“shamozhihua”通过精心收集,向本站投稿了6篇考研数学指导知识点综述之数二,下面是小编为大家整理后的考研数学指导知识点综述之数二,仅供参考,喜欢可以收藏与分享哟!

篇1:考研数学指导知识点综述之数二
考研数学指导知识点综述之数二
微积分一、函数、极限、连续
1.函数的有界性、单调性、周期性和奇偶性
2.复合函数、反函数、分段函数和隐函数
3.基本初等函数的性质及其图形
4.数列极限与函数极限的定义及其性质
5.函数的左极限和右极限
6.无穷小量和无穷大量的概念及其关系
7.无穷小量的性质及无穷小量的比较
8.极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则
9.两个重要极限
10.函数连续的概念
11.函数间断点的类型
12.闭区间上连续函数的性质
二、一元函数微分学
1.导数和微分的概念
2.函数的可导性与连续性之间的关系
3.平面曲线的切线和法线方程
4.导数和微分的四则运算
5.基本初等函数的导数
6.复合函数、反函数、隐函数数的微分法
7.高阶导数 一阶微分形式的不变性
8.微分中值定理
9.洛必达(L’Hospital)法则
10.函数单调性、极值
11.函数图形的凹凸性、拐点及渐近线
12.函数的最大值与最小值
三、一元函数积分学
1.原函数和不定积分的概念,不定积分的基本性质
2.基本积分公式
3.定积分的概念和基本性质,定积分中值定理
4.积分上限的函数及其导数
5.牛顿-莱布尼茨(Newton-Leibniz)公式
6.不定积分和定积分的换元积分法与分部积分法
7.反常(广义)积分
8.定积分的几何应用(平面图形的面积、旋转体的体积)
四、多元函数微积分学
1.二元函数的极限与连续的概念
2.多元函数的.偏导数和全微分,全微分存在的必要条件和充分条件
3.多元复合函数、隐函数的求导法
4.二阶偏导数
5.多元函数的极值和条件极值
6.多元函数的最大值、最小值及其简单应用
7.二重积分的概念、性质、计算
五、无穷级数
1.常数项级数的收敛与发散的概念,收敛级数的和的概念
2.级数收敛的基本性质与收敛的必要条件
3.几何级数与级数及其收敛性
4.正项级数收敛性的判别法
5.交错级数与莱布尼茨定理
6.任意项级数的绝对收敛与条件收敛
7.幂级数及其收敛半径、收敛区间(指开区间)和收敛域
8.幂级数在其收敛区间内的基本性质
9.简单幂级数的和函数的求法
10.初等函数的幂级数展开式
六、常微分方程与差分方程
1.变量可分离的微分方程
2.齐次微分方程
3.一阶线性微分方程
4.线性微分方程解的性质及解的结构定理
5.二阶常系数齐次线性微分方程
6.简单的二阶常系数非齐次线性微分方程
7.差分方程的通解与特解
8.一阶常系数线性差分方程
/kaoyan篇2:考研数学指导知识点综述之数三
2012考研数学指导知识点综述之数三
线性代数一、行列式
1.行列式的概念和基本性质
2.行列式按行(列)展开定理
二、矩阵
1.矩阵的线性运算、乘法运算
2.方阵的幂
3 方阵乘积的行列式
4.矩阵的转置
5.逆矩阵的概念和性质,矩阵可逆的充分必要条件
6.伴随矩阵
7.矩阵的初等变换,初等矩阵,矩阵的等价
8.矩阵的秩
9.分块矩阵及其运算
三、向量
1.向量的线性组合与线性表示
2.向量组的线性相关与线性无关
3.向量组的极大线性无关组
4.等价向量组
5.向量组的秩
6.向量组的.秩与矩阵的秩之间的关系
7.向量的内积
8.线性无关向量组的的正交规范化方法
四、线性方程组
1.线性方程组的克莱姆(Cramer)法则
2.齐次线性方程组有非零解的充分必要条件
3.非齐次线性方程组有解的充分必要条件
4.线性方程组解的性质和解的结构
5.齐次线性方程组的基础解系和通解
6.非齐次线性方程组的通解
五、矩阵的特征值和特征向量
1.矩阵的特征值和特征向量的概念、性质
2.相似矩阵的概念及性质
3.矩阵可相似对角化的充分必要条件及相似对角矩阵
4.实对称矩阵的特征值、特征向量及其相似对角矩阵
六、二次型
1.合同变换与合同矩阵
2.二次型的秩,二次型的标准形和规范形
3.用正交变换和配方法化二次型为标准形

4.二次型及其矩阵的正定性
/kaoyan篇3:考研数学指导知识点综述之数一
考研数学指导知识点综述之数一
高等数学一、函数、极限、连续
1.函数的有界性、单调性、周期性和奇偶性
2.复合函数、反函数、分段函数和隐函数
3.基本初等函数的性质及其图形
4.数列极限与函数极限的定义及其性质
5.函数的左极限和右极限
6.无穷小量和无穷大量的概念及其关系
7.无穷小量的性质及无穷小量的比较
8.极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则
9.两个重要极限:
10.函数连续的概念
11.函数间断点的类型
12.闭区间上连续函数的性质
二、一元函数微分学
1.导数和微分的概念
2.函数的可导性与连续性之间的关系
3.平面曲线的切线和法线方程
4.导数和微分的四则运算
5.基本初等函数的导数
6.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法
7.高阶导数 一阶微分形式的不变性
8.微分中值定理
10.函数单调性、极值
11.函数图形的凹凸性、拐点及渐近线
12.函数的最大值与最小值
13.弧微分
14.曲率的概念、曲率圆与曲率半径
三、一元函数积分学
1.原函数和不定积分的概念,不定积分的基本性质
2.基本积分公式
3.定积分的概念和基本性质,定积分中值定理
4.积分上限的函数及其导数
5.牛顿-莱布尼茨(Newton-Leibniz)公式
6.不定积分和定积分的换元积分法与分部积分法
7.有理函数、三角函数的有理式和简单无理函数的积分
8.反常(广义)积分
9.定积分的几何应用(平面图形的.面积、旋转体的体积、平面曲线的弧长)
四、向量代数和空间解析几何
1.向量的数量积和向量积、混合积
2.两向量的夹角,两向量垂直、平行的条件
3.向量的坐标表达式及其运算
4.单位向量,方向数与方向余弦
5.平面方程
6.直线方程
7.球面、柱面、旋转曲面
8.空间曲线在坐标面上的投影曲线方程
五、多元函数微分学
1.二元函数的极限与连续的概念
2.多元函数的偏导数和全微分,全微分存在的必要条件和充分条件
3.多元复合函数、隐函数的求导法
4.二阶偏导数
5.方向导数和梯度
6.空间曲线的切线和法平面
7.曲面的切平面和法线
8.多元函数的极值和条件极值
9.多元函数的最大值、最小值及其简单应用
六、多元函数积分学
1.二重积分与三重积分的概念、性质、计算和应用
2.两类曲线积分的概念、性质及计算,两类曲线积分的关系
3.格林(Green)公式
4.平面曲线积分与路径无关的条件
5.二元函数全微分的原函数
6.两类曲面积分的概念、性质及计算,两类曲面积分的关系
7.高斯(Gauss)公式
8.斯托克斯(Stokes)公式
9.散度、旋度的概念及计算
七、无穷级数
1.常数项级数的收敛与发散的概念,收敛级数的和的概念
2.级数收敛的基本性质与收敛的必要条件
3.几何级数与 级数及其收敛性
4.正项级数收敛性的判别法
5.交错级数与莱布尼茨定理
6.任意项级数的绝对收敛与条件收敛
7.幂级数及其收敛半径、收敛区间(指开区间)和收敛域
8.幂级数在其收敛区间内的基本性质
9.简单幂级数的和函数的求法
10.初等函数的幂级数展开式
11.函数的傅里叶(Fourier)系数与傅里叶级数
12.狄利克雷(Dirichlet)定理
13.函数在 上的傅里叶级数,函数在 上的正弦级数和余弦级数
八、常微分方程
1.变量可分离的微分方程
2.齐次微分方程
3.一阶线性微分方程
4.伯努利(Bernoulli)方程
5.可降阶的高阶微分方程
6.线性微分方程解的性质及解的结构定理
7.二阶常系数齐次线性微分方程
8.简单的二阶常系数非齐次线性微分方程
线性代数
一、行列式
1.行列式的概念和基本性质
2.行列式按行(列)展开定理
二、矩阵
1.矩阵的线性运算、乘法运算
2.方阵的幂
3.方阵乘积的行列式
4.矩阵的转置
5.逆矩阵的概念和性质,矩阵可逆的充分必要条件
6.伴随矩阵
7.矩阵的初等变换,初等矩阵,矩阵的等价
8.矩阵的秩
9.分块矩阵及其运算
三、向量
1.向量的线性组合与线性表示
2.向量组的线性相关与线性无关
3.向量组的极大线性无关组
4.等价向量组
5.向量组的秩
6.向量组的秩与矩阵的秩之间的关系
7. 维向量空间的基变换和坐标变换
8.过渡矩阵
9.向量的内积
10.线性无关向量组的正交规范化方法
11.规范正交基
12.正交矩阵及其性质
四、线性方程组
1.线性方程组的克莱姆(Cramer)法则
2.齐次线性方程组有非零解的充分必要条件
3.非齐次线性方程组有解的充分必要条件
4.线性方程组解的性质和解的结构
5.齐次线性方程组的基础解系和通解
6.非齐次线性方程组的通解
五、矩阵的特征值和特征向量
1.矩阵的特征值和特征向量的概念、性质
2.相似变换、相似矩阵的概念及性质
3.矩阵可相似对角化的充分必要条件及相似对角矩阵
4.实对称矩阵的特征值、特征向量及其相似对角矩阵
六、二次型
1.合同变换与合同矩阵
2.二次型的秩,二次型的标准形和规范形
3.用正交变换和配方法化二次型为标准形
4.二次型及其矩阵的正定性
概率论与数理统计
一、随机事件和概率
1.事件的关系与运算,完备事件组
2.概率的概念、基本性质
3.古典型概率
4.几何型概率
5.条件概率
6.概率的基本公式
7.事件的独立性
8.独立重复试验
二、随机变量及其分布
1.随机变量分布函数的概念及其性质
2.离散型随机变量的概率分布
3.连续型随机变量的概率密度
4.常见随机变量的分布
5.随机变量函数的分布
三、多维随机变量及其分布
1.二维离散型随机变量的概率分布、边缘分布和条件分布
2.二维连续型随机变量的概率密度、边缘概率密度和条件密度
3.随机变量的独立性和不相关性
4.常用二维随机变量的分布
5.两个及两个以上随机变量简单函数的分布
四、随机变量的数字特征
1.随机变量的数学期望(均值)、方差、标准差及其性质
2.随机变量函数的数学期望
3.矩、协方差、相关系数及其性质
五、大数定律和中心极限定理
1.切比雪夫(Chebyshev)不等式
2.切比雪夫大数定律、伯努利(Bernoulli)大数定律、辛钦(Khinchine)大数定律
3.棣莫弗-拉普拉斯(De Moivre-laplace)定理、列维-林德伯格(Levy-Lindberg)定理
六、数理统计的基本概念
1.总体、个体、简单随机样本
2.统计量
3.样本均值、样本方差和样本矩
4. 分布、分布、分布
5.分位数
6.正态总体的常用抽样分布
七、参数估计
1.矩估计法
2.最大似然估计法
3.估计量的评选标准
4.单个正态总体的均值和方差的区间估计
5.两个正态总体的均值差和方差比的区间估计
八、假设检验
1.显著性检验
2.假设检验的两类错误
3.单个及两个正态总体的均值和方差的假设检验
希望考数一的考生们能够熟练的把握以上各科目的知识点并熟练应用,祝愿考研的同学们能够复习顺利!
/kaoyan篇4:考研数学高数知识点梳理及指导
2012考研数学高数知识点梳理及指导
》高等数学是考研数学内容最多的一部分,所占的分值最高。相比较而言,这部分内容也非常重要。因此我们给大家梳理一下高数重要知识点,同时在这一阶段的复习中,给同学们一些建议,希望能对大家有所帮助!高数第一章“函数极限和连续”的重点就是不定式的极限,同学们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的'探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。总之针对这种考试重点知识点,必须充分把握。
对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和,主要是间接的展开法。
以上为高数中常考到的重要知识点。需要提醒大家的是,数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
同学们在学习的过程中一定要认清一点:题等同于做题。看由于时间原因,很多人只是匆匆忙忙地看书而不动手练习,造成眼高手低。数学是一门严谨的学科,容不得半点纰漏,在我们还没有建立起完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。况且,通过动手练习,我们还能规范答题模式,提高解题和运算的熟练程度,要知道3个小时那么大的题量,本身就是对计算能力和熟练程度的考查,而且现在的阅卷都是分步给分的,怎么作答有效果,这些都要通过自己不断的练习去体会。
/kaoyan/篇5:考研数学指导之基础知识
考研数学指导之基础知识
作为考研的一名学生,我可以很骄傲很自豪的和大家说,我成功了!这成功不仅仅是因为满意的分数和考上的喜悦,还因为我经历了我成长了我知道自己能做到了!在所有科目的成绩中,数学是我非常满意的。而且,我一向比较喜欢数学,所以我想多给大家一些数学方面的建议,也想对大家有所帮助。在我周围的同学中,有些人不愿意考研或者说想跨专业很大原因是因为害怕数学,我觉得数学其实真的并不可怕,就像老师告诉我们的,关键是方法要对,而且努力是一定要的。下面我就把我学习数学中认为有效的方法总结告诉大家。
首先,教材是基础。每年的考题其实都不会脱离教材内容,所以教材是关键,数学三考三门,高数概率和线性代数,刚开始学习的时候先把课本的基本内容弄通,把课后的习题都做上一遍,把每章的重点内容总结一下,三本教材都配有课后习题讲解不会做的'题目看答案的解题思路,总之第一遍就是教材,把教材吃透了,只有这样才能把基础打牢,下面的学习中才不会有太大的障碍,这个过程或许是很痛苦的,但是过后你会发现你真的长进了很多,以后的学习就轻松多了,不然的话,抓到一个题目不会做,抓到一个题目不会做,这样的话会严重打击你的自信心,这也就是很多准备考研的人中间放弃的原因,因为他们基础打得不牢,后期的学习中遇到很大的障碍,所以他们没有信心去克服,最终选择了放弃,希望正在准备考研的人们能够吸取教训,不要犯同样的错误。以上第一轮的复习需要花大概三个月时间,当然具体的人基础不一样花的时间是不一样的。时间上希望大家根据自己的程度合理安排。
接下来,做题很重要。这也是数学复习的第二轮,选一本口碑好一点难度适中的习题,把上面的题目挨着做一遍,一定要亲自动手,不要眼高手低,有的同学觉得简单就不做了,有的同学就光看答案认为看懂就行了,这样都是不行的,我就是无论多简单的题目,都会动手去做一下的,记得以前吃过这方面的亏,考试的时候就是见过这些题,感觉也不难,可就是做不出来,要么就是时间不够。所以大家一定要动手做,不要偷懒。第二轮结束了之后接着就是专项题目的练习。数学就是多做题,做多了,还得方法对,自然就有思路了,见得多了做得多了,你拿到一道题就知道往哪里想,用哪块知识,而不是拿着一道题思考半天不知道考的是哪块内容。这一阶段大概需要三个月时间,这也是非常关键的一个阶段,大家通过做题会有一个大幅度的提升,整个课本也会连贯起来,形成一个系统。
然后,就是实战演习。做整套整套的题,严格按照时间做一整套题目,认真总结错题,把生疏的地方再加以巩固,就可以再有一个提高,把近十五年的卷子做上一遍,把每道题都弄通,把知识点加以梳理连贯,就可以了。如果大家一步一个脚印,把每个步骤都做好,我肯定你的数学成绩是高分。
/篇6:考研数学 数二满分经验
考研数学 数二满分经验分享
发现论坛考数学一的还是比较多的,因为考的是数学二,概率、高数跟向量有关的等等都不涉及,所以从现在看,总体而言,数学二还是比较简单的,至少复习量没有那么大。大家刚复习时,都把章节、大纲给定好了,但是起点都差不多一样,所以刚开始复习没有所谓的数学几比较难。我相信,如果我当初要考数学一的话,花费的时间也不会比现在多多少,而掌握的程度也差不多了,所以,大家也不要歧视数学二。因为很喜欢学数学,所以大一大二学数学还是比较用功的,不过学的程度当然不高了,很久没有接触数学,难免生疏不少,尽管有兴趣但是刚复习难度真不小,尤其是下册,其实有一份对数学兴趣还是很不错了,至少你很乐意去学习。
从暑假之前书本基本大致看完了,不算太早,当然,最初就是看课本了,那时候什么也不懂,就是看书,看定义,做课后练习题,我同学和我都是按同样的步骤,我复习时有个特点,就是不太乐意对答案,一方面是没有答案在手,不愿意买,也懒得对,另一方面是莫名奇妙的自信,总觉得自己写的都是对的,当然不会的题目还是想办法参考一下的。不过我建议大家最好找到答案,看过程,看精确度,等到复习最后才发现,其实不会的真不多,而错误的原因很大程度上在于准确度不高,粗心等毛病,所以准确度和细心是整个复习过程中贯彻始终的,无论是刚开始还是复习的最后,这点我深有感悟,你会再多,算错了,抄错了,最后和你不会结果是一样的,所以,千万要有耐心,你差的不是时间,而是克服你的`惰性,不要眼高手低,养成勤于动手的习惯,久而久之,你会发现它的用处的。
其实第一次看书,可能觉得很难,也算是比较新的东西了,不过不用害怕,这是第一次你要克服的东西,需要掌握的东西一定想法弄懂(顺便说下,其实我用大纲解析的唯一目的是确定考试范围,至于什么要掌握,什么要理解我没有在意,毕竟刚开始都是一视同仁的,刚开始不用区分的太开,第一次是要尽量去理解的,而至于什么掌握啊,到后来你买些复习资料,做些题目,哪块特别重要,你会明白的),尽量不要把它撇开,不过之前你也可以大概过一下定义,知道你要面对的是什么,然后再开始第一轮复习。
看定义,看定理,看什么?要看定义使用的前提,使用的条件,这样你看完后以后碰到题很容易明白它要考察的是哪块内容,数学复习最高境界就是看到题目,你知道出题人考察的是哪块内容,他设置了怎样的陷阱,你怎样去避开它,看出出题人的心思,这与清楚明白定义是分不开的,所谓打基础就是这个意思。
就比如定积分的定义这个例子,你可能觉得定义复杂苦涩,但是如果你明白它就是一个一个小长方形面积的极限和,既然是极限那么它肯定跟求极限也能拉上关系,不就是明显一种思路吗?例子呢就是给你解题的步骤和思路,怎样解,怎样写参考的是例子,而且有时候一个简单的例子给你提供解题思路,让你开眼界,之后就是课后题目了,你定义理解的如何,怎样应用,就在于这些题目,如果你没有举一反三还有记性特别好的话,尽量多练习,加深理解,一定不要懒惰哦。
很多人对于书本上的定理证明过程有疑问,到底有没有必要掌握,哪一年的数二真题不就是拿拉格朗日中值定理作文章,直接证明定理。我同学有问:泰勒公式可以证明吗?柯西中值定理呢?当然不行了,你可以用它们去理解,但是考察的不还是书上证明吗?从另外想,知道它的思路既可以加深理解也可以用于其他方面,比如线性代数中R(AB)<=min(R(A),R(B)),如果你掌握了这个证明你还可以得到,AB列向量是A列向量的线性表示,AB行向量是B行向量的线性表示,等等,足见掌握定理证明的作用了,不过可能你一时老忘记,等你做题你会明白的,到时可以加强巩固。
看书本不要担心看的慢,不用害怕别人超过你,只有基础打牢了,你以后才能更占优势,‘让子弹飞一会’。
过完一遍,尽管你做了很多,但是不理解的还是很多,不会用的还是很多,你可以第二轮了。我呢,看第二遍也就没有怎么再做课后题了,就是那些不会的,感觉不错的看看,这一遍要加强巩固,你时间也花了不少,忘记的也不少,这次在上次基础上更加注重理解,课后题目不用再做一遍,觉得掌握的还可以的可以找几道练练,我相信肯定没有第一次那么生了,你要还没掌握好的多做几道,还是注意精确和细心,勤动手。还要多和同学讨论,看看别人怎么掌握的,不要自侍自己复习不错,每个人都有自己的有点,有些东西是你看书不能明白的。
至于其他练习题目嘛!你可以买本,但我记得当时我就看书了,看完书没敢看真题,那时候对真题什么难度不知道,听说很难,难就难在,应用强,技巧强,这是一般人看书看不出来的,需要复习资料。当时也好像没出书,就到图书馆借书看了,说实话我看过一眼真题,只记得第一道题目是考察求极限时不能用加减直接无穷小代换,这是第一次感觉难度还有掌握方法与技巧的重要性,于是换了本书,不记得是哪个复习班的书目,2006年出的,有点老了,不过我可没有嫌弃,那个时候因为大三下学期,专业课不少,所以有时候到图书馆看两眼,那个时候有点心不在焉的感觉,后来就是这本书下定决心看的,看书的时候,我只知道,是不断从里面学东西,有时候感觉都看了书怎么还都是不会的,不过我也是很可以接受的,感受一下真正的数学,印象最深的就是数列证极限的方法,求极限的方法,还有变限积分,这些似乎都是新的,这个时候不会的越多反而会兴奋,因为学的空间有很大。到最后你会发现剩下能学的东西不多了,只剩下重复的练习。
后来复习全书出了,当时没打算买,本想就这本书了,后来发现课后题目不会的很多,这就是我在数学论坛第一个帖子关于无界和导数那块,记得是战地黄花老师的解答让我恍然大悟,开始在数学版驻扎的,看了战地老师的讲座真是如获至宝,强烈推荐,暑假期间看了,对书本上那些定义的理解和深度应用更是掌握很多,不过后来买了复习全书,虽然书上没有掌握的不少,但是完全不同的高度看待问题,理解的深了,当然看书没那么难了,暑假匆匆看了这本书。
再说660〔数二内容少只有四百多〕题,第一次看是很早了,同学早买的,只知道了那个时候,不是看题而是看答案把选择题看完的,那时候真的觉得除了打击没别的了,后来看完复习全书再做的时候也不敢保证都掌握的不错,所以这本书真是查漏补缺的,要深层理解定义,这本书还是比较好的。
这期间在论坛学到不少,虽然数二的内容比较少,但好多东西还是相同的,大家相互学习氛围还是比较好了。
后来就是直接模拟题了,十月到十一月吧,400题,确实有难度,那个时候对数学还是比较有感觉的,说实话400题3个小时做完真不容易的,复习到现在算是有点小成了,不过遇到困难要心态好,不会的就把它看作自己缺的那块,补补,越往后一是数学没有了当时的激情,能学的空间不大了,可能有倦怠的感觉,这时候即便觉得数学不错,仍不要放弃,复习以前忘记的,这时候主要不是复习数学了,十二月中每天做套真题,因为之前动手不好,导致真题错误大都是粗心导致的错误,所以我一直强调要勤动手,细心,做真题你就有感觉的,剩下的就是练习准确度还有温习以往的。
如果大家觉得我复习太快没时模拟的多做真题,每一年真题就相当于把书本过了一遍。
最后几天把合工大几套题匆匆做了一遍,卡的时间,时间还可以吧。
大家要把握好时间,我感觉数学时间用的很多〔我用的有点多,来源于喜欢数学〕,大家一定要斟酌,英语每天都要进行,政治在以后一段每天都要看,专业课程因为书多,所以暑假就开始了,以后或多或少都看点。
总之,数学要打好基础,细心。
功到自然成。












