(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。
5、数学思想:由感性认识到理性认识。
6、教学重点:
(1)发现根的判别式。
(2)用根的判别式解决实际问题。
7、教学难点:
根的判别式的发现
8、教法:启导、探究
9、学法:合作学习与探究学习
10、教学模式:引导――发现式
二、教学过程
(一)自习回顾,引入新课
1、师生共同回顾:一元二次方程的解法
2、解下列一元二次方程。
(1)x2 -1=0 (2)x2 -2x = -1
(3)(x+1)2- 4=0 (4)x2 +2x+2=0
3、为什么会出现无解?
(二)探索
1、回顾:用配方法解一元二次方程ax2+bx+c=0(a≠0)的过程。
ax2+bx+c= -c
x2+ x = -
x2+ x+( )2=( )2 ―
2
(x+ ) 2= 2
2
2、观察(x+ ) 2= 2 在什么情况下成立?
3、学生分组讨论。
4、猜测?
5、发现了什么?
6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b2-4ac≥ 0时, 才能直接开平方,也就是说,一元二次方程ax2+bx+c=0(a≠0)只有当系数a,b,c都是b2-4ac≥ 0时,才有实数根。(注意有根和有实数根的区别)
7、进一步观察发现一元二次方程ax2+bx+c=0(a≠0)
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,_________________________
8、总结:
(1)比较分析学生的讨论分析结果。
(2)由学生总结。
(3)教师根据学生总结情况补充完整。
篇4:一元二次方程根的判别式
(1)当b2-4ac> 0时,_______________________
(2)当b2-4ac= 0时,_________________________
(3)当b2-4ac< 0时,________________________
(三)应用新知:
1、不解方程判定下列一元二次方程根的情况。
(1)x2-x-6=0 b2-4ac=______ x1=_____ x2=_____
(2)x2-2x=1 b2-4ac=______ x1=_____ x2=_____
(3)x2-2x+2=0 b2-4ac=______ x1=_____ x2=_____
2、根据根的情况,求字母系数的取值范围。
例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。
(1)读题分析:
A、二次项系数是什么? a=_______
B、一次项系数是什么? b=_______
C、常数项是什么? c=_______
(2)建立等式,根据有个常数根 b2-4ac=0
(3)由学生完成解题过程后教师评价
3、证明
例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相等的实根。
(四)练习
已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程的根。
(五)小结:把_________叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,并会用它们解决一些实际问题。
三、作业
1、把例1、例2整理在作业本上。
2、有余力的同学把练习题整理在作业本。
四、教学后记:
篇5:一元二次方程的根的判别式(一)
1. 知识结构:
2. 重点、难点分析
(1)本节的重点是会用判别式判定根的情况.一元二次方程的根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也可以利用它进一步学习函数的有关内容,所以,它是本节课的重点.
(2)本节的难点是一元二次方程根的三种情况的推导.教科书首先将一元二次方程用配方法变形为 .因为,所以方程右边的符号就由来确定,而方程左边的不可能是一个负数,因此,把分三种情况来讨论方程根的情况.推导过程中利用了分类的思想方法,对于分类讨论学生感觉到较难,老师应该讲明分类的基本思想。
3. 教法建议:
(1)引入要自然、合理
新课引入前,作一个铺垫:前面我们讲了一元二次方程的解法,我们掌握了开平方法、公式法和因式分解法后,就可以解任何一个一元二次方程,但是,存在这样一个问题,并不是所有的一元二次方程都有解,我们可以通过把解求出来,来解方程,也可以通过判定方程无解,来解方程,这样我们就面临着一个问题,什么时候方程有解?什么时候方程无解?我们不解方程能不能判定根的情况?那就是我们本节所要研究的问题.让学生首先感觉到所要学习的知识并不突然,也显露了本节课的重点.
(2)利用多媒体进行教学
本节是根的判别式结论的推导,比较抽象,为了便于学生理解,使用所提供的动画,有助于学生对所讲内容的理解,调动学生主动思维的积极性,活跃课堂气氛,提高学习效率.
(3)本节在推导根的判别式的结论时,利用了分类的思想,对于学生这是一个难点,一定给学生讲清楚分类的依据,分类的基本思想,使学生对所得结论深信不疑.
一、教学目标
1. 理解一元二次方程的根的判别式,并能用判别式判定根的情况;
2. 通过根的判别式的学习,培养学生从具体到抽象的观察、分析、归纳的能力;
3.通过根的情况的研究过程,让学生深刻体会转化和分类的思想方法.
二、重点·难点及解决办法
1.教学重点:会用判别式判定根的情况。
2.教学难点:一元二次方程根的三种情况的推导.
3.解决办法:(1)求判别式时,应先将方程化为一般形式,确定a、b、c。(2)利用判别式可以判定一元二次方程的存在性情况(共四种);方程有两个实数根,方程有两个不相等的实数根,方程有两个相等的实数根,方程没有实数根。
三、教学步骤
(一)教学过程
1.复习提问
(1)平方根的性质是什么?
(2)解下列方程:① ;② ;③ 。
问题(1)为本节课结论的得出起到了一个很好的铺垫作用。问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用。
2.任何一个一元二次方程 用配方法将其变形为 ,因此对于被开方数 来说,只需研究 为如下几种情况的方程的根。
(1)当 时,方程有两个不相等的实数根。
即
(2)当 时,方程有两个相等的实数根,即 。
(3)当 时,方程没有实数根。
教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?
答: 。
3.①定义:把 叫做一元二次方程 的根的判别式,通常用符号“ ”表示。
②一元二次方程 。
当 时,有两个不相等的实数根;
当 时,有两个相等的实数根;
当 时,没有实数根。
反之亦然。
注意以下几个问题:
(1) 这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况。正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫。在这里应向学生渗透转化和分类的思想方法。
(2)当 ,说“方程 没有实数根”比较好。有时,也说“方程无解”。这里的前提是“在实数范围内无解”,也就是方程无实数根的意思。
4.例题讲解
例1 不解方程,判别下列方程的根的情况:
(1) ;(2) ;(3) 。
解:(1)
∴原方程有两个不相等的实数根。
(2)原方程可变形为
。
,
∴原方程有两个相等的实数根。
第 1 2 页
篇6:《一元二次方程根的判别式》备课教案
《一元二次方程根的判别式》备课教案
一、教学内容分析
“一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的`能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。
教学重点:根的判别式定理及逆定理的正确理解和运用
教学难点:根的判别式定理及逆定理的运用。
教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。
二、学情分析
学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标
依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:
知识和技能:
1、感悟一元二次方程的根的判别式的产生的过程;
2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;
3、会运用根的判别式求一元二次方程中字母系数的取值范围;
过程和方法:
1、培养学生的探索、创新精神;
2、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观:
1、向学生渗透分类的数学思想和数学的简洁美;
2、加深师生间的交流,增进师生的情感;
3、培养学生的协作精神。
篇7:《一元二次方程的根的判别式》教学反思
一、课后的总结与思考:
“一堂成功的数学课,往往给人以自然,和谐,舒服的享受。每一位教师在教材处理,教学方法,学法指导等诸方面都有自己的独特设计,在教学过程会出现闪光点。”,这是我在一本数学杂志上看到的一段话,我很赞同作者的观点,一堂成功的数学课,往往给教师自己本身和听课的学生以自然,和谐,舒服的享受。
学生是课堂教学实施之本,课堂实施是否成功还要看课堂教学是否让不同的学生得到不同的发展。因此,在准备本课的教学时我充分考虑了任教班级学生的特点。本课任教的班级是初三(8)班,这是一个平行班,在年级的平行班中处于中等水平,学生原有的数学底子较为薄弱,学生课后的学习习惯差,但是在课堂上,有老师的督促,大部分学生在课堂上还是较为自觉地学习数学。
针对班级的实际情况,我决定在本课教学实施的过程中没有采取小组讨论的问题讨论模式开展本课的课堂教学,而是比较传统地,让学生先练后讲再练这样的讲练结合的模式开展教学。
1、为了让学生能自主地体会“方程的解与什么有关系?”,让学生能把新知识当旧知识来理解,在学习新知前,先让学生解方程,通过练习来复习用公式法解方程,并把结果填写在预先设计的表格,通过表格直观自然地体会方程的解与b?4ac的值有关。从而很自然地进入本课所研究的重点内容。
附录一:
(一)解方程并讨论方程的解与什么有关系?
(1)、用公式法解:
1)x?3x?1?0
2)4x?4x?1?0
3)x?x?1?0
(2)、根据上述结果填写下表:
思考:从上述解题中你发现什么规律?方程是否有根与什么有关系?
2、师生共同小结本课学习的知识要点:
(1)b2?4ac叫做一元二次方程ax2?bx?c?0根的判别式,
通常用“△” 表示;
(2)一元二次方程ax2?bx?c?0(a?0)的根的情况:
3、师提出问题,学习根的判别式对于我们有什么作用?借助根的判别式又可以帮我们解决一些什么样的数学问题?
(1)利用根的.判别式可以使我们“不解方程也能判别方程的根的情况”;
例1、不解方程,判别方程2x?4x?35?0的根的情况
(2)利用根的判别式求出一些方程中待定系数的取值范围。
例2、已知关于x的方程3x?2kx?k?3k?0,当k取什么值时方程有两个相等的实数根?
4、让同学们根据本课所学的内容进行有关的分层练习,让不同层次的学生完成不同层次的练习。
5、小结本课所学内容和讲评纠正一些练习中出现的问题。
整节课的实施过程很顺利,学生对本课的知识掌握程度不错,因为作为一个处于年级中下水平的平行班来说,大部分同学能较好地完成练习的B组题,有些同学还能做C组题,那说明同学们对本课的知识掌握还很不错,能很好地达到本课的教学目的。
在教学过程中,每节课总会有这有那的一些不尽人意的地方,本课也是一样,尽管本节课学生完成习题的情况看,都很尽人意,还有点意外的是,竟然那么多学生能完成B组题,如果C组题不是学生理解题意存在较大的问题外,部分的优生还能完成一道C组题。情况看起来真是形势大好,但是换个角度想,本节课我这样安排是否太低估了学生的能力?我是否对新知的探索部分有太多的包办代替了,我应该更大胆地让学生自主去探索去归纳问题呢?当我在后期的迅堂批改中就感觉到的。而很幸运的,在后来的交流和探讨中,果真有老师给我提出了同样的建议。那样就更肯定了我的想法。
二、课后的交流和探索。
听课教师A:觉得本课的课堂流程过度很顺利,学生不象是年级中下的水平,无论是上课听课的情况还是做题的情况来看,学生对本课的知识掌握得不错。
听课教师B:也有同样的感觉,学生能按老师例题的格式去做,做题的书写等都不错,但是如果换成是我的话,我可能会先让学生先尝试做了分层练习,体会根的判别式的作用,才与学生一起归纳根的判别式的作用。不知大家觉得如何?
我的回应:其实,在准备这节课时,我也是希望在引入新课前,让学生自主用公式法解方程、填表后,再通过小组讨论:“从上述解题中你发现什么规律?方程是否有根与什么有关系?”;然后在进行对“根的判别式的作用”中,也是让学生先练,再小组讨论,共同归纳结果,在纠正学生解题过程中的一些不足。但是又担心,这个班的学生原来没有很多地训练小组讨论,然后好象学生的能力也不怎样,给他们讨论不知道能不能讨论得起来,于是后来就保守点,还是想先老师说,学生在模仿做,这样稳妥点。但不过真的,我在本课实施的后期也发现我真的是太低估学生的能力了,大部分学生能把中档的题目做完、做好,那说明本课的知识,学生不难理解。无论是从学生的能力看,还有就是课堂时间的安排下,都允许学生能进行充分地讨论。
听课教师C:没错,我也赞同这样的处理,如果本课的知识点,知识的应用都是由学生自己探索、体会、总结出来,必定让学生对这节课的知识掌握得更好。还有,对于平行班的学生来说,自己能这样学习数学问题,学习的自信心一定会得到很大的加强。
三、反思自己的教学是否真正达到了教学目标。
课上完了,交流探讨也告一段落,我对本课的教学有做了进一步的反思,反思自己的教学是否真的达到了教学目标。新的课程标准明确指出,我们要让学生学习有用的数学,让不同的学生在数学上得到了不同的发展。因此我觉得,本课的教学目的不仅仅是完成了本课的
教学任务,学生掌握了教学内容没有,还要关注学生是否在本节数学上得到了不同的发展。
回响本课的教学,我还是过多地注重地要求每一位学生都应该掌握哪些知识,尽管在分层练习中设计了不同层次的题目,让优生做有难度的题目,让他们多多思考,提高思含量。对于学习有困难的学生,降低学习要求,努力达到基本要求。但是在课堂内容的呈现过程和内容探索过程中没有注重学生间的交流。其实学生才是学生最好的老师,在他们的交流中,可以硬性要求,先让小组中学习最薄弱的同学发言,再到能力较强的同学发言,这样,即可以使薄弱的同学有一种压力,一定要多思多想。还可以通过组间交流,完善自己的想法。
还有,学生的潜力是无穷的,看老师怎么发掘而已,不要太主观地一味过高或过低地估计学生,给学生一个机会,学生会还我们一个奇迹。
四、本棵教学的重新实施情况。
经过对本课的反思,我又在另外的一个水平相当的班级进行实验,就是:
1、让学生自主用公式法解方程、填表后,再通过小组讨论:“从上述解题中你发现什么规律?方程是否有根与什么有关系?”;
2、然后在进行对“根的判别式的作用”中,也是让学生先练,再小组讨论,共同归纳 “根的判别式的作用”;
3、纠正学生解题过程中的一些不足。
学生发言活跃,做题的情况是,大部分完成B组的两道题,学生的答题书写不是很规范,但是从学生最后的自我归纳:“本课你学习的什么内容,有什么收获?”的回答中发现,学生对根的判别式的理解清晰,对它的作用也很清晰。而对解答过程书写不是很规范的问题完全可以在后续的练习课中得到纠正和完善。
苏霍姆林斯基在给《教师的建议》里说:“任何时候都不会给孩子不及格的分数,扼杀孩子的学习机会”,其用意是希望教师任何时候都要保护学生的自尊心,给学生予以学习的机会和希望。
什么样的教法才能真正能完成教学目标呢?
《数学课程标准》明确了义务教育阶段数学课程的总目标,提出从知识与技能,数学思考,解决问题,情感与态度等四个方面来进一步对每节课进行要求。
教师应给了足够的思考空间给学生,通过验证进而概括,使学生体验到成功的喜悦,使学生全身心的投入到学习活动中。教师应该帮助学生理解和掌握知识,培养了学生学习数学的兴趣使学生获得了真正的发展。
通过这次的活动和反思,我更觉得,人无完人,我们只有在教学工作中,多多反思,记录教育教学过程中的所得、所失、所感,为不断创新,不断地完善自己,为不断提高教育教学水平。
附:《一元二次方程的根的判别式》教学设计
一、教学目标目标
(一)知识教学点:
1.了解根的判别式的概念,
2.能用判别式判别根的情况。
(二)能力训练点:
1.培养学生从具体到抽象的观察、分析、归纳的能力。
2.进一步考察学生思维的全面性。
(三)德育渗透点:
1.通过了解知识之间的内在联系,培养学生的探索精神。
2.进一步渗透转化和分类的思想方法。
二、教学重点:会用判别式判定根的情况。
三、教学步骤:
篇8:数学教案-一元二次方程根与系数关系
数学教案-一元二次方程根与系数关系
一元二次方程(一)
一、素质教育目标
(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
二、教学重点、难点
1.教学重点:一元二次方程的意义及一般形式.
2.教学难点 :正确识别一般式中的“项”及“系数”.
三、教学步骤
(一)明确目标
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的`地位.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
篇9:数学教案-一元二次方程根与系数的关系
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=
根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
(二)重点、难点
一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
(三)教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程(),使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程(),激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
二、设计理念
根据教材内容和本人研究的课题《初中数学问题引探教学实验研究》,在教学中渗透新课标的精神,注重过程数学,注重创新教学,注重问题意识,关注学生的学习兴趣和经验,让学生主动参与学习活动,主动探索并获取知识,教师是组织者、引导者、参与者。
三、教法与学法
(一)教法
1、充分以学生为主体进行教学,让学生多实践,从实践中反思过程,让学生经历韦达定理的发生发展过程,并从中体验成功的`乐趣。
2、采用“实践(练习)――观察――发现――猜想――证明”的过程教学。引导学生发现问题,师生共同解决问题。
3、分小组讨论交流,多渠道信息反馈。
4、问题引探,启发诱导,进行创新教学。
(二)学法指导
1、引导学生实践、观察、发现问题、猜想并推理。
2、指导学生掌握思考问题的方法及解决问题的途径。
3、指导学生熟练掌握根与系数的关系,并将应用问题和规律归类。
四、课时划分及教学过程()
(一)课时划分
共分3课时
第一课时
1、根与系数的关系。
2、根与系数的关系的应用。
(1)求已知方程的两根的平方和、倒数和、两根差。
第二课时
1、已知两数求作新方程。
2、由已知两根和与积的值或式子,求字母的值。
第三课时
方程判别式、根与系数的关系的综合应用。
篇10:数学教案-一元二次方程根与系数的关系
一、教学目标
1、理解掌握一元二次方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a、b、c之间的关系。
2、能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知数。
3、会求已知方程的两根的倒数和与平方和、两根的差。
4、在推导过程中,培养学生“观察――发现――猜想――证明”的研究问题的思想与方法。
二、重难点
根与系数的关系是重点,由于式子的抽象性,两根之和等于一次项系数除以二次项系数的相反数中的符号是学生理解和掌握的难点。
三、教学过程()
(一)问题引探
问题1.在方程ax2+bx+c=0中,a的取值决定什么?b2-4ac的取值呢?同学们可知道a、b、c的取值与一元二次方程ax2+bx+c=0的根还有其它关系?今天我们进一步研究一元二次方程的这种关系。
问题2.解方程x2-5x+6=0,并先指出a、b、c各是多少,然后再解方程,计算两根的和与积,你能发现什么结论(现象)?
问题3.解下列方程:
(1)2x2+5x+3=0 (2)3x2-2x-2=0
并根据问题2和以上的求解填写下表
请观察上表,你能发现两根之和、两根之积与方程的系数之间有什么关系吗?
问题4.请根据以上的观察发现进一步猜想:方程ax2+bx+c=0(a≠0)的根x1,x2与a、b、c之间的关系:____________.
问题5.你能证明上面的猜想吗?请证明,并用文字语言叙述说明。
分小组讨论以上的问题,并作出推理证明。
若方程ax2+bx+c=0(a≠0)的两根为x1=
x1+x2=
x1 x2=
=
即:如果ax2+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=
由此得出一元二次方程的根与系数的关系;还可以让学生用自己的语言表述这种关系,来加深理解和记忆。
这个关系是一个法国数学家韦达发现的,所以也称之为韦达定理。
问题6.在方程ax2+bx+c=0(a≠0)中,a、b、c的作用吗?(引导学生反思性小结)
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b2-4ac可判定根的情况;
④当a≠0,b2-4ac≥0时,x1+x2=
⑤当a≠0,c=0时,方程有一根为0。
说明:1、本设计采用“实践――观察――发现――猜想――证明”的过程,使学生既动手又动脑,且又动口,教师引导启发,避免注入式地讲授一元二次方程根与系数的关系,体现学生的主体学习特性,培养了学生的创新意识和创新精神。
2、本设计遵循由特殊到一般,从实践到理论(即从感性认识上升到理性认识)的认知规律。
3、本设计注重了学生的反思过程,使学生将知识系统化、格式化。
(二)尝试发展
试一试:根据根与系数的关系写出下列方程的两根之和与两根之积(方程两根为x1,x2、k是常数)
(1)2x2-3x+1=0 x1+x2= ________ x1x2= _________
(2)3x2+5x=0 x1+x2= ________ x1x2= __________
(3)5x2+x-2=0 x1+x2= _________ x1x2= __________
(4)5x2+kx-6=0 x1+x2= _________ x1x2= __________
(此试一试作为巩固知识而用)
尝试题1、已知方程6x2+kx-5=0的一个根为,求它的另一个根及k的值。
组织学生自己分析解决,然后一学生演板,其余学生在草稿本上练习。
学生练习:P32 2。
尝试题2、利用根与系数的关系,求一元二次方程2x2-3x-1=0的两个根的(1)平方和,(2)倒数和。
讨论:解上面问题的思路是什么?
得出:x12+ x22=( x1+x2)2-2 x1x2;
(三)拓展创新
1、在尝试2中能否求(x1-x2)的值?2、已知实数满足关系式a2-5a+6=0,b2-5b+6=0,且a≠b,能否求a+b与ab的值?
说明:1、“试一试”是引导学生及时巩固本节所学的新知“根与系数的关系”,其中第(3)小题是培养学生思维严谨性和批判性;第(4)小题是起过渡作用设计。
2、尝试题1、2让学生讨论完成或独立完成,可以看书完成,其系数与例题有别。
3、“拓展创新”中是培养学生思维的发散性教学设计,也是开放性教学,使有的学生的奇异思维得到发展。
(四)归纳小结本课主要研究了什么?1、方程的根是由系数决定的。2、a≠0时,方程ax2+bx+c=0是一元二次方程。3、a≠0,且b2-4ac≥0时,方程ax2+bx+c=0的根为x1、2=
(1)已知一根求另一根及k的值;(2)求有关代数式的值。
(五)布置作业
P33A 1、2 B 1(1)
练习:1.已知三角形的两边长a、b是方程x2-kx+12=0的两个,等腰三角形的另一条边c=4,求这个等腰三角形的周长。
2、已知关于x的方程x2-2mx+
(1) 求征这个方程有两个不相等实数根.
(2) 若方程的两个实数根差的绝对值是8,并且等腰三角形的面积是12,求这个三角形的内切圆的面积.
3、已知二次函数y=x2+2ax-2b+1和y=-x2+(a―3)x+b2-1的图象都经过x轴上两个不同的点,求这两个函数的解析式.
篇11:数学教案-一元二次方程根与系数的关系
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的.根x1、2= 得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。
根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。
通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。
通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。
(二)重点、难点
一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
(三)教学目标
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
篇12:数学教案-一元二次方程的根与系数的关系(一)
一、教学目标
1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;
2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;
3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。
教学重点和难点:
二、重点·难点·疑点及解决办法
1.教学重点:根与系数的关系及其推导。
2.教学难点 :正确理解根与系数的关系。
3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。
4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件和。
三、教学步骤
(一)教学过程
1.复习提问
(1)写出一元二次方程的一般式和求根公式。
(2)解方程①,②。
观察、思考两根和、两根积与系数的关系。
在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?
2.推导一元二次方程两根和与两根积和系数的关系。
设是方程的两个根。
∴
∴
以上一名学生板书,其他学生在练习本上推导。
由此得出,一元二次方程的根与系数的关系。(一元二次方程两根和与两根积与系数的关系)
结论1.如果的两个根是,那么。
如果把方程变形为。
我们就可把它写成
。
的形式,其中。从而得出:
结论2.如果方程的两个根是,那么。
结论1具有一般形式,结论2有时给研究问题带来方便。
练习1.(口答)下列方程中,两根的和与两根的积各是多少?
(1);(2);(3);
(4);(5);(6)
此组练习的目的是更加熟练掌握根与系数的关系。
3.一元二次方程根与系数关系的应用。
(1)验根。(口答)判定下列各方程后面的两个数是不是它的两个根。
①;②;③;
④;⑤。
验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成一般形式,(2)不要漏除二次项系数,(3)还要注意中的负号。
(2)已知方程一根,求另一根。
例:已知方程的根是2,求它的另一根及k的值。
解法1:设方程的另一根为,那么。
∴
又 ∵ 。
答:方程的另一根是,k的值是-7。
此题的解法是依据一元二次方程根与系数的关系,设未知数列方程达到目的,还可以向学生展现下列方法,并且作比较。
方法(二) ∵ 2是方程的根,
∴
∴ 原方程可变为
解此方程。
方法(三)∵ 2是方程的根,
∴
答:方程的另一根是,k的值是-7。
学生进行比较,方法(二)不如方法(一)和(三)简单,从而认识到根与系数关系的应用价值。
练习:教材P32中2。
学习笔答、板书,评价,体会。
(二)总结、扩展
(12) 一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积和系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
四、布置作业
教材P32中1 P33中A1。
五、板书设计











