“猪小怪”通过精心收集,向本站投稿了12篇不等式的性质教学反思,以下文章小编为您整理后的不等式的性质教学反思,供大家阅读。

篇1:不等式性质教学反思
不等式的性质是不等式变形的依据,也是探索解不等式方法的基础,学生掌握好本节内容是学好本章内容的关键;本节课的内容蕴含着丰富的数学思想,是培养学生类比、化归、数形结合等数学思想的良好素材。学生经历不等式性质的探索过程,体现了学生的主体性地位,充分发挥了学生学习的主动性,对学生掌握不等式的性质打下了基础;会解简单的一元一次不等式,并能在数轴上表示出解集,体会化归思想和数形结合思想;通过类比等式的性质,降低了学生学习不等式性质的难度,也为学生理解不等式的性质提供条件,初步培养类比和数形结合的思想方法。在不等式性质的探究过程中使学生经历类比、猜想、观察、归纳、比较的探究过程和启发式教学方式;利用多媒体,增强了不等式的对比的视觉效果,激发了学生的学习兴趣,帮助学生形象直观的发现规律,辅助对教学重点的突出。
本节课的开始并没有直接提问什么叫不等式,什么叫不等式的解集,而是让学生自己说出一些简单的不等式及其解集;在不等式性质教学过程中也是通过学生自主探究归纳总结出性质,改变了以教室为中心的思想观念。在“试一试”这一环节也没有先直接给出完整的解法而是让一个学生板演后发现问题才纠正补充完整。总的来说,这节课进行的还比较顺利,但是在学生探究不等式性质时,仅仅观察了给出的几个例子,而没有让学生再用其他的不等式或换其他的数加以验证,给学生留的空间太小,致使学生在对不等式的性质的认可、理解、记忆上出现了问题,以至于在做练习时不能准确熟练的'说出是运用了什么性质,再者板书可能有些简单。今后要扬长避短,不断转变观念,改进教学。
篇2:不等式性质教学反思
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过智力比拼引入课题。激发学生的学习兴趣以及积极性。通过简单的问题引导学生通过探究得出不等式的性质1。然后通过比较简单的不等式的变化,探究出不等式的性质2和3。在这一环节上,留给学生思考的时间有点少。
接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。同时使学生体会数学中的分类讨论思想。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题。比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。但是怕学生接受不了高难度的题目,因此在设计教案时经过反复思考,终究没有选择类似的题目。终究是不放心学生。我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
篇3:不等式性质教学反思
关于《不等式的性质》一节的教学,我在集备组的多次建议修改下,把不等式的概念、不等式的性质、运用不等式性质解简单不等式这三个内容整合到本节课;基本思路是:用比较数的大小引进不等式的概念;利用表格对不等式两边进行运算来探索不等式的性质并展开小组讨论加深对不等式性质3的认识;运用不等式的性质把不等式转化为的形式。本节课用的是平行班,强调的是实用性。从新课到练习都充分调动了学生的思考能力。小组讨论又锻炼了学生的创造性和合作性;为后续学习解一元一次不等式打下了一定的基础。自己在这节公开课吸取的经验是:
1、充分准备是保证。从怎么引入怎么引导学生填写表格及探索性质都进行充分的准备,写了份大概的讲话稿,在脑海里反复演练,以帮助克服紧张情绪。
2、专业术语阐述不够清楚,需要加强。部分学生会对数量关系中的“不大于”、“是负数”、“是非负数”等数学术语理解不清,我只是从字面上给予解释,并没有对学生为什么出错进行深究,导致学生在复习回顾环节出错又在新课后的巩固练习出错。
3、对性质3这个难度的教学不够。学生以小组讨论的形式展开了对性质3的探索,但由于对设计意图没有说清楚,导致有几个小组在不等式两边乘了不同的两个数来进行比较;对于不等式两边同时除以同一个负数的教学完全回避了(我以为除法都可以化作乘法来做,所以讲乘法就够了),结果学生在遇到化作之类的题目都卡住了。
4、用式子表示不等式的三条性质一笔带过,备课还需要加强。我备课时认为这个知识点不重要,但后来听教研员说这里才是展示教学个性的地方,并且可以训练学生的数学符号语言能力。
5、注意学生的反应。这个班平常回答问题等都比较积极。但这次他们也是第一次经历,学生也显得紧张,我没能缓解他们的紧张情绪,课堂气氛调动不出来。本节课是第九章的第一节课,内容安排的有点多,对于中下学生的学习是不利的,但我没有在课堂及时的调整。准备在后续的课当中再反复训练,循环提高。公开课是对我的锻炼,不仅仅是教学能力,更是心理素质的锻炼。
总的来说,本节课勉强完成了教学任务,我要进一步学习的还很多很多,我会多多向前辈老师学习。
篇4:不等式性质教学反思
数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如跷跷板问题、上学迟到等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。
本节的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本节的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。
不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于不等式是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过与生活贴近的具体例子渗透量与量之间内在联系,帮助学生从整体上认识不等式,感受不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。
篇5:不等式性质教学反思
一、教学过程中的成功之处
1、类比法讲解让学生更易把握
类比一元一次方程的解法来学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后未知数的系数化为1不同,其它的步骤都是相同的,还特别能强调最后一步“负变,正不变”。
2、少讲多练起效果
减少了教师的活动量,给学生足够的活动时间去探讨。教师只作出适当的引导,做到少讲,少板书,让学生有足够的时间和空间进行自主探究,自主发展,促使学生学会学习。
3、数形结合更形象
通过画数轴,并把不等式的解集用数轴表示出来体现了“数形结合”的数学思想。
二、不足和遗憾之处
1、内容过多导致学生灵活应用时间少
一堂40分钟的课要容纳不等式三条性质的探索与应用,显然在时间上是十分仓促的。实践也表明确实如此,在探索好三条性质后,时间所剩无几,只能简单的应用所学知识解决一些较为简单的问题,学生灵活运用知识的能力没有很好地体现出来。
2、教学过程中的小毛病还需改正
在上课的过程中,许多平时忽视的小毛病在课中也都体现出来了,例如:学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;要求学生进行操作实验时,老师所下达的指令不是特别清楚,时常在学生进行操作的过程中再加以补充说明,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好,由此可见,这是平时上课过程中的忽视所导致的。
篇6:《不等式的性质》教学反思
《不等式的性质》教学反思
一、教学过程中的成功之处
1、类比法讲解让学生更易把握
类比一元一次方程的解法来学习一元一次不等式的解法,让学生非常清楚地看到不等式的解法与方程的解法只是最后未知数的系数化为1不同,其它的步骤都是相同的,还特别能强调最后一步“负变,正不变”。
2、少讲多练起效果
减少了教师的活动量,给学生足够的活动时间去探讨。教师只作出适当的引导,做到少讲,少板书,让学生有足够的时间和空间进行自主探究,自主发展,促使学生学会学习。
3、数形结合更形象
通过画数轴,并把不等式的解集用数轴表示出来体现了“数形结合”的数学思想。
二、不足和遗憾之处
1、内容过多导致学生灵活应用时间少
一堂40分钟的课要容纳不等式三条性质的探索与应用,显然在时间上是十分仓促的。实践也表明确实如此,在探索好三条性质后,时间所剩无几,只能简单的应用所学知识解决一些较为简单的问题,学生灵活运用知识的能力没有很好地体现出来。
2、教学过程中的小毛病还需改正
在上课的过程中,许多平时忽视的小毛病在课中也都体现出来了,例如:学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的.回答,剥夺了学生的主动权;要求学生进行操作实验时,老师所下达的指令不是特别清楚,时常在学生进行操作的过程中再加以补充说明,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好,由此可见,这是平时上课过程中的忽视所导致的。
篇7:不等式的性质教学反思
不等式的性质教学反思
(1)本节课我采用类比等式性质的方法引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,鼓励学生大胆积极参与,使学生在自主探究和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程中充满师生交流、生生交流以及互动。
(2)我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
篇8:不等式的性质教学反思
不等式的性质教学反思
教前设想
这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。
这节课的内容不是很多,重点是让学生理解并掌握不等式的性质并用不等式的性质解一元一次不等式。对于不等式的性质,不是很难懂,这里完全可以放手给学生自己探索,自己总结,从特殊到一般,所以安排了三个思考题让学生分别总结出不等式的性质。利用不等式的性质解不等式可以参考利用等式的性质解一元一次方程的思想,要将不等式最后化成x>a或x
教中情况
这整节课上下来学生学的'比较轻松。一节课中,学生课堂的效率比较高,学生学习的效果比较好。
教后反馈
通过对学生课后作业的情况的批改情况以及听课老师的意见,觉得这节课还有一些不足,表现为:
1、这节利用探索稿教学,学生自我学习,这要求学生的素质比较高。在学生要独立完成思考和总结这个环节可以让学生一活动小组的形式进行,活跃课堂的次序。
2、在学生总结不等式的性质的探索过程中,让学生直接从数字总结出不等式的性质比较困难,可以从数字到字母的过程中加入比较简单的数字和字母之间的加减乘除的题目,这样从特殊到一般的过度就比较顺理成章。
3、探索稿怎么去利用?其实一般探索稿可以在上新课的前一天发给学生,让学生利用课余时间预习,这样可以节约很多课堂的时间,然后在课堂上对答案,教师简单的讲解,处理疑问,但这要求学生的的层次比较高,教师在课前做好大量的准备工作。这节课由于内容比较简单,可以在课堂上处理,但由于内容比较多,整个课程比价经凑。
4、在批改学生的作业时发现,学生在不等式的两边同时乘或除同一个负数时,没有把不等号改变,虽然课堂上教师也做了特别的强调,这里还需要改进。
5、在讲解不等式的性质1和性质2中,借用了天平讲解,不高效果不是很好,学生理解不是很好,可以考虑去掉这个环节。
6、其实在学生在黑板上板演后可以让学生来讲解。
7、在这节课的后面讲例题的过程中可以多让学生见几种题型,可以多找一点最近几年的与不等式性质相关的题目。
其实,在教学的过程中,我们教师往往重视教的过程,而往往忽视了学生学的过程,如过我们能够多让学生动手,动脑,多总结,掌握一个好的学习方法,这比我们教任何知识点都要重要。
篇9:不等式的性质教学反思
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质的方法,引导学生自主探究,教给学生类比,猜想,验证的问题研究方法,培养学生善于观察、善于思考的学习习惯。
活动一、通过回顾旧知识,抓住新知识的切入点进入数学课堂,也为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。
让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
让学生通过构图反思,进一步引导学生反思自己的学习方式,培养他们归纳,总结的习惯,让学生自主构建知识体系,激起学生感受成功的喜悦。
活动三、通过两个题帮助学生应用提升,第一题以判断得形式让学生体验不等式性质的简单应用,第二题是利用性质化简不等式成“x>a”或“x
整节课在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
篇10:《不等式的性质二》教学反思
《不等式的性质二》教学反思
课前复习提问时,给学生的复习思考时间太短,开始问了几个学生不等式的三个基本性质,有的答不出来,有的答对一点但不完整。在很多学生没有作好充分准备时问到这个问题有点慌乱,我觉得更好的办法是先让学生看一下书复习一下不等式的三个基本性质,然后合起书再叫同学来说效果会更好。
例2学生对实际问题中的字母取值范围考虑不全,在讲解这个问题时带有点填压式,告诉学生字母的取值要大于或等于0,讲过之后可能学生印象还是不深。我觉得应先举一些实际生活中常见的例子,比如在数人的个数时字母应取什么值等,多列举一些例子让学生感性上认识,从而引导学生思考例2的字母的.取值范围。
例3学生根据三边关系往往只列出一个不等式,在教学时我先采取了提问的方式,给出了三个问题,引出三个不等式,然后让学生移项变形,又得出三个不等式,对总结三角形任意两边之差小于第三边做了辅垫。教学效果较好。
学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;比如学生在总结不等式性质3时,总怕他们出错所以老师急于公布结论。有时在学生思考问题时做一些补充打断学生的思路,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好。
篇11:不等式教学反思
这堂课我讲的是,《数学证明、综合法与分析法》的第2节,综合法、分析法教学。这是第一次公开教学,课前做了详细的备课,所以上课还是充满信心、精神愉快的。这堂课在设计上我突出了几个方面。
第一,为了使学生更好的掌握数学方法-综合法、分析法,在教学上我首先给出了基本不等式,让学生更准确的理解数学证明的重要性,理解数学证明的本质。
第二,对于基本不等式学生是比较熟悉的,这个证明过程我先是留给学生,让学生思考证明过程并可以与同学们交流,最后让每个学生都写出这个证明过程。个别学生上黑板完成。
第三,对基本不等式的证明在这里许多学生用的就是综合法,老师及时给与补充说明,由此给出综合法的定义
第四,对例题的安排我采用课本上的例题,共三道,主要是引导学生在每个例题里先找基本型再解题,并且在每道例题的后面都加入了一个思考,引导学生在解题过程中总结规律和方法,()做到讲一道例题就让他们会做这一类型的题。
第五,关于分析法的教学我采用另一种处理办法,就是先给出例题,研究、探究证明的思路,寻找分析法证明数学问题的实质,这个可由师生共同完成。最后让学生练习,巩固本节课的内容。
第六,综合法与分析法教学是这堂课的重点。在教学中引导学生思考、学会做题、能独立的完成数学问题的证明、有利于学生解题是这节课的难点。让学生自主思考,交流、讨论完成数学问题的证明,并且通过思考总结出方法,逐步形成解题经验是教学的主要任务。
从课堂练习和作业反馈上看,这堂课还是比较成功的,但是我认为在课堂组织上我还需加强,通过这堂课让我学会了很多,也提升了许多,以后的路还很长。
篇12:不等式教学反思
数学重要的是培养学生思维。促进学生思维发展是数学课堂教学的灵魂,我在教学“ 一元一次不等式组” 的过程中,有意识地以学生思维发展为主线展开教学,在学习知识的同时发展了学生的思维。下面就如何发展学生的思维谈谈自己的一些看法:
一、过程比结果更重要。
暴露思维过程是发展学生思维的有效手段,教学活动中,师生双方都必须充分暴露思维过程。教师要经常把自己置于困境中,然后再现从困境中走出来的过程,让学生看到教师的思维过程。学生自己动脑、动手,在尝试、探索的过程中,鼓励学生发表自己的看法,充分暴露学生的思维,通过交流,从而找到解决问题的方法。我们要在暴露学生思维的过程中,评价学生的思路,改善学生的思维品质,着重培养思维的敏捷和灵活,使他们在分析中学会思考,需要把面对的问题通过转化、分析、综合、假设、对比等方法求得简捷,在运用中变得灵活,在疏漏后学会缜密。
二、抓住知识间的内在联系。
系统性、逻辑性是数学的主要特征之一,数学本身的知识间内在联系是很紧密的,各部分知识都不是孤立的,而是一个结构严密的整体。数学教学主要是思维活动的教学,只有根据学生的认知特点,引导学生按照思维过程的规律进行思维活动,才能提高学生的思维能力。为此,教学应从较好的知识结构出发,把教学的重点放在引导学生分析数量关系上,依据知识之间的逻辑关系和迁移条件,引导学生抓住旧知识与新知识的连接点,抓住知识的生长点,抓住逻辑推理的新起点。这样就自然地把新的知识与已有的知识科学地联系起来。新的知识一经建立,便会纳入到学生原有的认知结构中去,建成新的知识系统。
教育学家说过“ 教会学生思考,对学生来说,是一生中最有价值的本钱。” 那么促进学生数学思维的发展就应该是我们日常教学永恒不变的追求。












