“呦呦鹿鸣”通过精心收集,向本站投稿了3篇五年级数学的知识点梳理,下面是小编整理后的五年级数学的知识点梳理,希望对大家有所帮助。

篇1:五年级数学知识点梳理
小学五年级上册数学《简易方程》知识点
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
五年级数学上册期末复习计划
一、把知识分块,进行分类整理复习。
五年级数学一共七个单元,但是重点知识分为三块,一是计算类:小数乘除法和解简易方程;二是图形面积类:平行四边形、三角形、梯形以及组合图形的面积计算;三是问题解决:小数乘除法的解决问题以及用方程解决问题。把知识分类也能让学生明了本册学习的重点内容,在练习时能对症下药,即题目到底是考查了哪一个知识点,这样学生面对一些陌生的题目时也不会手足无措。
二、多训练计算。
本学期的计算占的比重相当大,于是让每个学生都掌握计算法则,会计算每种类型的题目。最近一个月我每天会让学生做六道计算题。虽然让学生练习了,但是我做的并不好,检查不到位,只是让小组长把这个家庭作业落实,学生纠错率不高。在接下来的一段时间我准备在课代表以及小组长的配合下,每天不定时抽查学生的家庭作业,并掌握每个学生的计算能力,程度的在基础计算上让学困生得分。
三、把每班学生按不同程度分类。
优等生、中等程度的学生、学困生。在复习时有所侧重,优等生在掌握基础题的同时,多做一些拔高的习题;中等生能够把基础知识、概念、计算做的非常扎实,拔高题并不做要求;学困生是个大难题,他们基础差,学习习惯不好,甚至有厌学情绪,多让他们在学习中体验成功乐趣是重点,让他们有学习的欲望,基本的小数乘除法、简单的方程,一定要重复训练,对他们进行模式训练,记忆为主。
“一帮一计划“也有所改动,原来优等生带学困生,但是实施过程中发现,有些学生在给学困生讲题时,极其不耐烦,总是听到有人抱怨认为很简单的题目也不会做,影响很不好,于是我大胆决定,让优等生帮助中等生,中等生带学困生,这样差距小一些,实施起来也比较容易些,而且发挥中等生的作用,一方面避免了有些中等生听不懂装懂,理解知识不透彻的坏习惯,另一方面通过帮助别人他也能体验成功,对自身提高很有帮助。
最后,复习一定不要只顾做试卷而脱离课本,且不说期末考试的题目都是书上例题的变形,更重要的是课本上的习题都是基于课程标准的,不会超纲,有代表性,对于学生理解定义、概念有很大的帮助作用。
总之,期末复习一定要有计划性,根据本班学生制定一个具有时效性的计划,能对症下药,这样的复习应该会有比较显著的效果!
五年级数学教案
教学目标:
(一)掌握整数、小数四则混合运算的运算顺序,会使用中括号,能够比较熟练地计算整数、小数四则混合运算式题。
(二)通过对整数、小数四则混合运算的运算顺序的总结、归纳,提高学生的抽象概括能力。
(三)培养学生养成良好的学习习惯,提高学生的计算能力。
教学重点:
掌握整数、小数四则混合运算的运算顺序。
教学难点:
提高学生计算正确率以及约等号的正确使用。
教学过程:
一、复习准备
1.口算
12+0.12= 7.2-0.2= 3.5÷0.35=
2.95+0.05= 5-0.6= 2.8÷0.14=
8÷12.5= 1.2+2.8-3.99= 4×1.72=
3.74+6.26= 4.5×6= 0.25×4÷0.2=
2÷4= 20×0.2= 20.75-9.5=
3.5×8×0.125=
2.提问
(1)我们学过哪几种运算?
(2)我们把加法、减法、乘法、除法统称为什么运算?(加法、减法、乘法、除法统称为四则运算。)
(3)整数四则混合运算的顺序是什么?
二、学习新课
1.学习例1:3.7-2.5+4.6= 3.6×6÷0.9=
(1)思考:以上两题中分别含有什么运算?运算顺序怎样?
(2)学生试算后订正。
3.7-2.5+4.6
=1.2+4.6
=5.8
3.6×6+0.9
=21.6÷0.9
=24
(3)小结运算顺序
①教师讲解:加法和减法叫做第一级运算,乘法、除法叫做第二级运算。
②以上两题中分别含有几级运算?运算顺序怎样?(①题中只含有第一级运算,按从左往右依次计算;②题中只含有第二级运算,也按从左往右依次计算。)
③谁能用简明的语言概括以上两题的运算顺序?(一个算式里,如果只含有同一级运算,要从左往右依次计算。)
2.学习例2:35.6-5×1.73= 6.75+2.52÷1.2=
(1)观察以上两题中含有几级运算?应先做哪步运算,后做哪步运算?
(2)学生计算后订正。
(3)小结。
以上两题都是含有两级运算的算式,应先做哪级运算,后做哪级运算?
讨论得出:一个算式里,如果含有两级运算,要先做第二级运算,后做第一级运算。
(4)练习:先说出运算顺序,再算出得数。
①P37“做一做”;②3.6÷1.2+0.5×5。
思考:①上题如果要先算1.2+0.5应怎么办?(加小括号。)
②如果要先算(1.2+0.5)×5应怎么办?(加中括号。)
教师介绍:小括号“( )”是公元17世纪由荷兰人吉拉特首先使用。中括号“[ ]”是公元17世纪首次出现在英国的互里士的著作中。
小括号和中括号的作用是什么呢?(改变算式中的运算顺序。)
3.试做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=
(1)两题运算顺序是怎样的?(一个算式里,如果有括号,要先算小括号里面的,再算中括号里面的。)
(2)学生试做
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
计算中出现3.6÷1.7和3.6÷8.5除不尽时,教师讲解
在四则混合运算过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数,再进行计算。
要想保留两位小数,只需除到第几位?(一般只需除到第三位小数,用“四舍五入法”保留两位小数。)
学生继续计算后,订正
3.6÷(1.2+0.5)×5
=3.6÷1.7×5
≈2.12×5
=10.6
3.6÷[(1.2+0.5)×5]
=3.6÷[1.7×5]
=3.6÷8.5
≈0.42
提问:为什么①题中第二步要用约等于号“≈”,而第三步却要用等号“=”。(因为在第二步计算时,3.6÷1.7除不尽,在第二步计算时,要取它的商的近似值2.12,所以在第二步要用“≈”连接;而第三步用2.12乘以5,得到的积10.6是准确的结果,应该用等号连接。)

篇2:五年级数学知识点梳理
五年级上册数学小数除法知识点
循环小数
1、循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
2、循环节的定义:一个循环小数的小数部分,依次不断重复出现的一个数字或者几个数字,叫做这个循环小数的循环节。如5.33……循环节是3。7.14545……的循环节是45。
3、循环小数必须满足的条件:①必须是无限小数;②一个数字或者几个数字依次不断重复出现。
4、循环小数的记法:
①省略后面的“……”号;
②在第一个循环节首尾的数字上分别加点。
5、小数分类:可以分为无限小数和有限小数。小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。
循环小数一定是无限小数,无限小数不一定是循环小数。
解决问题
应用题中取商的近似值的方法有:“四舍五入”法、“进一法”和“去尾法”。在解决问题的时候,要根据题目实际情况选择“进一法”和“去尾法”取商的近似值。
选择题。选择正确答案的序号填在括号里。
(1)商的算式是( )
①54÷0.36 ②5.4÷36 ③5.4÷0.36
(2)比0.7大、比0.8小的小数有( )个
①9 ②0 ③无数 ④1
(3)3.2727…是( )小数
①有限 ②循环 ③不循环
(4)2.76÷0.23的商的位是( )
①个位 ②十位 ③百位 ④十分位
五年级上册数学位置知识点
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定一个点的位置,经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
3、在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
4、数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。
图形左右平移行数不变,图形上下平移列数不变。
练习题
一.填空。
1.竖排叫做( ),横排叫做( )。列数( )数,行数( )数。
2.用数对表示物体的位置时,应先写( )数,再写( )数。
3.亮亮在第2列,第3行的位置,可以用数对表示为( )。
4.点A(3,6)向右平移3格用数对表示是( ),向左平移2格用数对表示是( )。
5.点B(3,4)向上平移2格后用数对表示是( ),向下平移2格后用数对表示是( )。
五年级上册数学《小数乘法》知识点
一、意义
1、小数乘整数:求几个相同加数的和的简便运算。
如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示为(3.2×5),这个乘法算式表示的意义是(5个3.2是多少)
2、小数乘小数:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
二、算理
1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
小数乘法计算法则简记为:一算,二看,三数,四点,五去;
2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。
4、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b<1,a
篇3:五年级数学知识点梳理
2.轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3.轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4.轴对称图形的作用:
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5.因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6.自然数的因数(举例):
6的因数有:1和6,2和3.
10的因数有:1和10,2和5.
15的因数有:1和15,3和5.
25的因数有:1和25,5.
7.因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。








