“左左”通过精心收集,向本站投稿了8篇高速切削技术和高速切削刀具在模具制造中的应用研究,下面小编为大家带来整理后的高速切削技术和高速切削刀具在模具制造中的应用研究,希望大家能够受用!

篇1:高速切削技术和高速切削刀具在模具制造中的应用研究
高速切削技术和高速切削刀具在模具制造中的应用研究
高速切削技术是对传统金属切削加工技术革命性的变化,而高速切削刀具为高速切削提供了硬件基础.随着模具制造业的不断发展,高速切削技术和高速切削刀具已经在模具加工制造中得到越来越广泛的`应用.
作 者:刘长灵 黄翊之 林七七 作者单位:河源职业技术学院 刊 名:科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期): “”(12) 分类号:G71 关键词:高速切削 高速切削刀具 模具制造篇2:模具加工中的高速切削技术
1 模具加工的特点
精度高,模具不仅要有很高的加工精度,同时也要有很好的加工质量,一般地,公差范围应控制在微米级。只有高精度的模具才能保证产品达到一定的精度,保证产品的合格率,才有可能延长模具的使用。使用寿命长,模具属于比较昂贵的工艺装备,其加工费用约占成本的100/0~30%,所以要求模具的寿命长更有意义。
制造周期短,这主要是为了满足生产的要求和产品的市场竞争能力。成本低,模具的成本与模具结构的复杂程度、模具材料、制造精度要求及加工方法等有关。所以要合理设计和制定加工工艺,选用恰当的加工设备,保证低的加工成本。
模具形状复杂,模具的工作部分一般都是二维或者三维复杂曲面,而不是简单的平面。比如汽车覆盖件模具,其内腔大部分都是由曲面组成。所用的材料硬度高,一般模具都是由淬火工具钢或硬质合金制成,运用传统的加工方法加工较为困难。目前在模具加工制造过程中,主要以普通机加工和电火花加工为主。要缩短制造周期并降低成本,必须广泛采用先进切削加工技术加工模具。而作为先进制造技术的高速切削技术的出现,正是满足了模具加工这些要求和特点。
2 高速切削机床技术
性能良好的高速切削机床是实现高速切削的前提和关键,而具有高精度的高速主轴和控制精度高的高速进给系统,则是高速切削机床技术的关键所在。
2.1 高速主轴
高速主轴是高速切削机床的核心部件,在很大程度上决定着高速切削机床所能达到的切削速度加工精度和应用范围。目前,适于高速切削的加工中心其主轴最高转速一般都大于10,000r/min,有的高达60,000-100,000 r/min,为普通机床的10倍左右;主电动机功率15~80kW,以满足高速车削、高速铣削之要求。随着电气传动技术(变频调速技术、电动机矢量控制技术等)的快速发展,高速数控机床主传动的机械结构得到极大简化,取消了齿轮传动和带传动,实现了机床的“零传动”,采用机床主轴与主轴电机一体化的传动结构形式,即所谓的电主轴。轴承是决定主轴寿命和负荷的关键部件。电主轴采用的轴承主要有滚动轴承、流体静压轴承和磁悬浮轴承。滚动轴承因其具有刚度高、高速性能好结构简洁、标准化程度高和价格适中等优点,在电主轴中得到最广泛应用。滚动轴承在高速回转时润滑极为重要,目前,电主轴主要采用两种润滑方式:油脂润滑和油一气润滑。目前,生产磁悬浮轴承电主轴的厂家有德国GMN公司、瑞士IBAG公司及中国洛阳轴承研究所等。
2.2 高速进给系统
控制精度高的高速进给系统也是实现高速切削的关键技术之一。传统的滚珠丝杠副传动系统对高速进给系统表现出不适应性,必须对其技术改进和技术创新,才能适应高速切削之要求。高速滚珠丝杠副传动系统的加速度范围为0.5-1.0g,行程范围≤6m,用于低档高速数控机床;高速进给系统采用直线电机进给驱动系统后,其加速度可高达2~10g,行程范围不受限制,用于高档高速数控机床和高速加工中心。
3 高速切削刀具技术
刀具技术是实现高速切削的重要保证。正确选择刀具材料和设计刀具系统对于提高加工质量、延长刀具寿命和降低加工成本都起着重要作用。
3.1 高速切削刀具材料
高速切削要求刀具材料具有如下性能:高硬度、高强度和耐磨性;高韧度、良好的耐热冲击性;高热硬性、良好的化学稳定性。日前,高速切削加工常用的刀具材料有:涂层刀具、陶瓷刀具、立方氮化硼(CBN)材料和聚品金刚石(PCD)材料等。
3.2 高速切削刀具系统
刀具几何参数对加工质量和刀具耐用度有很大影响,一般高速切削刀具的前角比普通切削刀具约小10°,后角约大5°-8°。刀具在高速旋转时,会承受很大的离心力,其大小远远超过切削力,成为刀具的主要载荷,足以导致刀体破碎,造成重大事故。
4 高速切削工艺技术
高速切削工艺和常规切削工艺有很大不同。常规切削认为高效率来自低转速、大切深、缓进给、单行程;而高速切削则追求高转速、中切深、快进给、多行程的加工工艺。在进行高速切削时,工件材料不同,所选用的切削刀具、切削工艺和切削参数也有很大不同。下面我们着重探讨轻金属、钢和铸铁的高速切削工艺技术。
4.1 高速切削钢和铸铁技术
高速铣削钢和铸铁时,遇到的主要问题是刀具的磨损,
高速铣削钢材时,刀具使用锋利切削刃和较大后角可减少刀具磨损,提高刀具使用寿命。刀具的磨损与工件材料的力学性能有关。如工件材料的抗拉强度增大,则刀具磨损增加,因此应减少每齿的进给量。
4.2 高速切削轻金属技术
铝合金因具有良好的耐蚀性,较高的比强度,导电性及导热性好等优点,在汽车工业和航空航天工业中已经大量应用。铝镁合金大多使用铸件。这些轻合金的最大优点就是其固有的易切特性。轻合金可采用很高的切削速度和进给速度进行加工,切削速度可高达1000~7500m/min,高速切削使95-98%的切削热被切屑迅速带走,工件保持室温状态,热变形小,加工精度高。高速铣削轻金属时,由于加工过程存在较大的冲击载荷,PCD和CBN刀具的寿命特性并不好。当切削速度达到1000m/min时,可使用K型硬质合金刀具;当切削速度达到m/min时,可使用金属陶瓷刀具;当切削速度更高时,可使用 PCD刀具;高速铣削铝镁合金时,可使用Kl0硬质合金刀具。
高速切削(High Speed Cutting)是一个相对概念,迄今尚未有一个确切的界定。高速切削通常指比常规切削速度和进给速度高出5 -10倍的切削加工,有时也称为超高速切削(Ultra-High Speed Cutting)。也有将主轴转速达到10000r/min-60000r/min,快速进给速度20m/min以上,平均进给速度10m/min以上, 加速度大于lg的切削加工定义为高速切削。对于不同的工件材料和加工工艺,高速切削速度(切削加工的线速度,单位m/min)范围也同。按工件材料划分, 当切削速度对钢材达到380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材l100m/min以上、塑料1150m /min以上时,被认为是合适的高速切削速度范围;按加工工艺划分,高速切削速度范围为:车削700~7000m/min,铣削300~6000m /min,钻削200~1100m/min,磨削5000~ 10000m/min。
5 高速切削的应用效益据生产实践证明,高速切削应用于模具制造的效益是:
(1)高速粗加工和半精加工,提高加工效率数倍至几十倍,只体与被加工的材料有关;(2)高速高精度精加工硬切削代替光整加工,表面质量高,形状精度提高,比EDM加工提高效率50%,减少手工修磨;(3)硬切削加工最后成型表面,提高表面质量、形状精度,(不仅是表面粗糙度低,而且表面光亮度高), 用于复杂表面的加工显得更具优势。(4)避免EDM加工产生的表面损伤,提高模具寿命20%。
6结束语
由于市场进入全球化以及竞争的加剧,模具市场对每一种模具技术最重要、带有先决性的要求是其快速性,即从设计到进入市场的时间尽可能的短,除了快速模具技术外,就是高速切削技术。当前,这些技术还是跟不上现代模具的需求。加快硬件及软件产业发展步伐,用高性能高品质功能的硬件及软件满足高速切削机床配套的要求,已成为各企业共同的奋斗目标。因此,需要各个方面的协调发展,产学研结合,加大投入,综合利用各个方面力量推动高速切削在模具制造中的应用。总之,通过各方面的努力,在市场需求的推动下,使技术不断进步、像汽车、家电、机床一样,在不远的将来,我国不但要成为模具生产大国,而且要成为模具生产强国。
参考文献
[1]刘海坤.精密铸造压型制造新工艺的研究[D].大连交通大学.
[2]潘培道.高速切削技术及在模具制造中的应用[D].合肥工业大学.20
[3]李小忠.高速切削有限元仿真及加工参数优化的研究[D].南京理工大学.年
[4]李发尧.高速直线运动单元设计及性能评价实验技术研究[D].重庆大学.
[5]王金珑.模具高速铣削数据库[D].广西大学.20
[6]李子艳.高速切削机理及若干问题研究[D].天津大学.年
[7]吕程辉.整体叶轮的五轴高速铣削加工工艺优化[D].同济大学.2007年
[8]谭忠海.某工具铣床典型切削加工过程仿真分析[D].昆明理工大学.2006年
篇3:高速切削刀具在数控加工中的应用论文
摘要:
随着科学技术水平的不断提高,作为先进制造技术的重要组成部分高速切削技术在模具加工制造中已得到越来越广泛的应用。本文结合高速切削技术的发展现状,阐述了高速切削技术的应用及其未来趋势。
关键词:
篇4:高速切削刀具在数控加工中的应用论文
一、高速切削技术和高速切削刀具
目前,切削加工仍是机械制造行业应用广泛的一种加工方法。其中,集高效、高精度和低成本于一身的高速切削加工技术已经成为机械制造领域的新秀和主要加工手段。
“高速切削”的概念首先是由德国的C.S~omom博士提出的,并于1931年4月发表了著名的切削速度与切削温度的理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。此后,高速切削技术的发展经历了以下4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削成熟阶段(20世纪90年代至今)。高速切削加工与常规的切削加工相比具有以下优点:第一,生产效率提高3~1O倍。第二,切削力降低30%以上,尤其是径向切削分力大幅度减少,特别有利于提高薄壁件、细长件等刚性差的零件的加工精度。第三,切削热95%被切屑带走,特别适合加工容易热变形的零件。第四,高速切削时,机床的激振频率远离工艺系统的固有频率,工作平稳,振动较小,适合加工精密零件。
高速切削刀具是实现高速加工技术的关键。刀具技术是实现高速切削加工的关键技术之一,不合适的刀具会使复杂、昂贵的机床或加工系统形同虚设,完全不起作用。由于高速切削的切削速度快,而高速加工线速度主要受刀具限制,因为在目前机床所能达到的高速范围内,速度越高,刀具的磨损越快。因此,高速切削对刀具材料提出了更高的要求,除了具备普通刀具材料的一些基本性能之外,还应突出要求高速切削刀具具备高的耐热性、抗热冲击性、良好的高温力学性能及高的可靠性。高速切削技术的发展在很大程度上得益于超硬刀具材料的出现及发展。目前常用的高速切削刀具材料有:聚晶金刚石(PCD)、立方氮化硼(CBN)、陶瓷、Ti(C,N)基金属陶瓷、涂层刀具fCVD)~超细晶粒硬质合金等刀具材料。
二、高速切削刀具的发展情况
金刚石刀具材料。金刚石刀具具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。金刚石刀具分为天然金刚石和人造金刚石刀具。然而,由于天然金刚石价格昂贵,加工焊接非常困难,除少数特殊用途外,很少作为切削工具应用在工业中。近年来开发了多种化学机理研磨金刚石刀具的方法和保护气钎焊金刚石技术,使天然金刚石刀具的制造过程变得比较简单,因此在超精密镜面切削的高技术应用领域,天然金刚石起到了重要作用。
立方氮化硼刀具材料。立方氮化硼(CBN)是纯人工合成的材料,是20世纪50年代末用制造金刚石相似的方法合成的第二种超材料——CBN 微粉。立方氮化硼(CBN)是硬度仅次于金刚石的超硬材料。虽然CBN的硬度低于金刚石,但其氧化温度高达1360℃ ,且与铁磁类材料具有较低的亲和性。因此,虽然目前CBN还是以烧结体形式进行制备,但仍是适合钢类材料切削,具有高耐磨性的.优良刀具材料。CBN具有高硬度、高热稳定性、高化学稳定性等优异性能,因此特别适合加工高硬度、高韧性的难加工金属材料。PCBN刀具是能够满足先进切削要求的主要刀具材料,也是国内外公认的用于硬态切削,高速切削以及干式切削加工的理想刀具材料。PCBN刀具主要用于加工淬硬钢、铸铁、高温合金以及表面喷涂材料等。国外的汽车制造业大量使用PCBN刀具切削铸铁材料。PCBN刀具已为国外主要汽车制造厂家各条生产线上使用的新一代刀具。
陶瓷刀具。与硬质合金相比,陶瓷材料具有更高的硬度、红硬性和耐磨性。因此,加工钢材时,陶瓷刀具的耐用度为硬质合金刀具的10~20倍,其红硬性比硬质合金高2~6倍,且化学稳定性、抗氧化能力等均优于硬质合金。陶瓷刀具材料的强度低、韧性差,制约了它的应用推广,而超微粉技术的发展和纳米复合材料的研究为其发展增添了新的活力。陶瓷刀具是最有发展潜力的高速切削刀具,在生产中有美好的应用前景,目前已引起世界各国的重视。在德国约70%加工铸件的工序是用陶瓷刀具完成的,而日本陶瓷刀具的年消耗量已占刀具总量的8%~l0%。
涂层刀具。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-112o3-TiN 复合涂层和TiCN、TiA1N等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。(氮)化钛基硬质合金(金属陶瓷)金属陶瓷与由WC构成的硬质合金不同,主要由陶瓷颗粒、TiC和TiN、粘结剂Ni、Co、Mo等构成。金属陶瓷的硬度和红硬性高于硬质合金而低于陶瓷材料,横向断裂强度大于陶瓷材料而小于硬质合金,化学稳定性和抗氧化性好,耐剥离磨损,耐氧化和扩散,具有较低的粘结倾向和较高的刀刃强度。
三、高速切削刀具的具体应用情况
理想的刀具材料应具有较高的硬度和耐磨性,与工件有较小的化学亲和力,高的热传导系数,良好的机械性能和热稳定性能。理想的刀具使得高速硬切削能够作为代替磨削的最后成型工艺,达到工件表面粗糙度、表面完整性和工件精度的加工要求。硬质合金刀具具有良好的抗拉强度和断裂韧性,但由于较低的硬度和较差的高温稳定性,使其在高速硬切削中的应用受到一定限制。但细晶粒和超细晶粒的硬质合金由于晶粒细化后,硬质相尺寸变小,粘结相更均匀地分布在硬质相的周围,提高了硬质合金的硬度与耐磨性,在硬切削中获得较广泛应用。
陶瓷刀具和CBN刀具是在高速硬车削和端面铣削中最常用的刀具。它们所具有的高硬度和良好的高温稳定性,使其能够承受在硬切削过程中高的机械应力和热应力负荷。与陶瓷刀具相比,CBN刀具拥有更高的断裂韧性,因此更适合断续切削加工。为保证工件较高的尺寸精度和形状精度,高的热传导率和低的热膨胀系数也应是刀具材料所应具有的重要性质。因此,具有优良综合性能的CBN刀具是最适合用于高速硬切削的刀具。聚晶金刚石刀具的硬度虽然超过立方氮化硼刀具,但即使在低温下,其对黑色金属中铁的亲和力也很强,易引起化学反应,因此不能用于钢的硬切削。
一般而言,PCD刀具适合于对铝、镁、铜等有色金属材料及其合金和非金属材料的高速加工;而CBN、陶瓷刀具、涂层硬质合金刀具适合于钢铁等黑色金属的高速加工。故在模具加工中,特别是针对淬硬性模具钢等高硬度钢材的加工,CBN刀具性能最好,其次为陶瓷刀具和涂层硬质合金。
结论
高速切削技术的问世改变了人对传统切削加工的思维和方式,极大提高了加工效率和加工质量。而高速切削与模具加工的结合,改变了传统模具加工的工序流程。高速切削刀具作为高速切削技术的关键,随着技术的不断完善,将为模具制造带来一次全新的技术革新。
参考文献
[1] 韩福庆 高速切削刀具材料的开发与选择[J] 化学工程与装备
[2] 周纯江 叶红朝 高速切削刀具相关关键技术的研究[J] 机械制造2008
[3]范炳良 林朝平基于高速切削刀具锥柄系统的分析与研究[J] 机械设计与制造 2008
[4]马向阳 李长河 高速切削刀具材料[J] 现代零部件2008
[5]李鹏南 张厚安 张永忠 胡忠举 高速切削刀具材料及其与工件匹配研究[J] 工具技术2008
[6]肖寿仁 高鸣智 邓晓春 高速切削刀具材料应用进展[J] 有色金属2008
篇5:高速切削加工中刀具材料的合理选择(二)
高速切削加工刀具材料的选用:
一、铝合金:
1、易切削铝合金
该材料在航空航天工业应用较多,适用的刀具有K10、K20、PCD,切削速度在~4000m/min,进给量在3~12m/min,刀具前角为12°~18°,后角为10°~18°,刃倾角可达25°,
2、铸铝合金
铸铝合金根据其Si含量的不同,选用的刀具也不同,对Si含量小于12%的铸铝合金可采用K10、Si3N4刀具,当Si含量大于12%时,可采用 PKD(人造金刚石)、PCD(聚晶金刚石)及CVD金刚石涂层刀具。对于Si含量达16%~18%的过硅铝合金,最好采用PCD或CVD金刚石涂层刀具,其切削速度可在1100m/min,进给量为0.125mm/r。
二、铸铁:
对铸件,切削速度大于350m/min时,称为高速加工,切削速度对刀具的选用有较大影响。当切削速度低于750m/min时,可选用涂层硬质合金、金属陶瓷;切削速度在510~2000m/min时,可选用Si3N4陶瓷刀具;切削速度在2000~4500m/min时,可使用CBN刀具。
铸件的金相组织对高速切削刀具的选用有一定影响,加工以珠光体为主的铸件在切削速度大于500m/min时,可使用CBN或Si3N4,当以铁素体为主时,由于扩散磨损的原因,使刀具磨损严重,不宜使用CBN,而应采用陶瓷刀具。如粘结相为金属Co,晶粒尺寸平均为3μm,CBN含量大于 90%~95%的BZN6000在V=700m/min时,宜加工高铁素体含量的灰铸铁。粘结相为陶瓷(AlN+AlB2)、晶粒尺寸平均为10μm、 CBN含量为90%~95%的Amborite刀片,在加工高珠光体含量的灰铸铁时,在切削速度小于1100m/min时,随切削速度的增加,刀具寿命也增加。
普通钢
切削速度对钢的表面质量有较大的影响,根据德国Darmstadt大学PTW所的研究,其最佳切削速度为500~800m/min。
目前,涂层硬质合金、金属陶瓷、非金属陶瓷、CBN刀具均可作为高速切削钢件的刀具材料。其中涂层硬质合金可用切削液。用PVD涂层方法生产的 TiN涂层刀具其耐磨性能比用CVD涂层法生产的涂层刀具要好,因为前者可很好地保持刃口形状,使加工零件获得较高的精度和表面质量。
金属陶瓷刀具占日本刀具市场的30%,以TiC-Ni-Mo为基体的金属陶瓷化学稳定性好,但抗弯强度及导热性差,适于切削速度在 400~800m/min的小进给量、小切深的精加工;Carboly公司用TiCN作为基体、结合剂中少钼多钨的金属陶瓷将强度和耐磨两者结合起来,Kyocera公司用TiN来增加金属陶瓷的韧性,其加工钢或铸铁的切深可达2~3mm,
CBN可用于铣削含有微量或不含铁素体组织的轴承钢或淬硬钢。
三、高硬度钢:
高硬度钢(HRC40~70)的高速切削刀具可用金属陶瓷、陶瓷、TiC涂层硬质合金、PCBN等。
金属陶瓷可用基本成分为TiC添加TiN的金属陶瓷,其硬度和断裂韧性与硬质合金大致相当,而导热系数不到硬质合金的1/10,并具有优异的耐氧化性、抗粘结性和耐磨性。另外其高温下机械性能好,与钢的亲和力小,适合于中高速(在200m/min左右)的模具钢SKD加工。金属陶瓷尤其适合于切槽加工。
采用陶瓷刀具可切削硬度达HRC63的工件材料,如进行工件淬火后再切削,实现“以切代磨”。切削淬火硬度达HRC48~58的45钢时,切削速度可取150~180m/min,进给量在0.3~0.4min/r,切深可取2~4mm。粒度在1μm,TiC含量在20%~30%的Al2O3-TiC 陶瓷刀具,在切削速度为100m/min左右时,可用于加工具有较高抗剥落性能的高硬度钢。
当切削速度高于1000m/min时,PCBN是最佳刀具材料,CBN含量大于90%的PCBN刀具适合加工淬硬工具钢(如HRC55的H13工具钢)。
四、高温镍基合金:
Inconel718镍基合金是典型的难加工材料,具有较高的高温强度、动态剪切强度,热扩散系数较小,切削时易产生加工硬化,这将导致刀具切削区温度高、磨损速度加快。高速切削该合金时,主要使用陶瓷和CBN刀具。
碳化硅晶须增强氧化铝陶瓷在100~300m/min时可获得较长的刀具寿命,切削速度高于500m/min时,添加TiC氧化铝陶瓷刀具磨损较小,而在100~300m/min时其缺口磨损较大。氮化硅陶瓷(Si3N4)也可用于Inconel718合金的加工。
加拿大学者M.A.Elbestawi认为,SiC晶须增强陶瓷加工Inconel718的最佳切削条件为:切削速度700m/min,切深为1~2mm,进给量为0.1~0.18mm/z。
氮氧化硅铝(Sialon)陶瓷韧性很高,适合于切削过固溶处理的Inconel718(HRC45)合金,Al2O3-SiC晶须增强陶瓷适合于加工硬度低的镍基合金。
五、钛合金:(Ti6Al6V2Sn)
钛合金强度、冲击韧性大,硬度稍低于Inconel718,但其加工硬化非常严重,故在切削加工时出现温度高、刀具磨损严重的现象。日本学者 T.Kitagawa等经过大量实验得出,用直径?10mm的硬质合金K10两刃螺旋铣刀(螺旋角为30°)高速铣削钛合金,可达到满意的刀具寿命,切削速度可高达628m/min,每齿进给量可取0.06~0.12mm/z,连续高速车削钛合金的切削速度不宜超过200m/min。
六、复合材料:
航天用的先进复合材料(如Kevlar和石墨类复合材料),以往用硬质合金和PCD,硬质合金的切削速度受到限制,而在900℃以上高温下PCD刀片与硬质合金或高速钢刀体焊接处熔化,用陶瓷刀具则可实现300m/min左右的高速切削。
篇6:高速切削加工中刀具材料的合理选择(一)
高速切削加工技术是近几十年来发展迅猛的一项先进制造技术,已经成为国内外研究的热点之一,刀具材料影响着高速切削加工技术的广泛应用。刀具材料经历了高速钢一硬质合金一陶瓷一超硬材料等不断发展的过程,切削速度和加工效率得以不断提高。本文分析了在高速切削加工中常用的刀具材料,并针对常用的被加工材料阐述了高速切削刀具材料的选择方法。
1高速切削对刀具材料的要求
由于高速切削加工的切削速度是常规切削的5~10倍,因此对刀具材料以及刀具结构、几何参数等都提出了新的更高的要求。刀具材料的选择对加工效率、加工质量、加工成本和刀具寿命等都有着重要的影响。高速切削加工除了要求刀具材料具备普通刀具材料的一些基本性能之外,还对刀具材料有更高的要求,主要包括:①高的硬度和耐磨性:高速切削加工刀具材料的硬度必须高于普通加工刀具材料的硬度,一般在60HRC以上。刀具材料的硬度愈高,其耐磨性愈好。②高的强度和韧性:刀具材料要有很高的强度和韧性,以便承受切削力、振动和冲击,防止刀具脆性断裂。③良好的热稳定性和热硬性:刀具材料要有很好的耐热性,要能承受高温,具备良好的抗氧化能力。④良好的高温力学性能:刀具材料要有很高的高温强度、高温硬度和高温韧性。⑤较小的化学亲和力:刀具材料与工件材料的化学亲和力要较小。
目前适用于高速切削的刀具主要有:涂层刀具、陶瓷刀具、金属陶瓷刀具、立方氮化硼(CBN)刀具、聚晶金刚石(PCD)刀具以及性能优异的高速钢和硬质合金刀具等。
2高速切削常用的刀具材料
2.1涂层刀具
涂层刀具是在韧性较好的刀体上,涂覆一层或多层耐磨性好的难熔化合物,使刀具既有较高的韧性又有很高的硬度和耐磨性,涂层刀具的寿命比未涂层的刀具要高2—5倍。涂层刀具可分为两大类:一类是“硬”涂层刀具如TiC、TLN、Al2O3涂层刀具,硬涂层刀具的主要优点是硬度高、耐磨性能好。另一类是 “软”涂层刀具,这种涂层刀具也称为自润滑刀具,其表面摩擦因数低可以减少摩擦,降低切削力和切削温度,软涂层刀具的涂层材料主要有MoS2和WS2。应用较广泛的涂层工艺有化学气相沉积法和物理气相沉积法。涂层硬质合金一般采用化学气相沉积法(CVD),沉积温度在100℃左右。涂层高速钢刀具一般采用物理气相沉积法(PVD),沉积温度在500℃左右。
2.2陶瓷刀具
陶瓷刀具具有很高的硬度、耐磨性能和良好的高温力学性能,与金属的亲合力小,不易与金属产生粘结,并且化学稳定性好,
因此,陶瓷刀具可以加工传统刀具难以加工或根本不能加工的超硬材料,实现以车代磨,从而可以免除退火,简化工艺,大幅度地节省工时和电力;陶瓷刀具的最佳切削速度可以比硬质合金刀具高 3-10倍,而且刀具寿命长,可减少换刀次数,从而大大提高切削加工生产效率。近年来,由于控制了原料的纯度和晶粒尺寸,添加了各种碳化物、氮化物、硼化物、氧化物和晶须等,采用多种增韧机制进行增韧补强,使得陶瓷刀具材料的抗弯强度、断裂韧性和抗冲击性能都大幅度提高,应用范围日益广泛,可以用于高速切削、干切削和硬切削,切削效率大大提高。
2.3金属陶瓷刀具
金属陶瓷有较高室温硬度、高温硬度及良好的耐磨性、抗氧化能力强和化学稳定性好。金属陶瓷材料主要包括高耐磨性TiC基硬质合金(Tic Ni或No)、高韧性TiC基硬质合金(TiC TaC wc)、强韧TiN基硬质合金(以TiN为主体)、高强韧性TiCN基硬质合金(TicN NbC)等。金属陶瓷刀具可在300—500m/min的切削速度范围内高速加工钢和合金钢,精加工铸铁。此外金属陶瓷还可制成钻头、铣刀和滚刀。
2.4立方氮化硼(CBN)刀具
立方氮化硼具有超硬特性、高热稳定性和高化学稳定性。立方氮化硼刀具是高速精加工或半精加工淬硬钢、冷硬铸铁和高温合金等的理想刀具材料。
2.5金刚石刀具
金刚石刀具有两种:天然金刚石刀具和人造金刚石刀具。天然金刚石的价格昂贵,目前已经被人造金刚石所代替。人造聚晶金刚石(PCD)是以石墨为原料,加入催化剂经高温高压烧结而成。在烧结过程中由于添加剂的加入,使金刚石晶体间形成以TiC、SiC、Fe、Co和Ni等为主要成分的结合桥,金刚石以共价键的结合形式牢固地嵌于结合桥构成坚固的骨架中,使PCD的强度和韧性都有了很大提高。
由于PCD结合桥具有导电性使得PCD便于切割成形,且成本低于天然金刚石PCD刀片可分为整体聚晶金刚石刀片和聚晶金刚石复合刀片。
2.6性能优异的高速钢和硬质合金复杂刀具
高性能钴高速钢、粉末冶金高速钢和整体硬质合金材料已成为制造滚刀、剃齿刀、插齿刀等齿轮刀具的主流刀具材料,可用于齿轮的高速切削。用硬质合金粉末和高速钢粉末配制成的新型粉末冶金材料制成的齿轮滚刀,滚切速度可达到150—180m/min。再对其进行TiAIN涂层处理后,可用于高速干切齿轮。
篇7:高速加工技术及其在汽车制造业中的应用
高速加工技术及其在汽车制造业中的应用
1 前言 高速加工技术是在近年来动态多变的全球化市场经济环境下应运而生的.在激烈的'市场竞争中,要求企业以质量高、成本低、服务优、交货及时、更新换代快、有利于环保的产品及时满足市场不断变化的需求,由此推动高速加工技术不断发展.
作 者:李道国 作者单位:神龙汽车有限公司 刊 名:汽车工艺与材料 英文刊名:AUTOMOBILE TECHNOLOGY & MATERIAL 年,卷(期): “”(4) 分类号:U4 关键词:篇8:国际切削刀具制造商巨头美国肯纳公司在中国天津建立新的大型生产基地
国际切削刀具制造商巨头美国肯纳公司在中国天津建立新的大型生产基地
美国肯纳公司在天津举行新闻发布会和生产基地奠基仪式 3月15日,全球著名的切削刀具制造商美国肯纳公司(Kennametal)在中国新的大型生产基地--美国肯纳金属(中国)有限公司在天津开发区破土动工,并举行了隆重的大型新闻发布会和生产基地奠基仪式.美国肯纳公司董事长、总裁兼首席执行官唐比嘉(Markos I.Tambakeras)先生、执行副总裁兼首席运营官科多学(Carlos M.Cardoso)先生及肯纳飞硕金属(上海)有限公司总经理宫刚一行,天津市委常委、滨海新区管委会主任皮黔生,天津开发区管委会副主任杨仲强等出席了新闻发布会和生产基地奠基仪式;数十家国内主要报刊社及天津报刊社、有关网站及电视台、部分专业杂志社等传媒机构的.记者参加了会议及仪式.
作 者:晓星 作者单位: 刊 名:工具技术 ISTIC PKU英文刊名:TOOL ENGINEERING 年,卷(期):2005 39(3) 分类号: 关键词:











