“燕子”通过精心收集,向本站投稿了15篇空间直角坐标系的说课稿,下面是小编为大家推荐的空间直角坐标系的说课稿,欢迎大家分享。

空间直角坐标系的说课稿

篇1:《空间直角坐标系》说课稿

一、教材分析:

本节课为高中一年级第二章第三节第一课时的内容。是在学生已经学过的二维的平面直角坐标系的基础上的推广。空间直角坐标系是工具,用来解决立体几何中一些用常规方法难以解决的问题。并且为机械电子专业的学习打下基础,也为学生将来的后续学习作好准备。

1、知识目标:

(1)、使学生能通过用比较的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法。

(2)、从求空间点的坐标的过程进一步培养学生的空间思维的能力

2、能力目标:培养学生的探究性思维能力。

3、教学重点和难点:

(1)、教学重点:在空间直角坐标系中,确定点的坐标。

(2)、教学难点:通过建立适当的直角坐标系,确定空间点的坐标。相关应用。

二、学生分析:

学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础。这对于本节内容的学习是很有帮助的。

部分同学仍然会在空间思维与数形结合方面存在困惑。

三、教法分析:

(1)本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础

(2)采用启发式教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动。

(3)创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,

四、学法分析:

从学生已有的知识和生活经验出发,让学生经历知识的形成过程。

通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题。

五、教学过程:

(一)、引入新课:

1、回顾旧知识:平面直角坐标系的建立方法,点的坐标的确定过程、表示方法,平面内的点与坐标之间的一一对应关系,

2、提出问题,引入新课。

(二)、新授:

1、空间直角坐标系的建立。

2、与平面直角坐标系内点的坐标的确定过程进行比较,讨论空间直角坐标系内点的坐标的确定过程。

3、例题与练习:

(1)例1、在空间直角坐标系中,作出点P(4,2,3)

练习:在空间直角坐标系中,作出点Q(3,6,7),M(5,0,2)

(2)例2、已知长方体ABCD―A1B1C1D1的边长为AB =10,AD =6, AA1 =8 以这个长方体的顶点A为坐标原点,以射线AB 、AD 、AA1分别为ox、oy、oz轴的正半轴,建立空间直角坐标系,求长方体各顶点的坐标。

练习:V-ABCD为正四棱锥,O为底面中心,若AB=2,VO=3,试建立空间直角坐标系,并确定各顶点的坐标。

思考题:建立适当的直角坐标系,确定棱长为3的正四面体各顶点的坐标。

六、小结:

七、布置作业:113页1、2、3

篇2:《空间直角坐标系》说课稿

一、教材分析:

1、教材的地位和作用

本节课为高中一年级第四章《平面解析几何初步》的第三节第一,二课时的内容。

本节课是在学生已经学过的二维的平面直角坐标系的基础上的推广。

学生在九年制义务教育阶段已经画过长方体的直观图,在高一第一章中又画过棱柱与棱锥的直观图,在此基础上,我只作了适当的点拨,学生就自然而然地得出了空间直角坐标系的画法。

在研究过程中,我充分运用了类比、化归、数形结合等数学思想方法,有效地培养学生的思想品质。在求空间直角坐标系中点的坐标时,学生不仅会很自然地运用类比的思想方法,同时也锻炼了他们的空间思维能力。这节课是为以后的《空间向量及其运算》打基础的。同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成的角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分知识,完善学生的认知结构,起到很重要的作用。

2、教学目标

根据课标的要求和学生的实际水平,确定了本节课的教学目标

a在知识上:1,掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标。

2,掌握空间两点的距离公式,会应用距离公式解决有关问题。

b在能力上:通过空间直角坐标系的建立,空间两点距离公式的推导,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。

c在情感上:解析几何是用代数方法研究解决几何问题的一问数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神。

3、教学重点和难点

(1)空间直角坐标系的有关概念

(2)一些简单几何题顶点坐标的写法;

(3)空间两点的距离公式的推导

二、学情分析

对于高一学生,已经具备了一定知识积累(如数轴上一点坐标用实数表示;直角坐标平面上一点坐标用有序实数(x,y)表示;及其平面内两点间的距离公式),有了这些知识的储备,今天来学习空间直角坐标系就容易的多。所以我在授课时注重类比思想的应用以符合学生的现有知识水平的特点,从而促进思维能力的`进一步发展。

三、教学方法和教材处理:

对于高一学生,已经具备了一定知识积累。所以我在授课时注重引导、启发、总结和归纳,把类比思想,化归思想贯穿始终以符合学生的现有知识水平的特点,从而促进思维能力的进一步发展。

四、教学流程图:

(一)基础回顾

数轴上的点集 实数集

若数轴有两点:

则: (向量)

中点

平面:

平面上的点集 有序实数对

若点P与实数对对应,则叫做P点的坐标。

其中,是如何确定的?

平面内两点的距离公式:

中点公式:

则中点M的坐标为

(二)新课导入

大家先来思考这样一个问题,天上的飞机,飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1000km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度。

确定空间点的位置需要几个量?三个。

这就是本节课我们要研究的问题———空间直角坐标系。

阅读课本134-135例一以前的内容。

一,填充下面的表格:

数轴上的点

平面上的点

空间中的点

借助的工具

数轴

篇3:《空间直角坐标系》说课稿

表示

实数a

(x,y)

距离

PQ=

AB=

中点

体现类比思想。

二,回答下列问题:

1,空间直角坐标系如何建立,及其相关定义,注意事项。

2,空间直角坐标系中坐标轴上的点如何求?坐标平面上的点如何求?

3,归纳总结:坐标轴上的点有什么特点?坐标平面上的点有什么特点?

4,空间中一点如何求?用了什么办法?体现什么思想?

5,空间中两点的距离如何求?(类比,迁移,化归能力的培养)

自主测评

1.点P(-2,0,3)所在的位置是

A、y轴上 B、z轴上 C 、xoz平面上 D、yoz平面上

2. z轴上的点的坐标特点是()

A、竖坐标为0 B、横、纵坐标都是0 C、横坐标都是0 D、横、纵、竖坐标不可能都是0

3.在平面xOy内有两点A(-2,4,0),B(3,2,0),则AB的中点坐标是_____(1.5,3,0)____.

4.点P(3,4,5)关于原点的对称点是_(-3,-4,-5)_______.

(三)例题探究

例一可以放给学生看。

引申拓展1:已知正方体ABCD——A1B1C1D1的棱长为2,建立如图所示的不同的空间直角坐标系,试分别写出正方体各顶点的坐标。(例1图)

分析:本题是教材例题1的拓展,同一空间图形,由于建立的空间直角坐标系的不同,而使得图形中同一点的坐标不同.

解法:①∵D是坐标原点,A、C、D1分别在x轴、y轴、Z轴上的正半轴上,又正方体棱长为2,

∴D(0,0,0)、A(2,0,0)、C(0,2,0)、D(0,0,2)

∵B点在xOy面上,它在x、y轴上的射影分别是A、C,

∴B(2,2,0),同理,A1(2,0,2)、C(0,2,2);

∵B1在xOy平面上的射影是B,在z轴上的射影是D1,

∴B1(2,2,2).

②方法同①,可求得A1 (2,0,0)、B1(2,2,0)、C1

(0,2,0)、D1(0,0,0)、A(2,0,-2)、B(2,2,-2)、C(0,2,-2)、D(0,0,-2).

例2可以放给学生看(本身也可拓展)

引申拓展2:如图,在长方体ABCD—A1B1C1D1中,|AB|=6,|AD|=4,|AA1|=3,EF分别是BB1和D1B1的中点,棱长为1,求E、F点的坐标.(例2图)

分析:平面上的中点坐标公式可推广到空间内,即设A(x1,y1,z1),B(x2,y2,z2)

则AB的中点坐标为(,,). 在空间直角坐标系中确定点的坐标时,经常用到此公式.

解:方法一:从图中可以看出E点在xOy平面上的射影为B,而B点的坐标为(4,6,0),E的竖坐标为,所以E点的坐标为(4,6,),F点在xOy平面上的射影为G,而G点的坐标为(2,3,0),F点的竖坐标为3,所以F点的坐标为(2,3,3).

方法二:在图中条件可以得到B1(4,6,3),D1(0,0,3),B(4,6,0),E为BB1的中点,F为O1B1的中点,由中点坐标公式得E点的坐标为(,,),F点的坐标为(,,)=(2,3,3).

引申拓展3:如图,长方体ABCD-A1B1C1D1中,AB=BC=2,DD1=3,点M是B1C1的中点,点N是AB的中点,建立如图所示的空间直角坐标系,求线段MN的长度.

解析:根据点的特殊位置,设出其坐标,代入两点间的距离公式即可.

解:∵M(1,2,3),N(2,1,0)

∴|MN|=

即线段MN的长度为 .

(例1图)

引申拓展4:在空间直角坐标中平面x0y内的直线x+y=1上确定一点M,使它到B(6,5,1)的距离最小.

解析:利用两点间的距离公式求最值,通常转化为二次函数最值问题.

解:由条件可设M(x,1-x,0)则

|MB|min=

=

所以,当x=1时,|MB|=,此时M(1,0,0).

(四)巩固提高

A.基础巩固

1.点P(1,1,1)关于x0z平面的对称点是( )

A、(1,-1,1) B、(-1,-1,1) C、(1,1,-1) D(-1,-1,-1)

2. 如图所示,正方体的棱长为1,点A是其一棱的中点,则点A在空间直角坐标系中的坐标是( )

A、(,,1) B、(1,1,)

C、(,1,) D、(1,,1)

3.点P(a,b,c)到坐标平面zOx的距离为_______.

4.如图,在长方体OABC-D1A1B1C1中,

|OA|=6,|OC|=8,|OD1|=5,

D1、C、A1、B1四点的坐标分别是_________.

(第3题图)

B.能力测控

5.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标,且正方体的棱长为一个单位长度,则棱CC1的中点坐标为( ).

A.(,1,1) B.(1,,1)

C.(1,1,) D.(,,1)

6.在空间直角坐标系中,点P(-2,1,4)关于x轴对称点的坐标是( )

A、(-2,1,1) B、(-2,-1,-4)

C、(2,-1,4) D、(2,1,-4)

7.在空间直角坐标系中,点P(-2,1,4)关于点M(2,-1,-4)的对称点的坐标为 .

8.在空间直角坐标系中作出点A(4,-4,3).

C.拓展提升

9.如图,已知四面体P-ABC中,PA、PB、PC两两垂直,

(第9题图)

PA=PB=2,PC=1,E是AB的中点,试建立空间直角坐

标系并写出P、A、B、C、E的坐标.

10.正方形ABCD-A1B1C1D1的棱长为1,以D为原点,以正方体的三条棱DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,若点P在正方体的侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,则下列点P的坐标①(1,1,1), ②(0,1,0) , ③(1,1,0) , ④(0,1,1), ⑤(,1, )中哪个是正确的?

(五)学后反思

本节课主要采用了诱思探究的教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动。首先,为了使学生比较顺利地从平面到空间的变化,即从二维向量到三维向量的变化,我采用了类比的数学教学手段,顺利地引导学生实现了这一转化,同时也引起了学生的兴趣。然后,从与平面直角坐标系内点的坐标是借助一个长方形得到的过程,使学生顺理成章地想到空间点的坐标可能是通过借助长方体得到的,让学生亲手实践后,证实了这一结论,增强了学生学习的信心。此后,马上将书上的例1作为学生的口答练习,(一般学生都能回答正确)然后,及时提出问题;如果改变坐标系的确定方法,点的坐标会发生什么变化?经过思考,学生一般也能回答正确,同时,又让学生明确了:坐标系建立的不同,得到的点的坐标也不同。

同样的从在平面直角坐标系内求两点间的距离公式的思路来求空间内两点间的距离。

在整个教学过程中,内容由浅入深、环环相扣,不仅使学生在学习过程中了解了知识的发生、发展的过程,也使学生尝到了成功的喜悦,对于增强学生的学习信心,起到了很好的作用。

五、板书设计

文档内含有图片、公式、文本框、特殊符号网页页面无法正确显示,请点击免费下载完整WORD文档。

篇4:空间直角坐标系

高二 年级 数学 科辅导讲义(第 讲)

第一部分 基础知识梳理 1.右手直角坐标系

①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指; ②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):

沿x轴正方向(x?0时)或负方向(x?0时)移动|x|个单位,再沿y轴正方向(y?0时)或负方向(y?0时)移动|y|个单位,最后沿x轴正方向(z?0时)或负方向(z?0时)移动|z|个单位,即可作出点

③已知点的位置求坐标的方法:

过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是

a,b,c,则(a,b,c)就是点P的坐标

2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c),

空间直角坐标系的说课稿在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c); 3、点P(a,b,c)关于x轴的对称点的坐标为(a,?b,?c) 点P(a,b,c)关于y轴的对称点的坐标为(?a,b,?c); 点P(a,b,c)关于z轴的对称点的坐标为(?a,?b,c); 点P(a,b,c)关于坐标平面xOy的对称点为(a,b,?c); 点P(a,b,c)关于坐标平面xOz的对称点为(a,?b,c); 点P(a,b,c)关于坐标平面yOz的对称点为(?a,b,c);

点P(a,b,c)关于原点的对称点(?a,?b,?c)。

4. 已知空间两点P(x1,y1,z1)Q(x2,y2,z2),则线段PQ的中点坐标为(5.空间两点间的距离公式

已知空间两点P(x1,y1,z1)Q(x2,y2,z2), 则两点的距离为|PQ|?

x1?x2y1?y2z1?z2

,,) 222

(x1?x2)2?(y1?y2)2?(z1?z2)2 ,

x2?y2?z2;

特殊地,点A(x,y,z)到原点O的距离为|AO|?

6.以C(x0,y0,z0)为球心,r为半径的球面方程为(x?x0)2?(y?y0)2?(z?z0)2?r2 特殊地,以原点为球心,r为半径的球面方程为x?y?z?r 第二部分 重难点突破

1.借助空间几何模型进行想象,理解空间点的位置关系及坐标关系 问题1:点P(a,b,c)到y轴的距离为

[解析]借助长方体来思考,以点O,P为长方体对角线的两个顶点,点P(a,b,c)到y轴的距离为长方体一条面对角线的`长度,其值为a2?c2 2.将平面直角坐标系类比到空间直角坐标系

问题2:对于任意实数x,y,z

?

2222

[解析]

篇5:空间直角坐标系

?(x,y,z)到点

(0,0,0)的距离与到点(?1,2,1)的距离之和,它的最小值就是点(0,0,0)与点(?1,2,1)之间的线段长,

所以

3.利用空间两点间的距离公式,可以解决的几类问题 (1)判断两条相交直线是否垂直 (2)判断空间三点是否共线 (3)得到一些简单的空间轨迹方程

第三部分 热点考点题型 考点1: 空间直角坐标系 题型1: 认识空间直角坐标系

[例1](1)在空间直角坐标系中,y?a表示 ( ) A.y轴上的点 B.过y轴的平面 C.垂直于y轴的平面 D.平行于y轴的直线 (2)在空间直角坐标系中,方程y?x表示

A.在坐标平面xOy中,1,3象限的平分线 B.平行于z轴的一条直线 C.经过z轴的一个平面 D.平行于z轴的一个平面 题型2: 空间中点坐标公式与点的对称问题

[例2 ] 点P(a,b,c)关于z轴的对称点为P1,点P1关于平面xOy的对称点为P2,则P2的坐标为【变式练习】

1.已知正四棱柱ABCD?A则C11B1C1D1的顶点坐标分别为A(0,0,0),B(2,0,0),D(0,2,0),A1(0,0,5),的坐标为 。

2.平行四边形ABCD的两个顶点的的坐标为A(?1,1,3),B(3,2,?3),对角线的交点为M(1,0,4),则顶点C的坐标为 , 顶点D的坐标为

3.已知M(4,3,?1),记M到x轴的距离为a,M到y轴的距离为b,M到z轴的距离为c,则( ) A.a?b?c B.c?b?a C.c?a?b D.b?c?a 考点2:空间两点间的距离公式

题型:利用空间两点间的距离公式解决有关问题

[例3 ] 如图:已知点A(1,1,0),对于Oz轴正半轴上任意一点P,在Oy轴上是否存在一点B,使得

PA?AB恒成立?若存在,求出B点的坐标;若不存在,说明理由。

【变式练习】

4.已知A(x,5?x,2x?1),B(1,x?2,2?x),当A,B两点间距离取得最小值时,x的值为 ( ) A.19 B.?

8819 C. D. 7714

5.已知球面(x?1)2?(y?2)2?(z?3)2?9,与点A(?3,2,5),则球面上的点与点A距离的最大值与最小值分别是 。

6.已知三点A(?1,1,2),B(1,2,?1),C(a,0,3),是否存在实数a,使A、B、C共线?若存在,求出a的值;若不存在,说明理由。 巩固练习

1.将空间直角坐标系(右手系)画在纸上时,我们通常将x轴与y轴,x轴与z轴所成的角画成( ) A.90

B.135 C.45 D.75

000

2. 点P(3,4,5)在yoz平面上的投影点P1的坐标是 ( ) A.(3,0,0) B.(0,4,5) C.(3,0,5) D. (3,4,0) 3. 三棱锥O?ABC中,O(0,0,0),A(2,0,0),B(0,1,0),C(0,0,3)此三棱锥的体积为( ) A.1 B.2 C.3 D. 6 4.设点B是点A(2,-3,5)关于平面xOy的对称点,则|AB|等于( )

A.10 B. C. D.38

5.点P(1,2,3)关于y轴的对称点为P1, P关于平面xOz的对称点为P2,则|P1P2|6.正方体不在同一表面上的两顶点P(-1,2,-1),Q(3,-2,3),则正方体的体积是

7.在直角坐标系O―xyz中作出以下各点的P(1,1,1)、Q(-1,1,-1)。

8.已知正方体ABCD―A1B1C1D1,E、F、G是DD1、BD、BB1之中点,且正方体棱长为1。请建立适当坐标系,写出正方体各顶点及E、F、G的坐标。

9.求点A(1,2,-1)关于坐标平面xoy及x轴对称点的坐标。

课后作业

1.空间直角坐标系中,到坐标平面xOy,xOz,yOz的距离分别为2,2,3的点有 A.1个 B.2个 C.4个 D.8个

2.三角形ABC的三个顶点的坐标为A(1,?2,11),B(4,2,3),C(6,?1,4),则?ABC的形状为( ) A.正三角形 B.锐角三角形 C.直角三角形 D.钝角三角形

3.已知空间直角坐标系O?xyz中有一点A(?1,?空间直角坐标系1,2),点B是平面xOy内的直线x?y?1上的动点,则

A,B两点的最短距离是( )

A.6 B.

C.3 D. 22

4.在空间直角坐标系中,点P(3,4,5)关于yoz平面的对称点的坐标为( )

A、(-3,4,5) B、(-3,-4,5) C、(3,-4,-5) D、(-3,4,-5) 5.在空间直角坐标系中,P(2,3,4)、Q(-2,-3,-4)两点的位置关系是( )

A、关于x轴对称 B、关于yoz平面对称 C、关于坐标原点对称 D、以上都不对 6.点P(a,b,c)到坐标平面xOy的距离是( )

A

、|a| C、|b| D、|c|

7.在空间直角坐标系中,点P的坐标为(1

,过点P作yoz平面的垂线PQ,则垂足Q的坐标是--------------------。

8.若点A(2,1,4)与点P(x,y,z)的距离为5,则x,y,z满足的关系式是_______________.

9.如图,以棱长为a的正方体的三条棱为坐标轴,建立空间直角坐标系O?xyz,点P在正方体的对角

线AB上,点Q在正方体的棱CD上。

(1)当点P为对角线AB的中点,点Q在棱CD上运动时, 探究PQ的最小值;

(2)当点P在对角线AB上运动,点Q为棱CD的中点时, 探究PQ的最小值;

篇6:《平面直角坐标系》说课稿

今天,我说课的课题是:《平面直角坐标系》。本节课是第七章《平面直角坐标系》中的第一节的第二课时,本节课主要是建立平面直角坐标系的概念,为以后学习函数及图像提供知识基础。下面,我将从目标、教法、学法、教学过程四个方面对本节课的教学设计进行说明:

一、说目标

新课标强调“课程内容不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法”。新课标第三学段中对图形与坐标提出的教学目标是:“理解平面直角坐标系的有关概念,能画出直角坐标系:在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标”。因此,我确定本节课的教学目标为:

1、认识平面直角坐标系, 理解并掌握横轴、纵轴、原点及点的'坐标,了解点与坐标的对应关系。

2、能准确地在平面直角坐标系中描出点的位置,并根据点的位置写出点的坐标

根据教学目标、教材内容,确定本课的重点是:

教学重点:理解平面直角坐标系的有关概念,建立平面直角坐标系,由点的位置能写出坐标,会根据坐标描出相应的点。

根据教学目标、学生实际,确定本课的难点是:

理解坐标平面内的点与有序实数对之间的一一对应关系以及坐标轴上点的坐标特征。

二、说教法

《新课程标准》提出教师是数学学习的组织者、引导者与合作者,又根据学生认知规律,着力体现循序渐进和启发性原则,我确定的教学方法有:自学指导法、合作探究法、演示法、练习法。

三、说学法

自主探索与合作学习是数学学习的重要方式,学生的学习应当是一个生动活泼的、主动的和富有个性的过程。所以,我确定的学习方法有:自学发现法、探究交流法、动手操作法、练习法等。

四、说教学过程

为了更好的突出重点,突破难点,依据教学目标,结合学生认知特点我设计了以下几个环节;

1、创设情境 引入新课

通过已知数轴上点的坐标找点引入平面内用有序数对确定点的位置引入新课,从学生熟悉的生活经验入手,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,

2、自主探究,发现新知

在这一环节中,先出示自学指导,并让学生根据探究提纲自学教材,同时画图、思考、练习、举例、讨论,分析,初步理解平面直角坐标系的概念,教师巡视指导并参与学生讨论。

3、学生交流,展示归纳

这个环节共分三个层次,

①自主探究展示。让学生先展示平面直角坐标系的所有概念以及图形的画法。充分的暴露问题,再由其他学生纠错、补充、评价。

②合作探究展示。抽学生代表上讲台,在准备好的坐标系内根据点的位置认以及根据点的坐标描点,发动组内成员补充完善。

③归纳展示。结合前两组展示,引导学生共同准确地理解并归纳出各个象限点的坐标的不同特征。通过步步推进,层层深入的全方位展示交流,引导学生学会与人合作,并能与他人交流思维的过程和探究的结果,同时培养了学生的“自主、合作、探究”能力,

4、类比练习,巩固提升

在这一环节中,首先出示例题,让学生学习例题中的一个,然后抽学生完成填空,选择,画图等一系列题组,采用抽学生口答,作图等方式,其他学生自主解答,发动学生进行评价、纠错、完善,教师给予适当的引导、点拨、评价。

5、回顾反思,内化提升

在这一环节中,先让学生自主小结,再发动学生评价,最后教师补充完善。进一步培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。

6、当堂检测、知识过关

共设计四到检测题,时间约为5分钟,学生独立完成,待大部分学生完成后,教师出示答案,学生自我评价,师生共同评价。通过测试题,再次加深学生对平面直角坐标系概念的理解,培养学生的作图能力,及时同时反思教学,查漏补缺.

7、布置作业

为了体现课标中“人人都能获得必须的数学”,面向全体学生布置两道必做题,依据新课标“不同的人在数学上得到不同的发展”,又特意布置了两道选做题,使学有余力的同学有发展的空间。

总之,本节课在例题的设计上、在当堂训练和检测题的设计上的编排上,在教学重难点的突破上,坚持以学生为中心,让学生在自主探索与合作交流中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。

我的说课到此完毕,有不足之处请各位老师批评指正。谢谢!

篇7:七年级平面直角坐标系说课稿

《平面直角坐标系》是人教版九年义务教育七年级数学下册第六章第一节第二次课的内容,它是在学习了数轴和有序数对后安排的一次概念性教学,也是初中生与坐标系的第一次亲密接触。平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系;在给定的平面直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。因此,本节课的学习,是今后进一步学习习近平面直角坐标系的有关知识和借助平面直角坐标系学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。

说目标与重难点

1、知识与能力目标:

使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。

2、过程与方法目标:

通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。

3、情感态度价值观目标:

利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。

其中认识平面直角坐标系,能正确地画出平面直角坐标系是本节课的教学重点。

会用“坐标”表示平面内点的位置和坐标轴上的点的特征是本节课的教学难点。

说学情:

七年级的学生具有活泼好动,好奇的天性,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解。

说教学策略:

数学课程标准指出:“学生是数学学习的.主人,教师是数学学习的组织者、引导者和合作者”,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。教师的责任是为学生的发展创设一个和谐开放地思考、讨论、探究的氛围,创造“海阔凭鱼跃,天高任鸟飞”的课堂教学境界。为此,这节课我主要采用了情景激趣法、自主学习尝试法、合作探究交流法等教学方法,设计了“与文本对话——与生活对话——与同学对话——与教师对话”等一系列教学程序。

说教程:

一、游戏激趣,导入新课(约2分钟)“破译密码”游戏

【设计意图:以游戏的形式导入,具有一定的新奇性、挑战性,能有效地激发学生的学习兴趣。】

二、与文本对话,理解概念(约17分钟)

1、接触概念(让学生阅读教材,自主学

2、认识概念为了帮助学生抓住概念中的关键词,理解概念,我设计了以下几个问题:(让学生带着问题自学教材,认识概念。)

⑴什么叫平面直角坐标系?

⑵平面直角坐标系有哪些特征?(①两条数轴②互相垂直③原点重合④单位长度一致。)

⑶平面直角坐标系内的点可以用什么来表示?(有序数对)

⑷有序数对是如何具体来表现点的坐标的?

自学教材后,可让学生回答以上问题,不正确的地方,教师不急于纠正,对于问题⑵和⑷,也可试着让学生归纳,但不要求全面,不完整的地方,教师暂不补充。

3、深化概念

让学生阅读下面两段材料,进一步找到问题的答案,补充不完整的地方,尝试性地完成活动1和活动2。

活动1、你会画吗?在作业纸上试着画一个直角坐标系,比一比看谁画得最完整。

活动2、你会标吗?

【设计意图:这一环节的设计主要是为了培养学生自主学习的能力,让学生在自学中初步认识概念。通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。】

三、与生活对话,融化概念(约5分钟)

活动3、你会找吗?让学生在如图建立的直角坐标系中找到自己的位置,并说出自己的坐标。

活动4、你会举例吗?让学生举出生活中应用平面直角坐标系的实例。

(如:象棋、围棋棋盘,雷达探测图,地球经纬度,计算机键盘,电影院座位等。)

【设计意图:设计这两个活动,是为了将知识与实际生活联系起来,让学生体验到生活中处处有数学。同时有效地训练了知识的应用,及时反馈了教学信息,培养了学生思维的深刻性。】

四、与同学对话,运用概念(约13分钟)

活动5你会做吗?“描点”与“报坐标”比赛(让学生在活动1中建立的直角坐标系里完成这一活动。)

这一活动教师先将4个组长定为评委,其余同学以两人为一组,全班分成若干组,同时进行,教师宣布比赛规则,最后,评出优胜组,予以奖励。

活动6你会猜吗?在如图的直角坐标系中读出下列各点,说说它们的位置,猜猜它们有什么特征。

这一活动将学生原有的4个大组重新分为8个小组,让学生各小组间行合作性地讨论、交流)

【设计意图:这两个活动的设计是为了体现“学生是数学学习的主人,教师是组织者、引导者、合作者“。让学生在“做数学中学数学”;在观察、实践、讨论中,大胆地猜想,尊重了学生的个性,培养了自主探究、合作交流的精神。】

五、与教师对话,归纳总结(约5分钟)

学生在自主学习,合作交流,共同完成活动6的基础上,各小组代表交流猜想,教师就学生的猜想,针对性的设计一些问题(如:①哪几个点在X轴上?②它们的坐标是怎样的?③有些什么特征?等),构建师生平等对话,最后,教师总结性地归纳:坐标轴上的点的坐标特征。

【设计意图:设计这一环节是为了培养学生运用数学语言概括的能力,通过师生的平等对话,变教师讲规律为学生找规律,教师最后的总结使数学知识精确化。】

六、拓展延伸,强化能力(约3分钟)

设计题目:各写出5个满足下列条件的点,并在坐标系中分别描出它们:

(1)横坐标与纵坐标相等。

(2)横坐标与纵坐标相反。

(3)横坐标相等,纵坐标不等。

(4)纵坐标相等,横坐标不等。

你能找出每组的规律吗?

【设计意图:这一环节是让学生带着问题出课堂,激发他们思考。】

动手实践、自主探究、合作交流是本节课学生获取知识的重要方法。学生在具体的操作活动和尝试性练习中进行独立思考,在与同伴的交流、讨论中形成对知识的理解,六个活动的设计由易到难,层层推进,有机地将学生的眼、口、手、脑调动了起来,充分发挥了学生的主观能动性,让学生在活动中学会探索,学会学习,从而有效地落实了“三维”目标。

篇8:高一数学空间直角坐标系知识点

1定义

各轴之间的顺序要求符合右手法则,即以右手握住Z轴,让右手的四指从X轴的正向以90度的直角转向Y轴的正向,这时大拇指所指的方向就是Z轴的.正向.这样的三个坐标轴构成的坐标系称为右手空间直角坐标系.与之相对应的是左手空间直角坐标系.一般在数学中更常用右手空间直角坐标系,在其他学科方面因应用方便而异。三条坐标轴中的任意两条都可以确定一个平面,称为坐标面.它们是:由X轴及Y轴所确定的XOY平面;y轴与z轴所确定的yOz平面;z轴与x轴所确定的yOx平面.这三个相互垂直的坐标面把空间分成八个部分,每一部分称为一个卦限.位于X,Y,Z轴的正半轴的卦限称为第一卦限,从第一卦限开始,在XOY平面上方的卦限,按逆时针方向依次称为第二,三,四卦限;第一,二,三,四卦限 下方的卦限依次称为第五,六,七,八卦限.

2具体概念

以空间一点O为原点,建立三条两两垂直的数轴;x轴,y轴,z轴,这时建立了空间直角坐标系Oxyz,其中点O叫做坐标原点,三条轴统称为坐标轴,由坐标轴确定的平面叫坐标平面。

3点公式

空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),中点P坐标[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2

4距离公式

在空间中:

设A(x1,y1,z1),B(x2,y2,z2)

|AB|=[(x1-x2)2+ (y1-y2)2+ (z1-z2)2]

表示方法

设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),这样就确定了M点的空间坐标了,其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。

运动空间和时间知识点

1.物质与运动

世界是物质的,而物质是运动的。运动是物质的存在方式和根本属性。恩格斯说:“运动,就它被理解为存在方式,被理解为物质的固有属性这一最一般的意义来说,囊括宇宙中发生的一切变化和过程,从单纯的位置变动起直到思维。”运动是标志一切事物和现象的变化及其过程的哲学范畴。

物质和运动是不可分割的,一方面,运动是物质的存在方式和根本属性,物质是运动着的物质,脱离运动的物质是不存在的,设想不运动的`物质,将导致形而上学。另一方面,物质是一切运动变化和发展过程的实在基础和承担者,世界上没有离开物质的运动,任何形式的运动,都有它的物质主体,设想无物质的运动,将导致唯心主义。

2.运动与静止

物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。

3.时间和空间

时间和空间是物质运动的存在形式。物质运动与时间和空间的不可分割证明了时间和空间的客观性。

时间是指物质运动的持续性、顺序性,特点是一维性。

空间是指物质运动的广延性、伸张性,特点是三维性。

物质运动总是在一定的时间和空间中进行的,没有离开物质运动的“纯粹”时间和空间,也没有离开时间和空间的物质运动。具体物质形态的时空是有限的,而整个物质世界的时空是无限的;物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。一切以时间、地点、条件为转移,具体问题具体分析,是马克思主义的活的灵魂。物质、运动、时间、空间具有内在的统一性。

篇9:高二数学空间直角坐标系教学计划

※教学目标:

知识与技能:

1、掌握空间直角坐标系的建立过程和相关概念

2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标

过程与方法:

1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。

2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点

的坐标确定的方法。

情感、态度与价值观:

1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。

2、通过学生的自主学习和合作学习,培养学生合作精神。

※教学重、难点:

重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示

难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。

※教学准备:

教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐

晶体模型的投影片

学生准备:直尺和正方形纸片

※教学过程:

(一)问题情境、导入课题

【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?

问题2、直角坐标平面上的点M,怎样表示呢?

问题3、怎样确切的表示室内灯泡的位置?

(学生复习回顾后回答问题1和问题2,思考、讨论后回答)

【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。

2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的'方法,建立空间直角坐标系来确定空间点的位置(板书课题)

(二)师生互动、探究新知

1、空间直角坐标系的建立

【投影】问题4、空间中的点M用代数的方法又怎样表示呢?

(教师设问)空间直角坐标系该如何建立呢?

【投影】(1)直角坐标系的建立过程

如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.(引导学生仔细观察和理解)

【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度

②任意两条确定一个平面,共有三个平面,称坐标平面

③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)

篇10:高二数学空间直角坐标系教学计划

(3)右手直角坐标系

2、空间点的坐标表示

【投影】合作探究:

有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?

(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空

间直角坐标系中点与三维有序实数组之间也有一一对应关系

吗?(学生自行阅读教材P134)

【点拨】是一一对应关系。

3、坐标平面及坐标轴上的点的特征

【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y

(师生共同完成后,投影幻灯片)

【投影】想一想?

在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面

内的点的坐标各有什么特点?

(学生思考、讨论后教师总结)

(三)典型例题、解释应用

【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的

坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.

(解的分析和过程见投影)

【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2

原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.

目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求

点的坐标.

(解的分析和过程见投影)

( 四)随堂练习、巩固新知

练习1、教材P136练习第2小题

(五)课堂小结、温故知新

1、空间直角坐标系的建立

2、空间直角坐标系的画法

3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系

(六)布置作业

教材P136练习第1、3小题。

(七)板书设计:

4.3.1空间直角坐标系

一、空间直角坐标系的建立

1、建立过程

2、空间直角坐标系画法

3、空间直角坐标系是右手系

二、空间坐标系中点的坐标表示方法

三、坐标系中特殊点的坐标特征

1、坐标轴上点的坐标特征

2、坐标平面上点的坐标特点

四、例题分析

篇11:七年级下册平面直角坐标系说课稿

七年级下册平面直角坐标系说课稿

《平面直角坐标系》是人教实验版七年级下学期第六章第一节第二课时。本节课的教学设计立足于问题情境的创设,把原来枯燥的平面直角系赋予一定的现实意义,让学生在实际问题中学习知识,力求避免空洞的教学。

情景(1):新课程强调:要让学生接触到来自身边的数学,体会数学所具有的巨大应用价值,我设计了活动“你知道我在哪里吗?”。

让学生站成等距离的一排,互相确定自己的位置。从学生的答案中,归纳出满足数轴的三要素:一个对象(基准)、一个方向、一个距离。从而进入第一个知识点教学——用数轴来刻画直线上位置关系。

这样设计的目的是通过学生自己位置的确定,唤起学生已有的生活经验,能够较好的体现数学的现实性,充分吸引学生的注意力,激发学生学习兴趣。

情景(2):问题是思想方法、知识积累和发展的逻辑力量,是生长新思想、新方法、新知识的种子。而初中生的自制力仍比较差,易受外界干扰,因而学习往往带有盲目性,此时,如果给他们一个正确的学习方向,那么,他们很快就会投入到学习中去。所以在情景(1)后,我提出了探究平面直角坐标系的三个问题:

①如果小兵同学在小兰同学的右侧第二个位置,你能说出董雪同学在数轴上对应的点的坐标吗?

②如果小兵在一个长方形的操场上,你用什么方法可以确定小兵的'位置?

③如果小兵在一个广阔无垠的草地上,你用什么方法可以确定小兵的位置?

《标准》强调:知识的衔接要体现螺旋上升的原则。所以这三个问题的安排有一定的层次性,即由线到面,由有限到无限,由易到难,即尊重学生的人格,关注个体差异,满足不同学生的学习需要,激发学生的学习积极性,使每个学生都能得到充分发展,又适当利用类比的方法,使学生对点与坐标的对应关系顺利地实现由一维到二维的过渡,引出平面直角坐标系。

经过这样一串问题的设计,在教学过程中加深了学生对建立平面直角坐标系的必要性的理解,突破了本章的教学难点,使得学生认识平面直角坐标系水到渠成。

篇12:平面直角坐标系的说课稿件

关于平面直角坐标系的说课稿件

一.设计说明

这节课“平面直角坐标系”是华东师大版八年级(下)数学第十八章第二节第一课时的内容。是在学习了“变量与函数”的基础上提出来的,是学习函数图象的重要基础,下面就这节课的教学设计作如下说明:

1、课题引入自然:从学生最熟悉的环境(教室)入手,抽象出用“一对有序实数”来表示平面上点的位置的数学问题,显得非常自然。这时老师也不要急于给出直角坐标系的概念,而是给学生一段时间去思考、去交流。把学生的思想和法国著名数学家---笛卡尔当时的思法进行自然结合,让学生体会成功的喜悦感,调动学生学习的积极性,提高学习的信心和兴趣。

2、方法运用灵活:既有教师的讲解,又有独立分析、分组讨论交流、游戏活动等。教学的全过程都是围绕学生这个主体开展活动的,和学生一起探究概念的形成,知识的拓展,让学生参与知识形成的全过程,拓展学生学习空间,充分发挥学生的主体作用。

3、能力培养到位:设计上注重了数学思想方法在课堂中的渗透,领悟数学知识发生与发展过程中的思想方法;注重知识“结构化”的形成,帮助学生形成了知识体系,完善了认知结构。有效培养学生的发散思维能力和对知识的.分析、归纳能力。

4、信息反馈全面:本课采用了“学习单”的形式, 不仅体现了学生学习的全过程,还能比较全面地、及时地反映每个学生的学习情况,以便老师及时发现问,及时调整教学,对学有余力的学生及时给予激励和指导,对学习有困难的学生及时给予帮助和鼓励。

二、板书设计

18.2.1平面直角坐标系

1、平面直角坐标系 2.由点写坐标:

(1)横(X)轴、纵轴、坐标原点 各象限内点的坐标特征:

(2)象限:

(3)一、二、三、四 坐标轴上点的坐标特征:

2、点的坐标:P(X,)平面上的点与有序实数对一一对应

(1)由坐标描点:

(2)点的坐标是:

(3)一对有序实数对点的对称关系:

篇13:初中数学说课稿《平面直角坐标系》

初中数学说课稿《平面直角坐标系》范例

一、教材分析

“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础,因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。

直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。

二、教学目标

1、使学生了解平面直角坐标系的产生过程;

2、会正确画出平面直角坐标系;

3、使学生能在平面直角坐标系中,由点求坐标,由坐标描点;

4、初步培养学生把实际问题抽象成数学模型的能力;

5、让学生体会数学来源于实践,反过来又指导实践进一步发展的'辩证唯物主义思想。

1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育.

三、重点难点

1、教学重点

能在平面直角坐标系中,由点求坐标,由坐标描点,

2、教学难点

⑴平面直角坐标系产生的过程及其必要性;

⑵教材中概念多,较为琐碎。如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。

四、教法学法

本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。

教无定法,贵在得法。本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和讲练相结合的方法。

教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。教学时先让学生观察数轴上(一维)的点与实数之间的一一对应关系,在生活中确定平面内(二维)的点的位置的方法,再与数轴上的点加以类比,从而引出平面内的点的表示方法在讲授点的坐标时能否从点的形成讲一下,例如点(1,2)应该是x=1和y=2这两条直线相交形成的,所以找点时应该两条直线的交点。

篇14:高一下册数学空间直角坐标系教学计划

高一下册数学空间直角坐标系教学计划

教材教法分析

本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

学情分析

一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的`思想.这两方面都为学习本课内容打下了基础.

教学目标

1.知识与技能

①通过具体情境,使学生感受建立空间直角坐标系的必要性

②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

③感受类比思想在探究新知识过程中的作用

2.过程与方法

①结合具体问题引入,诱导学生探究

②类比学习,循序渐进

3.情感态度与价值观

通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

教学重点

本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

教学难点

通过建立恰当的空间直角坐标系,确定空间点的坐标。

先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

篇15:七年级下册数学《平面直角坐标系》说课稿

一、说教材

首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。

二、说学情

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。

三、说教学目标

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能

掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。

(二)过程与方法

在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。

(三)情感态度价值观

在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

四、说教学重难点

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。

五、说教法和学法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

六、说教学过程

下面我将重点谈谈我对教学过程的设计。

(一)新课导入

首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。

根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》

利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。

(二)新知探索

接下来是教学中最重要的.新知探索环节,我主要采用讲解法、小组合作、启发法等。

学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。