一、教学目标

1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.

同底数幂的除法教学设计

2.培养学生抽象的数学思维能力.

3.通过例题和习题,训练学生综合解题的能力和计算能力.

4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.

二、重点·难点

1.重点

理解和应用负整数指数幂的*质.

2.难点

理解和应用负整数指数幂的*质及作用,用科学记数法表示绝对值小于1的数.

三、教学过程

1.创造情境、复习导入

(l)幂的运算*质是什么?请用式子表示.

(2)用科学记数法表示:①69600②-5746

(3)计算:①

2.导向深入,揭示规律

由此我们规定

规律一:任何不等于0的数的0次幂都等于1.

同底数幂扫除,若被除式的指数小于除式的指数,

例如:

可仿照同底数幂的除法*质来计算,得

由此我们规定

一般我们规定

规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.

3.尝试反馈.理解新知

例1计算:(1)

(2)

(3)

(4)

解:(1)原式

(2)原式

(3)原式

(4)原式

例2用小数表示下列各数:(1)

(2)

解:(1)

(2)

练习:p1411,2.

例3把100、1、0.1、0.01、0.0001写成10的幂的形式.

由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.

问:把0.000007写成只有一个整数位的数与10的幂的积的形式.

解:

像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.

例4用科学记数法表示下列各数:

0.008、0.000016、0.0000000125

解:

例5地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)

解:

(吨)

答:木星的质量约是

吨.

练习:p1421,2.

四总结、扩展

1.负整数指数幂的*质:

2.用科学记数法表示数的规律:

(1)绝对值较大的数

,n是非负整数,n=原数的整数部分位数减1.

(2)绝对值较小的数

,n为一个负整数,

原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)

五、布置作业

p143a组4,5,6;b组1,2,3,4.

参考*

略.

今天的内容就介绍到这里了。

《同底数幂的除法》(第一课时)教学设计2

教学建议

1.知识结构:

2.教材分析

(1)重点和难点

重点:准确、熟练地运用法则进行计算.*质是幂的运算*质之一,是整式除法的基础,一定要打好这个基础.

难点:根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般*的,逐步归纳出同底数幂除法的一般*质.所以乘、除互逆的运算关系得出法则是本节的难点.

(2)教法建议:

1.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般*的,逐步归纳出同底数幂除法的一般*质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.

2.*质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以*质中必须规定指数都是正整数,并且,要让学生运用时予以注意.

重点、难点分析

1.法则:同底数幂相除,底数不变,指数相减,即(,、都是正整数,且).

2.指数相等的同底数的幂相除,商等于1,即,其中.

3.同底数幂相除,如果被除式的指数小于除式的指数,则出现负指数幂,规定

(其中,为正整数).

4.底数可表示非零数,或字母或单项式、多项式(均不能为零).

5.科学记数法:任何一个数(其中1,为整数).

(第一课时)

一、教学目标

1.掌握运算*质.

2.运用运算法则,熟练、准确地进行计算.

3.通过总结除法的运算法则,培养学生的抽象概括能力.

4.通过例题和习题,训练学生的综合解题能力和计算能力.

5.渗透数学公式的简洁美、*美.

二、重点难点

1.重点

准确、熟练地运用法则进行计算.

2.难点

根据乘、除互逆的运算关系得出法则.

三、教学过程

1.创设情境,复习导入

前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.

(1)叙述同底数幂的乘法*质.

(2)计算:①②③

学生活动:学生回答上述问题.

.(m,n都是正整数)

【教法说明】通过复习引起学生回忆,巩固同底数幂的乘法*质,同时为本节的学习打下基础.

2.提出问题,引出新知

思考问题:().(学生回答结果)

这个问题就是让我们去求一个式子,使它与相乘,积为,这个过程能列出一个算式吗?

由一个学生回答,教师板书.

这就是我们这节课要学习的运算.

3.导向深入,揭示规律

我们通过同底数幂相乘的运算法则可知,

那么,根据除法是乘法的逆运算可得

也就是

同样,

∴.

那么,当m,n都是正整数时,如何计算呢?

(板书)

学生活动:同桌研究讨论,并试着推导得出结论.

师生共同总结:

教师把结论写在黑板上.

请同学们试着用文字概括这个*质:

【公式分析与说明】提出问题:在运算过程当中,除数能否为0?

学生回答:不能.(并说明理由)

由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:

一般地,

这就是说,同底数幂相除,底数不变,指数相减.

4.尝试反馈,理解新知

例1计算:

(1)(2)

例2计算:

(1)(2)

学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.

教师活动:统计做题正确的人数,同时给予肯定或鼓励.

注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.

5.反馈练习,巩固知识

练习一

(1)填空:

①②

③④

(2)计算:

①②

③④

学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.

练习二

下面的计算对不对?如果不对,应怎样改正?

(1)(2)

(3)(4)

学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.

四总结、扩展

我们共同总结这节课的学习内容.

学生活动:①同底数幂相除,底数__________,指数________。

②由学生谈本书内容体会.

【教法说明】强调“不变”、“相减”.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.

五、布置作业

p1431.(l)(3)(5),2.(l)(3),3.(l)(3).

参考*

略.

六、板书设计

7.8

例1解(l)(2)

∴例2解(l)(2)

一般地

同底数幂相除底数不变、指数相减

运算形式运算方法

《幂函数》的教学设计方案3

考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开。

学生思考,作答,教师引导学生叙述语言的逻辑*。

训练学生用函数*质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数*质解决,注意区别。

⒁请学生考虑可以如何验证上述*的正确。

学生实践。使用计算器验证,提高学生使用学习工具的意识。

⒂简单应用2:幂函数=(-3-3)x在区间上是减函数,求的值。

学生思考,作答。教师板演。对幂函数定义进一步巩固,对函数*质作初步应用。同时训练学生对初步*进行筛选。

⒃简单应用2:

已知(a+1)<(3-2a),试求a的取值范围。

学生思考,作答。教师板演。

训练学生灵活使用*质解题。

数学交流⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验?学生思考、小组讨论,教师引导。让学生回顾,小结,将对学生形成知识系统产生积极影响。

数学再现

⒅布置作业:

课本p.732、3、4、思考5思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。

几点说明:

⑴本节课开始时要注意用相关熟悉例子引入新课。

⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己*作,以提高学生探索问题的兴趣和能力,并提高教学效率。

⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。

⑷本设计相关采用p

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。