“zhahm2000”通过精心收集,向本站投稿了7篇高三数学第一轮复习中的学法,以下是小编收集整理后的高三数学第一轮复习中的学法,仅供参考,欢迎大家阅读。

高三数学第一轮复习中的学法

篇1:高三数学第一轮复习中的学法

第一轮复习中的学法

1.加强复习的计划性

第二轮复习中知识点的综合性和跳跃性比较大,这就要求同学们要有计划的巩固基础知识,回顾第一轮复习中的相关内容,抓住复习的主动权。

2.近几年的高考上海数学试卷体现了基础知识全面考,重点知识重点考,淡化特殊技巧,注重通性通法的特点

所以要注重“双基”,通过第二轮的复习,进一步有意识地强化对书本上尤其是主干知识的定义、定理、公式、通法的理解,对这些东西理解水平的高低决定了你能否灵活运用基础知识。

3.加强解题速度和正确率的强化训练

定时定量做一些基础题和中档题,训练速度和正确率,适量做一些综合题,提高解题能力。

4.强化技能的形成

技能包括:计算、推理、画图、语言表达,这些必须做得非常规范,非常熟练,做的时候要再现数学思想方法,也就是要明白每一步为什么要这么做。

5.加强阅读分析能力的训练

要养成良好的读题、审题的习惯,记得题目只读一遍是不够的,必然会有闪失;条件没有用完是不对的,必然会有缺漏。强化数学思想和方法在解题中的指导性。

6.防止出现的几个问题

防止简单重复练习,不求反思;防止追求解题技巧,不注重通法通则;防止机械地就题做题,不归纳总结;防止眼高手低,简单的不愿做,复杂的做不出。

提高高考数学成绩三大妙招

一、思路思想提炼法:催生解题灵感“没有解题思想,就没有解题灵感。有了解题思想,解题思如泉涌。”但“解题思想”对很多学生来说是既熟悉又陌生。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。在老师的指导下,结合典型的数学题目,可以快速掌握。

二、典型题型精熟法:抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,“当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解起题来就得心应手。”

三、逐步深入纠错法:巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。

高三数学集合与常用逻辑用语测试题

一、选择题:本大题共12小题,每小题5分,共60分.

1.设全集U={1,2,3,4,5},集合A= {1,a-2,5},?UA={2,4},则a的值为( )

A.3 B.4

C.5 D.6

解析:由?UA={2,4},可得A={1,3,5},∴a-2=3,a=5.

答案:C

2.设全体实数集为R,M={1,2},N={1,2,3,4},则(?RM)∩N等于( ) 新课标第一]

A.{4}   B.{3,4}

C.{2,3,4}   D.{1,2,3,4 }

解析:∵M={1,2},N={1,2,3,4},∴(?RB)∩N={3,4}.

答案:B

3.如图所示,U是全集,M、N、S是U的子集,则图中阴影部分所示的集合是( )

A.(?UM∩?UN)∩S

B.(?U(M∩N))∩S

C.(?UN∩?US)∪M

D.(?UM∩?US)∪N

解析:由集合运算公式及Venn图可知A正确.

答案:A

4.已知p:2+3=5,q:5<4,则下列判断错误的是( )

A.“p或q”为真,“p”为假

B.“p且q”为假,“q”为真

C.“p且q”为假,“p”为假

D.“p且q”为真,“p或q”为真

解析:∵p为真,∴p为假.

又∵q为假,∴q为真.∴“p且q”为真,“p或q”为真.

答案:D

A.0   B.1

C.2   D.4

答案:C

6.已知集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若A∩B=?,则实数m的取值范围是( )

A.m<1   B.m≤1

C.m<-1   D.m≤-1

解析:A∩B=?即指函数y=lg(x+1)-1的图像与直线x=m没有交点,结合图形可得m≤-1.

答案:D

7.使不等式2x2-5x-3≥0成立的一个 充分不必要条件是( )

A.x≥0   B.x<0或x>2

C.x∈{-1,3,5}   D.x≤-12或x≥3

解析:依题意所选选项能使不等式2x2-5x-3≥0成立,但当不等式2x2-5x-3≥0成立时,却不一定能推出所选选项.由于不等式2x2-5x-3≥0的解为x≥3,或x≤-12.

答案:D

8.命题p:不等式-1>-1的解 集为{x|0<x<1};命题q:0<a≤15是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的充分不必要条件,则( )

A.p真q假   B.“p且q”为真

C.“p或q”为假   D.p假q真

解析:命题p为真,命题q也为真.事实上,当0<a≤15时,函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数,但若函数在(-∞,4]上是减函数,应有0≤a≤15.故“p且q”为真.

答案:B

9.已知命题p:?x0∈R,使tanx0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:[X k b 1 . c o m

①命题“p且q”是真命题;

②命题“p且(q)”是假命题;

③命题“(p)或q”是真命题;

④命题“(p)或(q)”是假命题.

其中正确的是( )

A.②③   B.①②④

C.①③④   D.①②③④

解析:命题p:?x0∈R,使tanx0=1为真命题,

命题q:x2-3x+2<0的解集是{x|1<x<2}也为真命题,

∴p且q是真命题,p且(q)是假命题,

(p)或q是真命题,(p)或(q)是假命题,

故①②③④都正确.

答案:D

10.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠?”的逆命题、否命题、逆否命题中结论成立的是( )

A.都真   B.都假

C.否命题真   D.逆否命题真

解析:对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠?”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题是:“若{x|ax2+bx+c<0}≠?,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因 为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线开口可以向上,因此否命题也是假命题.故选D.

答案:D

11.若命题“?x,y∈(0,+∞),都有(x+y)1x+ay≥9”为真命题,则正实数a的最小值是( )

A.2   B.4

C.6   D.8

解析:(x+y)1x+ay=1+a+axy+yx≥1+a+2a=(a+1)2≥9,所以a≥4,故a的最小值为4.

答案:B

12.设p:y=cx(c>0)是R上的单调递减函数;q:函数g(x)=lg(2cx2+2x+1)的值域为R.如果“p且q”为假命题,“p或q”为真命题,则c的取值范围是( )

A.12,1  B.12,+∞

C.0,12∪[1,+∞)   D.0,12

解析:由y=cx(c>0) 是R上的单调递减函数,

得0<c<1,所以p:0<c<1,

由g(x)=lg(2cx2+2x+1)的值域为R,

得当c=0时,满足题意.

当c≠0时,由c>0,Δ=4-8c≥0,得0<c≤12.

所以q:0≤c≤12.

由p且q为假命题,p或q为真命题可 知p、q一假一真.

当p为真命题,q为假命题时,得12<c<1,

当p为假命题时,c≥1,q为真命题时,0≤c≤12.

故此时这样的c不存在.

综上,可知12<c<1.

答案:A

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分,共20分.

13.已知命题p:?x∈R,x3-x2+1≤0,则命题p是____________________.

解析:所给命题是特称命题,而特称命题的否定是全称命题,故得结论.

答 案:?x∈R,x3-x2+1>0

14.若命题“?x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是__________.

解析:∵“?x∈R,2x2-3ax+9<0”为假命题,

∴“?x∈R,2x2-3ax+9≥0”为真命题.

高三数学第一轮复习中的学法

∴Δ=9a2-4×2×9≤0,解得-22≤a≤22.

故实数a的取值范围是[-22,22].

答案:[-22,22]

15.已知命题p:“对?x∈R,?m∈R使4x-2x+1+m=0”,若命题p是假命题,则实数m的取值范围是__________.

解析:命题p是假命题,即命题p是真命题,也就是关于x的方程4x-2x+1+ m=0有实数解,即m=-(4x-2x+1).令f(x)=-(4x-2x+1),由于f(x)=-( 2x-1)2+1,所以当x∈R时f(x)≤1,因此实数m的取值范围是(-∞,1].

答案:(-∞,1]

16.已知集合A={x∈R|x2-x≤0},函数f(x)=2-x+a(x∈A)的值域为B.若B?A,则实数a的取值范围是__________.

解析:A={x∈R|x2-x≤0}=[0 ,1].

∵函数f(x)=2-x+a在[0,1]上为减函数,

∴函数f(x)=2-x+a(x∈A)的值域B=12+a,1+a.

∵B?A,

∴12+a≥0,1+a≤1.解得-12≤a≤0.

故实数a的取值范围是-12,0.

答案:-12,0

三、解答题:本大题共6小题,共70分.

17.(10分)记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=3-|x|的定义域为集合B.

(1)求A∩B和A∪B;

(2)若C={x|4x+p<0},C?A,求实数p的取值范围.

解析:(1)依题意,得A={x|x2-x-2>0}={x|x<-1,或x>2},

B={x|3-|x|≥0}={x|-3≤x≤3},

∴A∩B={x|-3≤x<-1,或2<x≤3},

A∪B=R.

(2)由4x+p<0,得x<-p4,而C?A,

∴-p4≤-1.∴p≥4.

18.(12分)已知命题p:关于x的不等式x2-2ax+4>0对一切x∈R恒成立;命题q:函数y=log(4-2a)x在(0,+∞)上递减.若p∨q为真,p∧q为假,求实数a的取值范围.

解析:命题p为真,则有4a2-16<0,解得-2<a<2;

命题q为真,则有0<4-2a<1,解得32<a<2.

由“p∨q为真,p∧q为假”可知p和q满足:

p真q真、p假q真、p假q假.

而当p真q假时,应有-2<a<2,a≥2或,a≤32,即-2<a≤32,

取其补集得a≤-2,或a>32,

此即为当“p∨q为真,p∧q为假”时实数a的取值范围,故a∈(-∞,-2]∪32,+∞

19.(12分)已知命题p:|x-8|<2,q:x-1x+1>0,r:x2-3ax+2a2<0(a>0).若命题r是命题p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.

解析:命题p即:{x|6<x<10};

命题q即:{x|x>1};

命题r即:{x|a<x<2a}.

由于r 是p的必要而不充分条件,r是q的充分而不必要条件,结合数轴应有1≤a≤6,2a≥10.解得5≤a≤6,

故a的取值范围是[5,6].

20.(12分)已知集合A={x|2-a≤x≤2+a},B={x|x2-5x+4≥0}.

(1)当a=3时,求A∩B,A∪(?UB);

(2)若A ∩B=?,求实数a的取值范围.

解析:(1)∵a=3,∴A={x|-1≤x≤5}.

由x2-5x+4≥0,得x≤1,或x≥4,

故B={x|x≤1,或x≥4}.

∴A∩B={x|-1≤x≤1或4≤x≤5}.

A∪(?UB)={x|-1≤x≤5}∪{x|1<x<4}

={x|-1≤x≤5}.

(2)∵A=[2-a,2+a],B=(-∞,1]∪[4,+∞),且A∩B=?,

∴2-a>1,2+a<4,解得a<1.

21.(12分)已知函数f(x)=2x2-2ax+b,f(-1)=-8.对?x∈R,都有f(x)≥f(-1)成立.记集合A={x|f(x)>0},B={x||x-t|≤1}.

(1)当t=1时,求(?RA)∪B;

(2)设命题p:A∩B=?,若p为真命题,求实数t 的取值范围.

解析:由题意知(-1,-8)为二次函数的顶点,

∴f(x)=2(x+1)2-8=2(x2+2x-3).

由f(x)>0,即x2+2x-3>0得x<-3,或x>1,

∴A={x|x<-3,或x>1}.

(1)∵B={x||x-1|≤1}={x|0≤x≤2}.

∴(?RA)∪B={x|-3≤x≤1}∪{x|0≤x≤2}

={x|-3≤x≤2}.

(2)由题意知,B={x|t-1≤x≤t+1},且A∩B=?,

∴t-1≥-3,t+1≤1?t≥-2,t≤0,

∴实数t的取值范围是[-2,0].

22.(12分)已知全集U=R,非空集合A=-2x-3a-1<0,B=-a2-2x-a<0.

(1)当a=12时,求(?UB)∩A;

(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

解析:(1)当a=12时,

A=x2<x<52,

B=x12<x<94.

?UB=≤12,或x≥94.

(?UB)∩A=x94≤x<52.

(2)若q是p的必要条件,

即p?q,可知A?B,

由a2+2>a,得B={x|a<x<a2+2},

当3a+1>2,即a>13时,A={x|2<x<3a+1},

∴a≤2,a2+2≥3a+1,解得13<a≤3-52;

当3a+1=2,即a=13时,A=?,符合题意;

当3a+1<2, 即a<13时,A={x|3a+1<x<2}.

∴a≤3a+1,a2+2≥2,解得-12≤a<13;

综上,a∈-12,3-52.

篇2:高三数学第一轮复习教学计划

20xx年是江苏高考进入新课程的第三年,我们应当在体现新课程多样性、选择性和探究性的特点的同时,结合xx、xx年高考数学试卷分析,在夯实基础的前提下让学生全面而有个性的发展。

根据20xx届高三的特殊情况制定的我市高中数学教学进度建议,望各校能按照这个进度制定详细的学科教学进度计划,突出重点,在有效复习时间大大缩短的前提下,确保高三复习工作的顺利完成。

一、教学进度

理科复习顺序

文科复习顺序

测试建议

新授坐标系和参数方程;复习集合(含常用逻辑用语)、函数的概念与基本初等函数、导数及其应用(含定积分)、三角函数(含三角恒等变换、解三角形)、平面向量、数列、不等式、平面解析几何(含圆锥曲线方程)。

立体几何初步(含空间向量与立体几何)、推理与证明(含数学归纳法)、算法初步、概率统计、数系的扩充与复数的引入。

计数原理、概率。

矩阵与变换、坐标系与参数方程(或不等式选讲、几何证明选讲)。

复习集合与常用逻辑用语、函数的概念与基本初等函数、导数及其应用、三角函数(含三角恒等变换、解三角形)、平面向量、数列、不等式、平面解析几何(含圆锥曲线方程)。

立体几何初步、推理与证明、数系的扩充与复数的引入。

算法初步、概率统计。

9月底进行高三第一次统测,主要目的是摸底,范围均为全部必修

1月中旬进行高三第二次统测,范围为全部必修和选修内容。

3月底进行高三第三次统测,范围为全部必修和选修内容

计划到3月底第一轮复习全部结束。

第二、三轮复习

专题复习、专题训练、

综合训练、模拟训练

充分利用其它市等信息试卷模拟,迎接高考。

说明:统测全部内容的目的有二,一是各校可根据本校实际情况确定教学进度,不受统测进度的影响;二是有利于老师和学生准确了解高考,清楚把握难度,尽快适应高考。

二、复习策略

1、第一轮复习的基础性。第一轮复习是整个数学复习的基础工程,其主要任务是在老师的指导下,让学生自己对基础知识、基本技能进行梳理,使之达到系统化、结构化、完整化;在老师的组织下通过对基础题的系统训练和规范训练,使学生准确理解每一个概念,能从不同角度把握所学的每一个知识点,及知识点所有可能涉及到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习务必要做到细而实,统筹计划。切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的现象,只有真正实现低起点、小坡度、严要求,真正改变教师一包到底,实施学生自主学习,才能达到夯实“双基”的目的。

2、第一轮复习的全面性。第一轮复习必须面向全体学生。降低复习起点,在夯实“双基”的前提下,注重培养学生的能力,包括:空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。复习教学要充分考虑到课标的教学要求和本校、本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优生”放弃大部分“差生”的不良做法,不做或少做无效劳动,同时加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。

3、第一轮复习的针对性。、、xx年的江苏高考试题,xx年上海、广东、宁夏、海南的新课程试题,已经在暗示我们xx年江苏高考数学考什么、怎么考,提醒我们要在将基础问题学实学活的同时,重视数学思想方法的复习。数形结合、函数方程、等价化归、分类讨论等数学思想依然是新课程数学高考的重点、热点、难点,因此一定要把复习内容中反映出来的数学思想方法的教学体现在第一轮复习的全过程中,使学生真证领悟到如何灵活运用数学思想方法解题。必须让学生明白复习的最终目标是新题会解,而不能单单立足于陈题的熟练。

4、第一轮复习的科学性。要强化运算能力、表达能力和阅读理解能力的训练,复习时要有意识地提供给学生自主思考的时间和空间,安排时间让学生定期、定时、定量地进行完整的、规范的解题训练。对解题过程和书面表达提出明确具体的要求,在一开始就注重培养学生良好的解题习惯、考试习惯,从而提高解题的成功率和得分率。同时要加强处理信息与数据、和寻求设计合理。简捷的运算途径万面的训练,提高阅读理解的水平和运算技能。尽管命题组一再强调“多考一点想的,少考一点算的”,事实上许多学生仍然因运算量大而无法完成。因此对运算技能的培养必须重视和加强。另外,网上阅卷对解题规范、书写轻重、表述完整等的新的要求必须人人清楚。

5、第一轮复习的学习性。在认真研究、学xx年高考试题江苏卷以及全国卷、上海、广东、宁夏、海南的新课程卷,以及考试中心对各地xx年高考试题的评价报告的同时,针对新课程的《数学课程标准的教学要求》,进一步加强对数学解题教学的学习研究,提高自身教学水平。我们既反对题海战术,又提倡做一定数量的有代表性的基础题、综合题和应用题。只有通过做一定量的题,才能让学生牢固掌握基本题型的通性、通法,以及其中的数学思想方法,才能提高学生寻求最佳解法、解题反思、归纳总结的能力,才能探索解各类数学题的一般规律,积累解题经验,进而提升独立解题的能力。

6、第一轮复习的研究性。要进一步加强对知识复习课和试卷讲评课的研究。各校的集体备课要多重实效少重形式,教学案一体化要保证质量控制数量,严格责任制、把关制。每周要通过独立作业等形式安排一次课内质量检测,主要检查本周内复习教学情况,而不是与复习内容无关的综合检测。检测题的难度要适合本班中下等生的水平,面向全体学生,有利于提高每个学生学习数学的兴趣。检测要注意滚动发展,防止前学后忘,对于每次检测,要做到定时收,及时改,改必评,错必纠,充分发挥讲评课的有效功能。讲评时切忌不做任何分析的对答案,讲评要专题化。要重点突出,以点触面,举一反三。二要进一步加强对复习资料的研究。我们提倡认真选用好复习资料,坚持教师拥有多种资料,学生用一本资料。在实际教学中,教师可以根据学生的实际水平对多种资料进行有针对性的选择、改编和重组,使之更符合本校或本班学生的实际水平,从而达到提高复习的针对性和复习效率的目的。大力提倡各校使用教学案一体化,要求凡使用教学案一体化的学校务必实行严格的分工、研讨、审核制度,同时重视经过个人精加工的二次备课,以确保教学案的针对性、科学性和实用性,坚决反对使用仅由个人盲目拼凑的(只有分工,没有研讨、审核、二次备课)错误百出的教学案。凡是给学生训练的题,教师都必须至少亲自做一遍,只有这样才能真正做到对学生解题的有针对性的训练和指导。

7、第二轮复习的专题性。要强化综合训练,上好专题训练课。要突出如何运用数学思想万法分析、解决问题;要联系社会、生活实际设置一些新颖情景题,强化学生在阅读理解、审题、探索思路等万面的训练;要多证学生独立思考,充分重视审颧的科学性、运算的准确性、解题的规范性、表述的精确性、以及解题速度的提高等,坚决克服懂而不会,全而不对,对而不全,全而不快的现象。同时要注意心理疏导,确保在各种意想不到的情况下有――个良好的心态;注意应试技巧的训练,确保在最短的时间内以最优的.万法拿到所有可能拿到的分数,使学生在高考中,充分发挥自已的水平,取得理想的成绩。

8、第二轮复习的针对性。为了更好地提高学生的解题能力,适应新课程高考的新题型,二轮复习务必加强计划性。开什么样的专题,开那些专题;练什么样的模拟卷,练几份模拟卷,都必须在进行深入细致的调研的前提下科学的决策。另外,还需强调的是为了确保第三次统测时,一轮复习全部结束,各校的理科必须增加课时,加快进度,而文科必须控制进度,按计划复习。

三、复习建议

1、系统构建知识网络,准确把握教学要求。要按《数学课程标准和教学要求》理解掌握好每一个知识点,决不能顾此失彼,无端忽视自以为简单或不重要的知识点,直接导致应缺少某个必要的知识而失分;也不能无端的拓宽和加深,导致由于过多地无用功而影响教学成绩。

2、自始至终培养能力,夯实基础开拓视野。要不断提高学生的运算能力、空间想象能力、逻辑思维能力,以及运用知识解决实际问题的实践能力和创新意识。以不变应万变,而不应该以获得高考信息为借口,猜题、押题、盲目训练,导致学生对基本题型、通性通法的忽视。如阅读理解题、运算题、空间想象题、分类讨论题等。应按照新课程理念的要求,把学生推到问题的前沿。尽可能让他们主动的多角度的去分析、去探索、去发现、去研究、去创新,缺少反思的盲目训练绝不可能在高考中取得好成绩。

(1)对于处理问题的重要的数学思想方法,如函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等思想观点和方法,高考将通过具体问题,测试考生掌握的程度。

(2)对思维能力的考查要求,与试题的解答过程结合起来就是:能正确领会题意,明确解题的目标与方向,会采用适当的步骤,合乎逻辑地进行推理和演算,实现解题目标并加以正确表述。今年的试题之所以难,思维能力的要求高是一个重要原因。

(3)对运算能力的考查要求,数值计算、字符运算,以及各种式子的变换运算,都是重要的考查内容。应懂得恰当地应用估算、图算、近似计算和精确计算进行解题。今后的试题对运算能力和估算能力的要求会比较高。

(4)对空间想像能力的考查要求,强调的是对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想像出直观的形象;既会观察、分析各种几何要素(点、线、面、体)的相互位置关系,又能对图形进行变换分解和组合。为了增强和发展空间想像能力,必须强化空间观念,培养直觉思维的习惯,把抽象思维与形象思维结合起来。

3、加强教学模式研究,形成有效教学手段。个人认为,抓基础落实,应从以下三个方面入手,一是回归课本、教材,理清知识本原,构建知识网络;二是以课本习题为素材,深入浅出、举一反三地加以推敲、延伸和变形,形成典型例题,借助启发式讲解、自主式训练帮助学生融会贯通;三是精心选择习题,悉心设置问题,充分挖掘题目的内涵和外延,引导学生变题为类,便所选习题的功能得到最大发挥,同时着重抓好应变能力的培养和解题规范化训练。在第一轮复习中要对每一章数学基础知识,作几次系统的回顾与总结,对所学内容能按类别形成知识网络,清理考点,清理错解,清理题型,消理方法。每一单元选5个左右的典型问题进行评点与反思。专题复习课、试卷讲评课是高三数学复习课中的两种主要教学模式,如何改进两课教学模式,促进课堂教学效益的提高,是永远不变的话题。首先要加强集体备课,通过集体智慧的凝聚,实现优势互补、资源共享。在高中扩招、师资大量流失的今天,尤其显得必要,可以说xx年、xx年之所以能取得较好的成绩,其关键在于各校在这一点上做得实,希望继续保持和发扬;其次是在使用教学案一体化的同时,重视针对所带学生实际情况的个人备课,虽然所有学生都用同一张试卷考数学,但各种不同选课的学生学数学的基础和基本素质相差太大,使我们不得不准对学生的实际情况实施有效教学,因此个人备课马虎不得;最后要在教学过程中不断地、自觉地研究考情、学情、教材、大纲,针对学生的情况变化、教学设备的变化等,制定确实可行的教学方案,并随时进行修订、完善,细节决定成败,只有把握好教学的每――个环节,才能真正提高教学效益。我们强调:注重视知识梳理、网络构建的同时,不能忽视方法教学和能力培养,要求在复习重点知识时适时渗透数学思想方法,在专题复习时提炼数学思想方法,在综合训练是巩固和深化数学思想方法,用细水长流的方式将阅读理解能力和应用意识融入平常教学的每一环节,使通性通法的运用在数学思想方法的指导下变得更加灵活、自如,使学生能自觉地用数学眼光去观察、去分析生产、生活和其他学科的一些具体问题,真正实现创新意识和数学素养的提高。复习中务必注意选择习题,做题要重质量,不要贪多。要选择反映数学学科特点的题目,如存在性,唯一性,充要条件,不变量,参数问题,恒成立的立向题,轨迹问题等,要针对学生的薄弱环节设制习题,不做偏题,怪题,不要觉得学生做不好的题就一定要考,犯疑心病,要重思想、重方法,务必做到每题弄懂弄透。

4、认真研究高考试卷,准确把握高考导向。通过新课程理念的学习,实现教学观念和教学思想的真正转变,即变只懂书本内容、只会解题的单一型教学目标为重实践能力和创新精神的综合素质教育目标;变只重知识积累、只重学习结果的质量体系为反映学生全面素质的综合学习评价;变陈旧、落后、传统的教学手段为先进、快捷、激趣式的现代教育技术方式。通过各项工作的有序进行,实现教学目标和教学效果的真正统一,即教学内容的重难点和高考内容重难点的真正统一;知识点的难易度和高考难易度的真正统一;教学能力要求和高考能力要求的真正统一,争创高考成绩的再辉煌。创新意识和创造能力是理性思维的高层次表现。在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强。

5、加强新增内容研究,注意新的考查点。新课程在过去的基础上增加了“简易逻辑”、“平面向量”、“导数”、“概率统计”等内容。这些内容是切合时代需要和数学发展的。增加这些内容,是先进教育理念指导的结果。高考既是选拔性考试可也是对中学教育的一种评价,这些极富生命力的课程内容必须考查。新增内容的相关试题在试卷中起点提高,难度加大,并形成了以向量、导数、概率为纽带的新的知识网络交汇点。但是,对新内容的命题考查并不是一步到位,而是采取逐步递进、最终完善的方法,在20xx、xx年的高考命题中,新增内容的相关试题所占的分值占有较大份额。新增内容在高考中绝对不是数学知识的简单复制,而是趋向于能力的考查。因此要特别关注:

(1)导数与函数的结合。函数是高中数学的主干内容,导数作为新课程中160分的重要内容之一,为研究函数提供了有力的工具,便函数的钓单调性、极值、最值等问题都得到了有效而较为彻底的解决。因此,用导数方法研究函数问题是数学学习的必然,也是高考命题的方向。

(2)平面向量与解析几何的结合。平面向量与解析几何都涉及坐标表示和坐标运算,坐标法可以将二者有机结合起来,高考命题必然会抓住这一契机。

(4)概率统计与排列组合的结合。概率与统计是近代数学的重要分支,在现实中应用广泛,同时概率统计与排列组合又有着紧密的联系,将它们有机结合应该是新课程高考的热点和亮点,但我们注意到概率及计数原理均为40分的学习内容,160分中的概率是非常简单的,所以这一块的高考难度不会大。

6、高考求新求变求稳,训练速度规范质量。立足教材、重视基础、突出知识主干、不回避知识重点是历年高考命题的不变之策,20xx年如此,20xx年也不例外,传统题目还将占大多数,创新问题占少数,减少运算量,增大思维量,是新课程标准的既定目标要求。个人认为xx年题目的总体难易程度,应比20xx年易一点但也不会太易,填充题侧重于双基的考查,其中有一些小技巧,注意合情思维(猜想、真觉等)、数形结合、化归与分类等思想方法的应用,也将出现定量分析与定性分析型的问题;通过计算与分析推理解决的问题是定量分析问题,凭直觉进行观察分析解决的问题是定性分析问题,会出现开放题与小综合题,主要表现在多项选择、试验发现、归纳猜想等问题中。解答题的考查空间较宽广,不仅形式灵活多样,而且内涵极其深刻,既可在多个层次上考查基本知识、基本技能和基本思想方法,又能深入地考查数学能力和数学素质。在设问方式上,可能出现串连式小步设问模式,其间会有递推条件型的开放性题目与材料分析型的开放性题目;在知识点的考查上,要加强知识点之间的综合联系,包括横向的与纵向的联系,比如立几与函数、解几与函数、数列与函数、向量与解几、三角与向量、不等式与函数等知识网络间的联系;在综合能力的考查上,除继续注重数学观察能力、数学记忆力、数学语言的转换能力外,还要增强探索试验能力、归纳概括能力及非智力因素的考查。

在后期的复习中,首先可考虑选几套模拟卷,只审题,不做题。题目本身是“怎样解这道题”的信息源,题目中的信息往往通过语言文字,公式符号,以及它们之间的关系间接告诉你,所以审题一定要逐字逐句看清楚,力求从语法结构,逻辑关系,数学含义等方面真正看懂题意,弄清条件是什么(告诉你从何处入手)?结论是什么(告诉你向何方前进)?它们分别与哪些知识有联系?从自己已掌握的知识方法模块中提取与之相适应的解题方法,通过已建立的思维链,把知识方法输入大脑,并在大脑中进行整合,找到解题途径,并留心易错点,想出解案。只有细致的审题才能从题目本身获得尽可能多的信息,这一步,开始不要怕“慢”,这是训练思维敏捷性必经的一步。其次做5套左右的高考模拟题,最好做几套近两年中上海、山东、广东、宁夏、海南以及南通、南京等地区的高考仿真题,不在于能得多少分;而在于真实感受一下“新课程高考”的难度,熟悉一下解答题评卷规则,以改进自已的书面表述习惯,进而了解在哪些问题上是得分的强项,哪些是得分的弱项。另外,网上阅卷所反映的解题规范、字迹工整方面导致的失分仍应在平常的教学中给予足够的重视。

20xx年高考复习已经拉开帷幕,希望我们的设想和建议能给各校的复习带来一些帮助,在20xx年高考中有所收获,让我们大家共同努力,辛勤的汗水定能浇灌出丰硕的果实。预祝20xx年高考再创辉煌!

篇3:高三数学复习计划第一轮复习

高三数学复习计划

在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。这些材料你可以通过网络或者通过老师来获取。找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。对于这两部分材料的研究,最终目的是时即使丢开课本,头脑中也能有考试所要求的数学知识体系。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。

一轮复习的重点永远是基础。要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。

运算能力是学习数学的前提。因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。而运算能力并不是靠难题练出来的,而是大量简单题目的积累。其次,强大地运算能力可以弥补解题技巧上的不足。我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。

再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题,每道题都要反复想,反复结合考点琢磨,是一题多解,一题多变,借助典型题掌握方法。

高三数学基础差怎么补

第一层就是看书

它不是单纯的看书,而应该是了解之后的深入思考,甚至高三你可以撇开课本,仅仅靠思考和必要的演算来完成这一过程。

这就需要学习中对每个问题都能亲自思考、透彻理解。我通常习惯于在遇到新概念时,自己先分析、推导一下它的性质;

高三碰到定理、公式时自己先试着证明一下,这样再学习书本上的内容时,与自己所思考的有种比较,对知识的体会就更多些,理解也能更深一点。

比如说,这样做后就会比较清楚某个定理为什么会有这样的限制条件,在那些情况下适用等。

清楚了逻辑上的推理之后,还应回过头来从总体上考虑一下这些结论,考虑一下它们所描述的事实与其它数学知识间的依赖关系。

这样做也有助于从宏观上把握知识,对其主要观念有更深刻的领悟,最好是在一个部分的知识学完后,能花点时间整理一下这部分理论,理顺其主要知识点间的联系。

这不是简单的高三“复习”,而是确定这些东西成为你“自己”的知识。这一层次要求你做到对一些基本的公式推理做到熟记于心就可以了。

第二层就是能独立运用书中知识去解决大部分题目

当高三理解记忆的差不多,就可以做本小节对应的练习题了。

基础不好的同学一定要注重平时的作业,一般这些作业老师第二天都会认真评讲的,千万不要眼高手低对于作业不屑一顾。

时间紧迫的话老师可能会挑一些大家普遍不会的题来讲,

这个时候可能你其他题目也有问题但老师并没有讲,那你下课一定要找老师问,没什么不好意思,

高三一轮就是注重基础的,基础夯实不了,后面的复习会有很大的隐患,而且一般老师也会比较乐意为同学解答。

第三层也就是最高的一层

是用经典题目去反演书中的内容,高三这个时候,题就是课本,课本就是题,这也就是为什么课本这么重要的原因。

篇4:高三数学第一轮复习顺序

数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。需要系统的对知识点进行梳理,确保基本概念、公式等牢固掌握,面面俱到、不留盲点和死角,要扎扎实实,不要盲目攀高,欲速则不达。

二、把握知识体系,突出重点内容。

第一轮复习后,大家要能写出或说出章节的知识结构与知识体系,并掌握其重点内容。例如“函数”一章,从基本知识看主要有:函数的概念与运算,函数关系的建立,函数的基本性质,反函数,幂函数,指数函数与对数函数;从考试重点看还有一些必须掌握的扩充内容:求函数解析式,函数值域,求函数定义域,函数图像及变换,函数与不等式,函数思想的应用等。由于函数在高考的重要地位,函数知识与函数思想,同学们需下大力气掌握。

一轮复习一定要有面的兼顾,即使是小的知识点,也不能忽视,当然复习中也需有质的深度,对课本上的定义要善于深挖与联想,抓住各个分支的数学本质,例如利用代数方法解决几何问题,用函数观点来研究数列问题。重点知识点第一轮复习时一定要重视,一些典型题型上海高考常考常新。

三、提高课堂听课效率,多动脑,注重各种能力的提高

接受、记忆、模仿和练习是我们学习数学的重要方式之一,但是不应只限于此,我们还应独立思考,自主探索,阅读自学,独立思考是我们真正掌握所学知识的基础。

每年高考的填空选择解答压轴题都是创新题,能力题,这类试题不拘一格,突出探索、发现和创造。对于想考出高分的我们来说,不仅要吃透课本中的知识点,专题训练,平时做题还要进行灵活变换,多想想有没有其他方法,在分析问题、解决问题的能力上要提高。此外还要特别注意老师讲课中的分析与提示。

菁英听课必备:做好笔记,笔记不是记录而是将听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。解答过程可以留在课后去完成,笔记的地方留点空余的地方,以备自已的感悟。

四、复习要及时,高效,多次,长期坚持

1、做好每一天的复习。上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,若碰到有些题没有思路的还需再仔细做一遍。

2、做好阶段复习。学习一个章节后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善。

五、以“错”纠错,查漏补缺

这里说的“错”,是指把平时做作业中的错误收集起来。高三一轮复习,各类题要做很多。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。每次订正试卷或作业时,在做错的试题旁边要写明做错的原因,大致可分为以下几类:1、题目看错;2、计算错误;3、概念错误;4、没有找到适合的方法;5、知识点之间的迁移和综合有问题;6、情景设计看不懂;7、不熟练,时间不够;8、完全没有入手的点。

六、选对题目练习

首先要挑典型题目做,数学能力的提高是离不开做题的。复习之初,因为要熟练透彻掌握知识点,我们练习的题目量是需要有很多的,但千万不要陷入题海战术,这个时候我们要挑一些典型题目做,会的题目就不用再去浪费时间了,如果碰到不会的题目,一定要深入思考,彻底弄懂。比如向量题,这几年上海高考一直持续涉及这个知识点,难度不小,我们如果能够掌握基本方法的话,其实这些题目真的不难。

精选模拟试题进行模拟训练,例如各区一模二模卷等。之所以选择这些模拟试题,其一是为了熟悉各类题型和考点,其二是为了提高自己的应试能力、速度及效率。

精做历年高考真题。历年的高考真题具有很强的代表性,有些知识点长考不衰,滚动着考。有余力的话再去尝试热点问题:例如应用性问题,探索性问题,创新型问题等。

七、加强运算能力培养。

对于习题,不光要会做,而且要一次就算对。不少同学和家长对计算不准很是困惑,事实上,造成计算出错的原因,首先是在思想意识上,很多学生都错误地认为计算出错是粗心大意所致,有的同学认为只要细心,就能解决问题,但事与愿违。有的同学认为粗心是先天的,无法克服。这些错误认识,成为加强训练,提高运算能力的思想障碍。

因此,首先要从思想上提高认识,运算的准确是数学能力高低的重要标志,平时就要有意识地多下工夫,经过反复训练才能提高水平;运算的准确要依靠运算方法的合理与简捷,需要有效的检验手段(如数形结合,合理估值等),要养成思维严谨,步骤完整的解题习惯,要形成不止会求,而且求对、求好的解题标准,只有全方位的“综合治理”,才能在坚实的基础上形成运算能力。

八、养成良好的解题习惯

如仔细阅读题目,看清数字,规范解题格式,部分同学(尤其是脑子比较好的同学)自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。

“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则后患无穷!!!可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。

篇5:高三数学第一轮复习教学计划

高三数学第一轮复习教学计划

一、指导思想:

根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。

二、复习进度:

结合本校实际,第一轮复习从8月1日开始,在3月初或中旬结束。复习资料以学校下发材料为主,难题删去。

三、复习措施:

(1)首先要加强集体研究,认真备课。集体备课要做到:一结合两发挥。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。

(2)其次精选习题,注重综合 。复习中要选题型小、方法巧、运用活、覆盖宽的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。

(3)再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的.分析问题和解决问题的能力上

(4) 每章(每周)进行一次单元(150分)过关考试或一次100分答卷。

(5)通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。

(6)数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结(改错) 。反思总结(改错)解题过程的来龙去脉;反思总结(改错)此题和哪些题类似或有联系及解决这类问题有何规律可循;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。

(7)注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。

篇6:高三数学第一轮复习要点

第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

篇7:怎样进行高三数学第一轮复习

怎样进行高三数学第一轮复习

怎样进行高三数学第一轮复习

辽宁省大洼县第三高级中学 李 智

【摘 要】随着高中新课程的实施,课堂教学必须有实质性地变革,在新课程理念下怎样进行短时,高效的高三第一轮复习教学,是摆在我们面前的一个重要课题,我就这一课题进行了如下思考和探索。

【关键词】高三;数学;复习

一、构建知识网络,注重基础

数学的基础知识理解与掌握,基本的数学解题思路分析与数学方法的运用,是第一轮复习的重中之重。对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。要扎扎实实,对每个知识点都要理解透彻,明确它们高考要求以及与其他知识之间的联系。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径,要做到“两先两后”,即先预习后听课,先复习后作业。以提高听课的主动性,减少听课的盲目性。而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。

了解各部分内容在高中所占的分值、地位和难易程度,有着对性的复习、梳理重点内容,突破自己的薄弱环节,力求从宏观上把握高中数学的知识体系,建立自己的解题方法体系和思维体系。

二、熟练掌握解题方法

高考试题中主要从以下几个方面对数学思想进行考察:

(1)常用的数学方法:配方法、消元法、换元法、待定系数法、降次、数学归纳法、坐标法、参数法等。

(2)数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等。

(3)数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等。

(4)重要的思想:主要有函数和方程、数形结合思想、分类讨论思想、转化(化归)思想等。

解题速度是建立在解题准确度的基础上,更何况数学题中的数据常常不但从数量上,而且从性质上影响着后面的解答步骤。所以在要求快的基础上,稳扎稳打,层层有据,步步准确,不能为速度而丢掉准确度,甚至丢掉重要的得分步骤。

只有扎扎实实的掌握了基础知识,反反复复地练习过程中,才能逐步掌握这些思想方法,才能形成自己的能力。

三、培养良好的学习习惯

良好的学习方法是长期系统、积累的的过程,只有不断的接受新知识,不断的产生疑问,不断的总结,才能不断的提高。学生应与老师和同学平时多交流,才能逐渐总结出一般性的学习规律,包括:制定计划、课前预习、专心上课、及时复习、独立作业、解决疑难几个方面,面一个方面都具有针对性、目的性,都要落实到位。

认真听讲是很重要的,把老师讲的关键部分听懂,而且重点听老师对问题的分析过程,听的.时候注重思考,分析问题,领会老师课上的意图和精神。在课上和课外应注意培养写作业的习惯,作业不仅要写得工整,还要写的有条理,这样才能培养逻辑能力。同时作业必须独立完成,培养一种独立思考的好习惯。

通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要特别注意老师讲课中的提示。作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。例习题的解答过程留在课后去完成,每记的地方留点空余的地方,以备自已的感悟。

四、精选练习题

首先教师要认真选好复习材料,应用多种资料,并认真研究历年的考纲以及各年的高考试题和其他省市的试卷,进一步加强对数学解题教学的研究,提高自身教学水平。在实际教学中,教师应根据学生的实际水平对多种资料进行有针对性的选择、改编和重组,使之更符合本校或本班学生的实际水平。把握好题目的难度,增强题目针对性,所选题目以小题、中档题为主,且突出知识重点,体现思想方法,兼顾学生易错的地方。其次,教师要减少题目数量,加强质量。题目数量过大,没有思考和消化的时间,学生容易疲惫生厌。所以应删减偏题、难题和怪题,尽量减少解题技巧单一的和计算过于复杂的题目。我们既反对题海战术,又提倡做一定数量有代表性的基础题、综合题和应用题。学生只有通过做一定量的题,才能牢固掌握基本题型的通法、通性,以及其中的数学思想方法。在解数学题是,应提高学生寻求最佳解法、解题反思、归纳总结的能力,探索解各类数学题的一般规律,积累解题经验,提高学生独立解题能力。

五、双向交流,及时反馈

复习过程是一个动态过程,加强师生双向交流,及时多渠道采集反馈信息以调控教学,是优化教学过程的关键。我们的措施是应采取过程检查(课堂、作业)和阶段检查(月考、期中、期末、诊断、模拟)相结合,过程调控和考试调控相结合的手段。定期组织评教、评学活动,学生谈要求、谈建议,教师谈措施、谈意图,及时反馈和调控,师生同心同德,从而能在教学中得到同步提高,使教学过程不断优化。

在一轮复习中,教师要重点抓好规范指导,不但在课堂上要以身示范,强调重点过程的书写,而且还要对平日里学生的理解过程给以点评,督促学生将自己的解题思维更加清晰地体现出来。

总之,高三的第一轮复习非常重要,所以通过这一轮复习我们力争达到:基础知识要扎实,基本方法要熟练,基本技巧要掌握,基本思想要领会。既要注意构建巩固每个知识板快及他们的联系,同时也应该处理好“本”与“源”的联系,对例题、习题的安排应源于课本但要高于课本,由点串线,由线带面,形成知识网络结构。在复习中应紧密把基本知识和现实生活,特别是将理论知识和生活实际结合起来加以运用,常用常新,提高复习的效率和知识的运用能力。

【参考文献】

[1]张锁定。《考试周刊》。2009年第38期

[2]殷宪解。《陕西教育(高教版)》。2008年第01期

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。