自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.
分析在第一次追上自行车队与第二次追上自行车队之间,摩托车所走的路程为(18+9)千米,而自行车所走的路程为(18-9)千米,所以,摩托车的速度是自行车速度的3倍(=(18+9)÷(18-9));摩托车与自行车的速度差是自行车速度的2倍,再根据第一次摩托车开始追自行车队时,车队已出发了12分钟,也即第一次追及的路程差等于自行车在12分钟内所走的路程,所以追及时间等于12÷2=6(分钟);联系摩托车在距出发点9千米的地方追上自行车队可知:摩托车在6分钟内走了9千米的路程,于是摩托车和自行车的速度都可求出了.
解:(18+9)÷(18-9)=3(倍)
12÷(3-1)=6(分钟)
9÷6=1.5(千米/分钟)
1.5÷3=0.5(千米/分钟)
答:摩托车与自行车的速度依次为1.5千米/分钟,0.5千米/分钟.
四年级奥数行程问题2
小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的a处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇。小红和小强两人的家相距多少米?
解答:
由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90—70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米)。
四年级奥数:行程问题3
45名学生要到离学校30千米的郊外劳动。学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。学生步行的速度是每小时4千米。为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?
[解答]:
45人分三组出发,每组15人。
为了尽快到达,三组必须同时到达。
每一组都是步行了一些路程,坐车行了一些路程。
由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。
汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。
我们设第二组第一条红*线段的长度为1份。
可得出第一条蓝*线段=8份,当然,第3条,第5条蓝*线段的长度也等于8份。
还可以得到第三组的红*线段=2份,当然,第1组的红*线段也等于2份。
所以全程是8+2=10份,8份路程坐车,2份路程步行。
每份长度为30÷10=3公里。
所以坐车时间为3×8÷60=0.4小时
步行时间为3×2÷4=1.5小时
一共需要0.4+1.5=1.9小时。
四年级数学行程问题奥数题4
练习一
1,A、B两港间的水路长208千米。一只船从A港开往B港,顺水8小时到达;从B港返回A港,逆水13小时到达。求船在静水中的速度和水流速度。
2,甲、乙两港间水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达。求船在静水中的速度和水流速度。
3,甲、乙两城相距6000千米,一架飞机从甲城飞往乙城,顺风4小时到达;从乙城返回甲城,逆风5小时到达。求这架飞机的速度和风速。
例4:一只轮船从上海港开往武汉港,顺流而下每小时行25千米,返回时逆流而上用了75小时。已知这段航道的水流是每小时5千米,求上海港与武汉港相距多少千米?
分析与解答:先根据顺水速度和水速,可求船速为每小时25-5=20千米;再根据船速和水速,可求出逆水速度为每小时行20-5=15千米。又已知“逆流而上用了75小时”,所以,上海港与武汉港相距15×75=1125千米。
练习二
1,一只轮船从A港开往B港,顺流而下每小时行20千米,返回时逆流而上用了60小时。已知这段航道的水流是每小时4千米,求A港到B港相距多少千米?
2,一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时。已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?
3,某轮船在相距216千米的两个港口间往返运送货物,已知轮船在静水中每小时行21千米,两个港口间的水流速度是每小时3千米,那么,这只轮船往返一次需要多少时间?
例5:A、B两个码头之间的水路长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船顺流而行需要5小时,那么乙船在静水中的速度是多少?
分析与解答:虽然甲、乙两船的船速不同,但都在同一条水路上行驶,所以水速相同。根据题意,甲船顺水每小时行80÷4=20千米,逆水每小时行80÷10=8千米,因此,水速为每小时(20-8)÷2=6千米。又由“乙船顺流而行80千米需要5小时”,可求乙船在顺水中每小时行80÷5=16千米。所以,乙船在静水中每小时行16-6=10千米。
练习三
1,甲乙两个码头间的水路长288千米,货船顺流而下需要8小时,逆流而上需要16小时。如果客船顺流而下需要12小时,那么客船在静水中的速度是多少?
2,A、B两个码头间的水路全长80千米,甲船顺流而下需要4小时,逆流而上需要10小时。如果乙船逆流而上需要20小时,那么乙船在静水中的速度是多少?
3,一条长160千米的水路,甲船顺流而下需要8小时,逆流而上需要2
多人行程四年级奥数行程问题5
难度:高难度
小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的a处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇.小红和小强两人的家相距多少米?
讲解:
解答:由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).
小学四年级奥数行程问题练习题6
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2小时后相遇。
练习一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了500×10=5000米。
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。
练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?
例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。几小时后甲可以追上乙?
分析与解答:这是一道追及问题。根据题意,甲追上乙时,比乙多行了24千米(路程差)。甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行13-5=8千米(速度差),即甲每小时可以追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。因此,24÷8=3小时甲可以追上乙。
练习四
1,甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米。几小时后甲可追上乙?
2,*某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。多长时间后,通讯员能赶上队伍?
3,小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。3分钟后两人相距多少米?
例5:甲、乙两沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?
练习五
1,一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间小强第一次追上小星?
2,光明小学有一条长200米的环形跑道,亮亮和晶晶同时从起跑线起跑。亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?
3,甲、乙两人绕周长1000米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍。现在甲在乙后面250米,乙追上甲需要多少分钟?
行程问题之货车相遇四年级奥数题7
米老鼠沿着铁路旁的一条小路向前走,一列货车从后面开过来,8:00货车追上了米老鼠,又过了30秒货车超过了它;另有一列客车迎面驶来,9:30客车和米老鼠相遇,又过了12秒客车离开了它。如果客车的长度是货车的2倍,客车的速度是货车的3倍。请问:客车和货车在什么时间相遇?两车错车需要多长时间?
「分析解答」
行程问题中的三个量路程、速度和时间,如果题目中只出现了一个的量的具体数值,那么我们可以设出来没出现具体数值的两个量中的任意一个量。
当然也可以不设出来,用设份数的方法来做,但这种方法比较抽象,这里我们采用设数的方法。
设货车的长度为60米,则客车的长度为120米。
从追上米老鼠到超过,货车用30秒,所以货车与米老师的速度差是60÷30=2米/秒。
从和米老鼠相遇到离开,客车用12秒,所以客车与米老师的速度和是120÷12=10米/秒。
所以我们可以知道客车与货车的速度和是10+2=12米/秒。
又知道客车的速度是货车速度的3倍,则可以求出客车的速度是9米/秒,货车的速度是3米/秒。然后可以求出米老鼠的速度是1米/秒。
下面的留给同学们去分析吧。
实际上本题就算不知道客车速度是货车速度的3倍,也是可以做出来的。当然,这时候就算不出客车、货车和米老鼠的具体速度了。但还是求出来的*的。
四年级奥数经典试题之行程问题8
以下是为大家整理的【四年级奥数经典试题:行程问题】,希望大家能够喜欢!
专题简析:
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。行程问题主要包括相遇问题、相背问题和追及问题。这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?
分析与解答:这是一道相遇问题。所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。所以,求两人几小时相遇,就是求20千米里面有几个10千米。因此,两人20÷(6+4)=2小时后相遇。
练习一
1,甲乙两艘轮船分别从a、b两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的a、b两城同时出发,相向而行,已知甲车从a城到b城需6小时,乙车从b城到a城需12小时。两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。所以狗共行了500×10=5000米。
练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相遇时,骑自行车的同学共行多少千米?
2,a、b两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析与解答:这是一道相背问题。所谓相背问题是指两个运动的物体作背向运动的问题。在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。要求几小时能行完36千米,就是求36千米里面有几个12千米。所以,36÷12=3小时。
练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。经过3小时后,两人相隔60千米。南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。两人的速度各是多少?
四年级行程奥数题9
1、小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的a处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在a处相遇.小红和小强两人的家相距多少米?
解答:由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).
2、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时行驶多少千米?
解答:老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。
3、甲、乙、*三辆车同时从a地出发到b地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、*三辆车相遇。求*车的速度。
解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。另外st图也是很关键)
第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了660-486=72千米;(这也是现在乙车与卡车的距离)
第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-481=24
第三步:综上整体看问题可以求出全程为:(60+24)6=504或(48+24)7=504
第四步:收官之战:5048-24=39(千米)