奥数学习的关键在于兴趣,下面是数学小升初奥数经典题,为大家提供参考。

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

数学小升初奥数经典题(优质9篇)

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4、李*和张强付同样多的钱买了同一种铅笔,李*要了13支,张强要了7支,李*又给张强0.6元钱。每支铅笔多少钱?

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11、某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12、五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13、某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14、妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15、学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16、某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17、某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18、某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19、学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20、两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

21、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?

22、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?

23、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?

24、小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?

25、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?

26、把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

27、一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?

28、李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

29、甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

30、有红、黄、白三种颜*的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?

31、在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?

32、水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?

33、学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

34、学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?

35、学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

36、父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

37、有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

38、光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?

39、甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?

40、一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?

41、小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?

42、有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

43、有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?

44、妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?

45、甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

46、盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?

47、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

48、父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

49、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?

50、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?


小升初经典奥数试题2

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

2.2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

4.李*和张强付同样多的钱买了同一种铅笔,李*要了13支,张强要了7支,李*又给张强0.6元钱。每支铅笔多少钱?

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?

13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?

14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?

15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?

16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?

17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?

18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?

19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?

20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?


小升初数学奥数题试卷3

1、三个村修路,甲乙*三村路程比是8:7:5,*没参加,拿出1350元,

甲派出60人,乙派出40人,问甲乙各分得多少

5份路程1350元,1份路程270元

人数比:

甲:乙=60:40=3:2

路程8:7:5共20份。

甲修20x3/5=12份,多修12-8=4份应得270x4=1080元

乙修20x2/5=8份,多修8-7=1份应得1x270=270元

2、共有4人进行跳远、百米、铅球、跳高四项比赛(每人四项均参加),规定每个单项第一名记5分,单项第二名记3分,单项第三名记2分,单项第四名记1分,每一单项比赛中四人得分互不相同。总分第一名共获得17分,其中跳高得分低于其他项得分。总分第三名共获得11分,其中跳高得分高于其他项得分。总分第二名的铅球这项的得分是()。(请写出分析过程)

解析:

17=5+5+5+2,11=1+2+3+5=2+2+2+5,如果取1+2+3+5的话,就还剩3个3和2个2及3个1,取最大的3个3和1个2就等于11,第二名的分数不可能与第三名相同,所以1+2+3+5的*排除,就只有取2+2+2+5的*,最后还剩4个3和4个1,取其中最大值有4个3为12,大于11,所以第二名的铅球得分是3;

如果平面上共有n个点(n是不小于3的整数),其中任意三点不在同一条直线上,连接任意两点画线段,可以画几条?n+{[(n-3)×n]÷2}

3、两人从两地相向而行,甲每分钟52米,乙每分钟70,在A点相遇;如果甲先走4分钟,然后甲速度仍为每分钟52米,乙的速度变为每分钟90米,恰好还在A点相遇,问两地相距多远?

分析:

如果甲先走4分钟,他后来时间没有变,仍然还是在A点相遇,说明乙两种情况下和甲相遇也是相差4分钟,即乙以每分钟70米和每分钟90米的速度行完同样路程相差4分钟。那么这个问题可以看作一个盈亏问题,则有90*4/(90-70)=18,说明甲每分钟52米,乙每分钟70米,则18分钟行完全程,所以全程应为

(52+70)*18=2196(米)。

[小升初数学奥数题试卷]相关文章:


小升初数学试卷奥数题4

1、三个村修路,甲乙*三村路程比是8:7:5,*没参加,拿出1350元,

甲派出60人,乙派出40人,问甲乙各分得多少

5份路程1350元,1份路程270元

人数比:

甲:乙=60:40=3:2

路程8:7:5共20份。

甲修20x3/5=12份,多修12-8=4份应得270x4=1080元

乙修20x2/5=8份,多修8-7=1份应得1x270=270元

2、共有4人进行跳远、百米、铅球、跳高四项比赛(每人四项均参加),规定每个单项第一名记5分,单项第二名记3分,单项第三名记2分,单项第四名记1分,每一单项比赛中四人得分互不相同。总分第一名共获得17分,其中跳高得分低于其他项得分。总分第三名共获得11分,其中跳高得分高于其他项得分。总分第二名的铅球这项的得分是()。(请写出分析过程)

解析:

17=5+5+5+2,11=1+2+3+5=2+2+2+5,如果取1+2+3+5的话,就还剩3个3和2个2及3个1,取最大的3个3和1个2就等于11,第二名的分数不可能与第三名相同,所以1+2+3+5的*排除,就只有取2+2+2+5的*,最后还剩4个3和4个1,取其中最大值有4个3为12,大于11,所以第二名的铅球得分是3;

如果平面上共有n个点(n是不小于3的整数),其中任意三点不在同一条直线上,连接任意两点画线段,可以画几条?n+{[(n-3)×n]÷2}

3、两人从两地相向而行,甲每分钟52米,乙每分钟70,在a点相遇;如果甲先走4分钟,然后甲速度仍为每分钟52米,乙的速度变为每分钟90米,恰好还在a点相遇,问两地相距多远?

分析:

如果甲先走4分钟,他后来时间没有变,仍然还是在a点相遇,说明乙两种情况下和甲相遇也是相差4分钟,即乙以每分钟70米和每分钟90米的速度行完同样路程相差4分钟。那么这个问题可以看作一个盈亏问题,则有90*4/(90-70)=18,说明甲每分钟52米,乙每分钟70米,则18分钟行完全程,所以全程应为

52+70)*18=2196(米)。


小升初数学奥数试题5

1.有28位小朋友排成一行。从左边开始数第10位是爱华,从右边开始数他是第几位?

2.纽约时间是*时间减13小时。你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在*你应几月几日几时给他打电话?

3.名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人多少人?

4.大于100的整数中,被13除后商与余数相同的数有多少个?

5.四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?

6.在1998的约数(或因数)中有两位数,其中最大的是哪个数?

7.英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?

8.一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有几个月?

9.将0,1,2,3,4,5,6,7,8,9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同。

□+□□=□□□

问算式中的三位数最大是什么数?

10.有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数。

11.某学校有学生518人,如果男生增加4%,女生减少3人,总人数就增加8人,那么原来男生比女生多几人?

12.陈敏要购物三次,为了使每次都不产生10元以下的找赎,5元、2元、1元的硬币最少总共要带几个?

(硬币只有5元、2元、1元三种。)

13.幼儿园的老师把一些画片分给a,b,c三个班,每人都能分到6张.如果只分给b班,每人能得15张,如果只分给c班,每人能得14张,问只分给a班,每人能得几张?

14.两人做一种游戏:轮流报数,报出的数只能是1,2,3,4,5,6,7,8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?


小升初数学试卷奥数题6

1、三个村修路,甲乙*三村路程比是8:7:5,*没参加,拿出1350元,

甲派出60人,乙派出40人,问甲乙各分得多少

5份路程1350元,1份路程270元

人数比:

甲:乙=60:40=3:2

路程8:7:5共20份。

甲修20x3/5=12份,多修12-8=4份应得270x4=1080元

乙修20x2/5=8份,多修8-7=1份应得1x270=270元

2、共有4人进行跳远、百米、铅球、跳高四项比赛(每人四项均参加),规定每个单项第一名记5分,单项第二名记3分,单项第三名记2分,单项第四名记1分,每一单项比赛中四人得分互不相同。总分第一名共获得17分,其中跳高得分低于其他项得分。总分第三名共获得11分,其中跳高得分高于其他项得分。总分第二名的铅球这项的`得分是()。(请写出分析过程)

解析:

17=5+5+5+2,11=1+2+3+5=2+2+2+5,如果取1+2+3+5的话,就还剩3个3和2个2及3个1,取最大的3个3和1个2就等于11,第二名的分数不可能与第三名相同,所以1+2+3+5的*排除,就只有取2+2+2+5的*,最后还剩4个3和4个1,取其中最大值有4个3为12,大于11,所以第二名的铅球得分是3;

如果平面上共有n个点(n是不小于3的整数),其中任意三点不在同一条直线上,连接任意两点画线段,可以画几条?n+{[(n-3)×n]÷2}

3、两人从两地相向而行,甲每分钟52米,乙每分钟70,在A点相遇;如果甲先走4分钟,然后甲速度仍为每分钟52米,乙的速度变为每分钟90米,恰好还在A点相遇,问两地相距多远?

分析:

如果甲先走4分钟,他后来时间没有变,仍然还是在A点相遇,说明乙两种情况下和甲相遇也是相差4分钟,即乙以每分钟70米和每分钟90米的速度行完同样路程相差4分钟。那么这个问题可以看作一个盈亏问题,则有90*4/(90-70)=18,说明甲每分钟52米,乙每分钟70米,则18分钟行完全程,所以全程应为

52+70)*18=2196(米)。

1.小升初的奥数应用题

2.小升初奥数应用题

3.小升初数学试卷应用题及*

4.小升初数学试卷应用题篇

5.小升初数学试卷:选择题精选

6.小升初应用题数学试卷

7.小升初数学试卷常见应用题总结

8.小升初奥数应用题及*解析


小升初数学奥数应用题7

1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)

一张桌子的价钱:32×10=320(元)

答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

解:45+5×3=45+15=60(千克)

答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

解:4×2÷4=8÷4=2(千米)

答:甲每小时比乙快2千米。

4、李*和张强付同样多的钱买了同一种铅笔,李*要了13支,张强要了7支,李*又给张强0.6元钱。每支铅笔多少钱?

想:根据两人付同样多的钱买同一种铅笔和李*要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李*要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)

答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

解:下午2点是14时。

两地间路程:(40+45)×6÷2=85×6÷2=255(千米)

答:两地相距255千米。

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。

解:第一组追赶第二组的路程:

3.5-(4.5-3.5)=3.5-1=2.5(千米)

2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

答:第一组2.5小时能追上第二小组。

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

解:乙仓存粮:(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)

甲仓存粮:14×4-5=56-5=51(吨)

答:甲仓存粮51吨,乙仓存粮14吨。

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

解:乙每天修的米数:(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)

甲乙两队每天共修的米数:40×2+10=80+10=90(米)

答:两队每天修90米。

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

解:每把椅子的价钱:(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)

每张桌子的价钱:25+30=55(元)

答:每张桌子55元,每把椅子25元。

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

解:(7+65)×[40÷(75-65)]=140×[40÷10]=140×4=560(千米)

答:甲乙两地相距560千米。


关于小升初的奥数试题经典讲解8

1、有12个同学去冷饮店,有6人要可乐,有5人要咖啡,有5人要果汁.有3人既要可乐又要咖啡,有2人既要咖啡又要果汁;有3人既可乐又要果汁,有1人可乐咖啡果汁都要.有没有什么冷饮都没有要的人?如果有的话,有几人?

提示:学过奥数的朋友都知道,这是一道容斥原理的题。

根据容斥原理2解答。如果你没有学过这个专题,我建议你画图。

画三个圆圈即可。

2、有甲乙两种止咳*水,含*量之比为2∶3,含蒸馏水之比为1∶2,*水的重量比为40∶77,求甲乙两种*水的浓度?

提示:这是一道比例问题,比例问题你就巧妙的假设某个数为1,找出其它关系。

3、一个数除以7,所得的商与余数相同,这样的数有几个?是哪几个数?

提示:这道题不难,关键是要知道余数的范围。

4、甲乙二人分别从a、b两地同时相对往返行车,第一次相遇时,甲行了400米,第二次向遇时甲距b地100米,求ab之间的距离?

提示:这是一道典型的行程问题,画图找出一次相遇走几个全程,二次相遇走几个全程呢?

然后根据时间比求出甲第二次走的路程


关于小升初的经典奥数练习题9

考试近在咫尺了,考生们是否已经准备好考试了呢?考试前的复习是很重要的哦,下面是小编为大家准备的考试实用的复习练习题,希望能够帮助大家高效复习,这里先预祝考生们考试顺利。

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?

*

2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?

*

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?

*

4、李*和张强付同样多的钱买了同一种铅笔,李*要了13支,张强要了7支,李*又给张强0.6元钱。每支铅笔多少钱?

*

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)

*

6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?

*

7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?

*

8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?

*

9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?

*

10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?

*


阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。