“水兵月s”通过精心收集,向本站投稿了4篇订购商品的小升初数学应用试题总结,下面是小编为大家整理后的订购商品的小升初数学应用试题总结,仅供参考,大家一起来看看吧。

订购商品的小升初数学应用试题总结

篇1:订购商品的小升初数学应用试题总结

订购商品的小升初数学应用试题总结

张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:“如果你肯减价,每减价1元,我就多订购4件.”商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的`成本是多少元?

解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。

由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。

所以成本是100-25=75元。

解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的利润是5÷1/5=25元。因此成本是100-25=75元。

减价5%就是减价了:100×5%=5元

所以多订了:4×5=20件

共订购:80+20=100件

现在的售价是:(100-5)×100=9500元----------100件的成本和利润

原来的售价是:80×100=8000元--------------80件的成本和利润

因为利润一样,所以9500-8000=1500元是100-80=20件的成本

一件的成本是:1500÷20=75元

篇2:小升初数学应用试题

小升初数学应用试题精选

(1)甲乙两地相距624千米,一列客车和一列货车同时从两地相向开出,客车的速度是每小时65千米,货车的速度与客车速度的比是11:13,两车开出后几小时相遇?

(2)一列客车和一列货车同时从甲乙两地相对开出,已知客车每小时行驶55千米,客车的速度与火车的速度的比是11:9,两车开出后5小时相遇,甲乙两地相距多少千米?

(3)甲、乙两列火车同时从相距540千米的两城相对开出。甲、乙两车的速度比是4:5,甲车每小时行60千米,经过几小时两车能相遇?

3.分数乘除问题

(1)求一个数的几分之几是多少

(2)已知一个数的几分之几是多少,求这个数

(3)“1”的量×分率=分率对应的量

(4)数量÷数量对应的分数=“1”的量

>>>>典型题:

(1)五年级同学收集了165个易拉罐,六年级同学比五年级同学多收集了-2/11,问六年级收集了多少个易拉罐?

(2)买玩具,有优惠卡可打8折,我用优惠卡买了这个玩具,节约了21元,如果没有优惠卡,买这个玩具要多少元?

(3)小明看以本小说,第一天看了全书的1/8还多16页,第二天看了全书的1/6少2页,还有20 页没有看,问这本书有多少页?

(4)加工一批零件,第一天完成的个数占零件总个数的1/3,如果第一天能够完成30个就可以完成这批零件的一半,这批零件有多少个?

(5)文成县境内水利资源丰富,水能蕴藏约50万千瓦,可开发资源约为42万千瓦,居温州第一位,浙江省第五位,现已开发78.5%.其中飞云江水能资源最为丰富,珊溪水利工程发电厂的总装机容量就达20万千瓦,年发电量约为3.55亿千瓦时。1)珊溪水利工程发电厂的总机容量约占文成县可开发水能资源的百分之几?

2)文成县水能资源可开发的但未开发的'约多少万千瓦?

3)从以上信息中,你还能提出什么问题?

(6)一批货物第一天运走2/5,第二天运走的比第一天少六吨,还剩下36吨,这批货物原来有多少吨?

(7)某炼油车间4天共炼油20吨,第一天炼油4吨是第二天的80%.那么,后两天平均每天炼油多少吨?

(8)在为灾区儿童捐款助学的活动中,六一边捐款112元,比六二班捐款数少1/8,六二班捐款多少元?

4.长方体、正方体、圆柱、圆锥的应用题

>>>>典型题:

(1)小丽家有一个长方体玻璃缸,小丽从里面量长时40厘米,宽25厘米,小丽给里面加水,使水深为20厘米,然后将石块浸没在水中,这时小丽量的水深为22.5厘米。你能根据这些信息求出石块的体积吗?

(2)公园里修一个圆形水池,直径为10米,深2米,1)这个水池占地面积是多少?2)要挖成这个水池要挖土多少立方米?3)在水池内侧和底抹一层水泥,水泥面积是多少平方米?

(3)一段方钢长2分米,横截面是正方形,把它锯成相等的3份后,表面积比原来增加了16平方米,原方钢的体积是多少?

5.比与分数综合题(抓住“1”不变量即分母不变)

(1)调动问题:调动前后相差数量÷调动前后相差数量对应的分率=1”的量

>>>>典型题:

(1)学习图书馆的图书借出总数的11/15后,又买了240本,这时图书馆里的书和原来的书的本书的比是1:3,学校原来有图书多少本?

(2)小红看一本书,第一天看了24 页,第二天看了全书的25%,这时已看的和没有看的比是7:5,这本书共有多少页?

(3)一个三角形,三条边长的比是3:4:5,最长的一条边比其余两条边长的和短12厘米,这个三角形的周长是多少?

(4)甲乙两个车间,甲车间人数占两个车间总人数的5/8,如果从甲车间抽调90人到乙车间后,则甲、乙两车间人数比是2:3,原来两个车间各有多少人?

(5)小红看一本书第一天看了20页,第二天看了全书的25%,这时已看的和没有看的比是9:11,这本书一共有多少页?

(6)学校两个合唱队的人数比是4:3,如果从第一队调五人到第二队,则两个队人数相等,问第一对原来有多少人?

(7)学校田径队和足球队人数的比是6:5,如果从田径队调出3人到足球队后,两队的人数相等,学校田径队和足球队原来各有多少人?

6.圆的应用题

>>>>典型题:

一只狗被栓在一根5米长的绳子上,另一头系在以面墙的中点。这面墙长10米,这只狗获得范围最大面积是多大?

7.统计图应用题

(1)看图表

(2)补充图表

(3)得出那些结论和建议

8.比例尺的应用题

>>>>典型题:

订购商品的小升初数学应用试题总结(1)在比例尺是1:6000000的地图上,量的南京到北京的距离是15厘米,一列火车以每小时60千米的速度从南京开往北京,问几小时可以到达?

(2)在一幅地图上,用3厘米长的线段表示实际距离900千米,问这幅地图的比例尺是多少?在这幅地图上量的A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这图地图上时多少厘米?

9.正比例、反比例应用题

>>>>典型题:

(1)一堆煤原计划每天烧三吨,可以烧96天,由于改建炉灶,每天烧2.4吨,这吨煤可以烧多少天?(用比例方法解)

(2)工程队要修620米长的公路,4天修了124米,照这样计算,修完这段公路要几天?(用比例解)

10.按比例分配

>>>>典型题:

一个长方形的周长是120厘米,长于宽的比是3:2,长方形的面积是多少平方厘米?

11.平均数应用题

>>>>典型题:

(1)期末考试,小明语文、数学、英语三科平均分时92分,如果只算语文、数学两科平均分时93分,英语是多少分?

(2)某化工厂在一星期里,前三天平均每天节约用煤1.8吨,后4天节约用煤9.3吨,这一星期平均每天节约用煤多少吨?

(3)刘明、王华、李强的期中考试平均成绩是93.7分,李刚、赵云的平均成绩比他们三人的平均成绩高1.8分,他们五人的平均成绩是多少?

12.经济问题:利息、缴税问题、现价与原价问题

>>>>典型题:

李叔叔三年前在工商银行存了15万元的人民币的定期存款,年利率为3.24%,今年李叔叔准备把钱取出来买一套售价为17万的房子(一次性付款有九五折的优惠)。请问,李叔叔取出来的钱够吗?(利息税为20%)

篇3:小升初数学应用试题及答案

小升初数学应用试题及答案

1. 某公司向银行申请A,B两种贷款共60万元,每年共需付利息5万元.A种贷款年利率为8%,B种贷款年利率为9%,该公司申请两种贷款各多少万元?

解:假设全是A种贷款,每年付息:60*8%=4.8万元,比实际少付:5-4.8=0.2万元。

把1万元8%年息的贷款换成9%,多付:1*(9%-8%)=0.01万元。

要多付0.2万元利息,需要把:0.2/0.01=20万元换成年息9%。

即:A种贷款60-20=40万元,B种贷款20万元。

解:假设两种贷款年利率均为9%,

则每年共需付利息60×9%=5.4(万元),

多算的5.4-5=0.4(万元),就是A种贷款的9%-8%=l%。

(60×9%-5)÷(9%一8%)=40(万元)

2. 某市决定由甲、乙、丙三个队共同修筑长度、宽度都相等的两条公路.已知第二条比第一条长1/4.单独修一条公路,甲队要20天,乙队要24天,丙队要30天,两条路同时开工后,先由乙队单独修第一条公路,甲、丙两队合修第二条公路.一段时间后,又把甲队调往第一条公路工地,与乙队合修.这样两条公路同时修成.问甲队与丙队合修了多长时间?

解法一:合作完成全工程需要(2+1/4)÷(1/20+1/24+1/30)=18天。

丙队18天余下1+1/4-18/30=13/20,甲队就做了13/20÷1/20=13天。

因此甲丙合作了13天。

解法二:合作完成全工程需要(2+1/4)÷(1/20+1/24+1/30)=18天。

甲队和乙队合作了(1-18/24)÷1/20=5天。

所以甲队和丙队合作了18-5=13天。

3. 甲、乙两人开展生产竞赛.甲第一天做了100个零件,第二天技术熟练了,多做了4个零件,以后每天都比前一天多做4个零件.乙第一天上半天做了50个零件,下半天多做了1个零件,以后每半天都比上半天多做1个零件,工作5天后,谁做得零件多?多做几个零件?

解:甲5天做了100×5+4×(1+2+3+4)=540个。

乙5天做了50×10+(1+9)×9÷2=545个。

说明乙做得多,多545-540=5个零件。

4. 一个圆周长100厘米,甲、乙两只蚂蚁从同一地点同时出发同方向爬行,甲的速度是每秒3厘米,乙爬行20厘米后掉头往回爬,结果乙爬过出发点40厘米后与甲第二次相遇.乙的`速度是多少?

解: 甲行了100-40=60厘米,用去60÷3=20秒。在这20秒中,乙行了20×2+40=80厘米。所以乙的速度是80÷20=4厘米/秒。

5. 表比钟每小时快30秒,钟每小时比标准时慢30秒.问表是快还是慢?一昼夜相差多少秒?

解:1小时=60×60=3600秒。标准时间和钟的速度比是3600:(3600-30)=120:119。那么钟和表的速度比是3600:(3600+30)=120:121。

所以,标准时间、钟、表的速度比是120×120:119×120:121×119

因为120×120>121×119,所以,表比标准时间慢。

一昼夜相差24×3600÷120÷120×(120×120-121×119)=6秒

篇4:小升初数学应用试题综合训练及答案

小升初数学应用试题综合训练及答案

如下:

1.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍。果园里共有多少棵果树?

假设:今年不结果的果树看作1份,结果的就是5份。

那么,去年不结果的果树就是1份多160棵,结果的就是2份多1602+60=380棵

所以,160+380=540棵果树相当于5-2=3份,每份就是5403=180棵

所以,果树一共有180(5+1)=1080棵

2.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次

解:李刚行16分钟的路程,小明要行482+16=112分钟。

所以李刚和小明的速度比是112:16=7:1

小明行一个全程,李刚就可以行7个全程。

当李刚行到第2、4、6个全程时,会追上小明。因此追上3次这是一个关于相遇次数的复杂问题。解决这类问题最好是画线段帮助分析。

李刚在第一次相遇后16分钟追上小明,如果把小明在这16分钟行的路程看成一份,

那么李刚就行了这样的:48/16*2+1=7份,其中包括小明在48分钟内行的路程的二倍以及小明在相遇后的16分钟内行的路程。

也就是说李刚的速度是小明的7倍。

因此,当小明到达乙地,行了一个全程时,李刚行了7个全程。

在这7个全程中,有4次是从乙地到甲地,与小明是相遇运动,另外3个全程是从甲地到乙地,与小明是追及运动,因此李刚共追上小明3次。

3.同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明

解法一:父亲走一步行100120=5/6米,小明一步行100180=5/9米

父亲行450米用了4505/6=540步,小明行540步行了5405/9=300米。

相差450-300=150米。

还要行150(5/6+5/9)=108步

解法二:父子俩共走4502=900米其中父亲走的路程为900180/(180+120)=540米

父亲往回走的路程540-450=90米

还要走12090/100=108步父子俩共走450*2=900米其中父亲走的路程为900*180/(180+120)=540米

父亲往回走的路程540-450=90米

还要走120*90/100=108步

4.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离。

解:顺水航行每小时行全程的1/4,逆水航行每小时行全程是1/7。

顺水速度-逆水速度=水速2,

所以全程是62(1/4-1/7)=112千米

顺水比逆水每小时多行62=12千米顺水4小时比逆水4小时多行124=48千米

这多出的48千米需要逆水行7-4=3小时

逆水行驶的速度为483=16千米

两个港口之间的距离为167=112千米

5.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙

解:乙行40分钟的路程,丙行40+10=50分钟,乙和丙的速度比是50:40=5:4

甲行60分钟的路程,丙行60+10+10=80分钟甲和丙的速度比是80:60=4:3

甲乙丙三人的速度比是44:53:43=16:15:12

乙比甲早行10分钟,甲和乙的时间比是15:16

所以,甲出发后10(16-15)15=150分钟追上乙。

6.甲、乙合作完成一项工作,由于配合的'好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时

解:甲在合作时的工效是:1/11**(1+1/10)=1/10

甲乙合作的工效是:1/6因此乙在合作时的工效是:1/6-1/10=1/15

乙在单独工作时的工效是:1/15/(1+1/5)=1/18

因此乙单独做需要:1/1/18=18小时。

7. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁各拿几面小旗

五名学生从左到右依次是:

A D B C E

各拿小旗

8 2 1 5 4

分析如下:

(10)B

(8)D

(16)E

得DBE三者排列次序

由C(11)得C排在E前

而A只能排第一,因为D不可能排第一

8.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间

由于每秒5米和每秒4米时间相等

所以全程的平均速度是:(4+5)/2=4.5m/s

全程用时间为:360/4.5=80s

一半时间为:40秒

一半路程为:360/2=180m

用4m/s跑的路程为:4*40=160m

后半路程用5m/s跑的路程为:180-160=20m

后半路程用5m/s跑的时间为:20/5=4s

因此后一半路程用时间t=用4m/s跑的时间+后半路程用的5m/s跑的时间

t=40+4=44秒

9.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.

速度60/(18-15)=20米/秒

全长20*15=300米

10.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米

解:去时,步行的路程是全程的1/2,

回来时,步行的路程占全程的2/35(2/35+1/315)=2/5。

所以行1/2-2/5=1/10的路程步行需要2(15-5)15=3小时,

所以步行完全程需要31/10=30小时。

所以小明家到学校305=150千米

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。