“brdxd1”通过精心收集,向本站投稿了12篇初中数学《方程的近似解》的教案,以下是小编帮大家整理后的初中数学《方程的近似解》的教案,欢迎大家分享。

初中数学《方程的近似解》的教案

篇1:初中数学《方程的近似解》的教案

初中数学《方程的近似解》的教案

教学目的知识技能 观察估计方程解的大致范围,用试值的方法,得到方程的近似解.

数学思考建立初步的数感和符号感,发展抽象思维

解决问题综合运用所学到的知识和技能解决问题,发展应用意识

情感态度培养学生对数学的好奇心和求知欲

教学难点通过观察估计方程解的大致范围

知识重点用试值的方法得到方程的近似解

教学过程

问题一:

小明的爸爸投资购买某种债券,第一年初购买了1万元,第二年初有购买了2万元,到第二年底本利和为3.35万元.设这种债券的年利润率不变,你能估计出年利润率的近似值吗?

师生活动:共同审题,设未知数,建立方程

设年利润率为r,

一起探究

根据题目的实际意义,总投入3万元,而本利和为3.35万元,所以r>0.

年利润r可能超过0.1吗?可能比0.06小吗?

方程的左边可化为

当r=0.1时,方程的左边=1.13.1 =3.41>3.35

0< r <0.1

当r=0.06时,方程的左边=1.063. 06=3.3.2436 <3.35

0.06< r <0.1

课堂练习

一架长为10m的梯子斜靠在墙上,梯子的顶端A除到地面的距离为8m.如果梯子的顶端沿墙面下滑1m,那么梯子的`底端在地面上滑动的距离也是1m吗?请列出方程,并估计方程解的大致范围(误差不超过0.1m).

问题二:估计方程 x3-9=0 的解.

解:将方程化成 x3=9

由于23=8<9,33=27>9

通过试值,得到方程的解在2和3之间,并且接近2.

取x=2.1进行试值,2.13=9.261>9

2< x <2.1

再取x=2.08, x=2.09继续试值,

2.08< x <2.09

在实践探索交流中解决问题,逐步领悟解决问题的正确方法,克服畏难情绪。同时调动学生的思维积极性,提高动手能力和活用数学的意识.

通过观察,估计方程解的范围.

用试值的方法得到方程的近似解

通过估计方程的近似解,解决实际问题.

对高次方程进行估算,求其近似解.

小结与作业

课堂小结 学生讨论总结,本节课的所得和估算要点

本课作业 课本第48页习题1、2、3

课后随笔(课堂设计理念,实际教学效果及改进设想)

篇2:初中七年级上册数学《解一元一次方程》教案优质

教材分析:

《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:

《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

作业布置、反馈情况。

教学目标:

1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教学难点:分析实际问题中的相等关系,列出方程。

教学方法:先学后教,当堂训练。

教学准备:多媒体课件等。

预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

教学过程:

一、准备阶段:

1、知识回顾:

(1)、用合并同类项的方法解一元一次方程的步骤是什么?

(2)、解下列方程:

① -3·-2·=10 ②

2、创设问题情境,导入新课。

问题:

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

如何解决这个问题呢?

二、导学阶段:

(一)、出示本节课的学习目标:

1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

(二)、合作交流,探究新知

1、分析解决课前提出的问题。

问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

分析: 设这个班有·名学生.

每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

每人分4本,需要______本,减去缺的25本,这批书共____________本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

这批书的总数是一个定值,表示它的两个式子应相等,

即表示同一个量的两个不同的式子相等.

根据这一相等关系列得方程:

方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

方法过程:

2、总结移项的概念。

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

3、思考:上面解方程中“移项”起到了什么作用?

4、例题学习

运用移项的方法解下列方程:

三、课堂练习:

运用移项的方法解下列方程:

四、课堂小结:

本节课,我们学习了哪些知识?你还有哪些困惑?

五、达标测试:

运用移项的方法解下列方程:(25′×4=100′)

六、预习作业:

1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

2、课后作业:(1)

篇3:初中七年级上册数学《解一元一次方程》教案优质

一、教材分析:

1、教材所处的地位和作用:

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础.教科书将本节内容安排在第一节,一方面是对小学学段已经学过的有关算术方法解题和简单方程的运用的进一步发展,另一方面考虑引入一元一次方程后,可以尽早渗透模型化的思想,使学生尽早接触利用一元一次方程解决实际问题的方法.

《课程标准》对本课时的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程.让学生在归纳和总结的过程中,初步建立数学模型思想,训练学生主动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验.

2、教学目标:

根据课标的要求和本节内容的特点,我从知识技能、数学思考、情感价值观三个方面确定本节课的目标:

知识技能目标

①通过对实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.

②在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.

③使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

数学思考目标

用字母表示未知数,找出相等关系,将实际问题抽象为数学问题,通过列方程解决.

情感价值目标:

让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情.

3、重点、难点:

结合以上目标,我在认真研究教材的基础上,立足学生发展的宗旨,确定了本节课的教学重难点.

教学重点:知道什么是方程、一元一次方程,找相等关系列方程.

教学难点:思维习惯的转变,分析数量关系,找相等关系。

二、教学策略:

如何突出重点,突破难点,从而达到教学目标的实现呢?在教学过程我运用了如下教法与手段:

1.生活引路,感知概念背景;

2.比较方法,明确意义;

3.感受过程,形成核心概念;

4.运用新知,巩固方法;

5.归纳总结,巩固发展.

本节课利用多媒体教学平台,从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型.采用教师引导,学生自主探索、观察、归纳的教学方式。

三、学情分析:

根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法.通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力.

四、教学过程:

本节课的教学过程我设计了以下六个环节:

(一) 情景引入

采用教材中的情景

在这个环节中我提出了三个问题:

问题1:从上图中你能获得哪些信息?

问题2:你会用算术方法求吗?

问题3:你会用方程的方法解决这个问题吗?

(二)学习新知

在这个环节中,我首先提出一个问题:“如果设中山市到深圳市的路程为·千米,怎样用式子表示中山市与东莞市的距离以及中山市与惠州市的距离?”,这样,学生就会主动结合图形,根据在《整式的加减》中学到的知识解决问题.

通过上述思考过程,学生已经初步了解到寻找已知量与未知量之间存在的相等关系是利用方程解决实际问题的关键所在.

然后我结合上面的过程简单归纳列方程解决实际问题的步骤并给出方程的概念.

解决实际问题的步骤:(1)用字母表示问题中的未知数;(2)根据问题中的相等关系,列出方程.(17世纪的法国数学家迪卡尔最早使用·,y,z等字母表示未知数,而我国古代则用“天元、地元、人元、物元”等表示未知数,而且要比西方早1000多年,这说明我们中华民族是一个充满智慧和才干的伟大民族.)

在这里我介绍了字母表示未知数的文化背景,其目的就是在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力,这正是培养学生情感价值观的体现.

方程的概念:含有未知数的等式叫方程.小学里已经给出了方程的概念,这里可适当处理.

在这里我开始向学生渗透列方程解决实际问题的思考程序.

(三)讨论交流

讨论1:比较列算式和列方程两种方法的特点.

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

通过讨论,学生体会到了:用算术方法解题时,列出的算式只能用已知数,而列方程时,方程中既含有已知数,又含有用字母表示的未知数,这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.

而且随着学习的深入,学生会逐步体会到从算式到方程是数学的进步。

紧接着的思考让全班学生参与学习的过程,从而进一步地拓宽了学生的思维.

讨论2:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

在这个讨论活动中,我采取了先小组合作交流后全班交流.

通过交流后,学生中出现如下结果:

从学生的分析所得,这两种设未知数的方法就是在以后学习中将遇到的直接设元和间接设元两种设元.

要求出路程,只要解出方程中的·即可,我们在以后几节课中再来学习.

在这个环节里,问题的开放有利于培养学生的发散思维。这样安排的目的是使所有的学生都有独立思考的时间和合作交流的时间。

(四)初步应用

学生在小学已经学过简易方程,通过以下的例题和练习可以回顾已经学过的知识,并为一元一次方程提供素材。

1、例题:根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?

2、课堂练习:这一组例题和课堂练习的设置,其目的是让学生更进一步加强列方程解决实际问题的能力。

(五)再探新知

提取例题和练习中出现的方程请学生观察方程它们有什么共同的特点?然后达成共识:只含有一个未知数;未知数的次数是1.

在这个环节中,我引导学生观察方程特点,给出一元一次方程的概念

教师总结:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程.

思考:下列式子中,哪些是一元一次方程?通过思考辨析,使学生巩固一元一次方程的概念,把握住概念的本质.

(六)课堂小结

让学生先归纳,然后教师补充方式进行,主要围绕以下问题:

本节课学习了哪些主要内容?一元一次方程的三个特征是什么?从实际问题中列出方程的步骤及关键是什么?

五、课堂设计理念

本节课着力体现以下几个方面:

1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。

2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。

3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。

4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

篇4:初中七年级上册数学《解一元一次方程》教案优质

【第一部分】知识点分布

1、一元一次方程的解(重点)

2、一元一次方程的应用(难点)

3、求解一元一次方程及其在实际问题中的应用(考点)

【第二部分】关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

【第一部分】知识点分布

1、一元一次方程的解(重点)

2、一元一次方程的应用(难点)

3、求解一元一次方程及其在实际问题中的应用(考点)

【第二部分】关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

篇5:初中七年级上册数学《解一元一次方程》教案优质

一、教学目标

(一).知识与技能

会利用合并同类项解一元一次方程.

(二).过程与方法

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观

开展探究性学习,发展学习能力.

二、重、难点与关键

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(二).难点:会列一元一次方程解决实际问题.

(三).关键:抓住实际问题中的数量关系建立方程模型.

初中数学《方程的近似解》的教案三、教学过程

(一)、复习提问

1.叙述等式的两条性质.

2.解方程:4(·- )=2.

解法1:根据等式性质2,两边同除以4,得:

·- =

两边都加 ,得·= .

解法2:利用乘法分配律,去掉括号,得:

4·- =2

两边同加 ,得4·=

两边同除以4,得·= .

(二)、新授

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

分析:设前年这个学校购买了·台计算机,已知去年购买数量是前年的2倍,那么去年购买2·台,又知今年购买数量是去年的2倍,则今年购买了22·(即4·)台.

题目中的相等关系为:三年共购买计算机140台,即

前年购买量+去年购买量+今年购买量=140

列方程:·+2·+4·=140

如何解这个方程呢?

2·表示2·,4·表示4·,·表示1·.

根据分配律,·+2·+4·=(1+2+4)·=7·.

这样就可以把含·的项合并为一项,合并时要注意·的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

·+2·+4·=140

合并

7·=140

系数化为1

·=20

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为a·=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为·人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为·人,则甲组人数为2·人,乙组人数为3·人,丙组为5·人,列方程:

2·+3·+5·=60

合并,得10·=60

系数化为1,得·=6

所以2·=12,3·=18,5·=30

答:甲组12人,乙组18人,丙组30人.

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习

1.课本第89页练习.

(1)·=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得( + )·=7

即 2·=7

系数化为1,得·=

解法2:两边同乘以2,得·+3·=14

合并,得 4·=14

系数化为1,得 ·=

(3)合并,得-2.5·=10

系数化为1,得·=-4

2.补充练习.

(1)足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)

解:(1)设每份为·个,则黑色皮块有3·个,白色皮块有5·个.

列方程 3·+2·=32

合并,得 8·=32

系数化为1,得 ·=4

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有·页,那么第一天读了( ·+2)页,第二天读了( ·-1)页.

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数.

列方程: ·+2+ ·-1+23=·.

四、课堂小结

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意·或-·的系数分别是1,-1,而不是0.

五、作业布置

1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

2.选用课时作业设计.

合并同类项习题课(第2课时)

一、解方程.

1.(1)3·+3-2·=7; (2) ·+ ·=3;

(3)5·-2-7·=8; (4) y-3-5y= ;

(5) - =5; (6)0.6·- ·-3=0.

二、解答题.

2.育红小学现有学生320人,比1995年学生人数的 少150人,问育红小学1995年学生人数是多少?

3.甲、乙两地相距460千米,A、B两车分别从甲、乙两地开出,A车每小时行驶60千米,B车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

(2)两车相向而行,A车提前半小时出发,则在B车出发后多少小时两车相遇?相遇地点距离甲地多远?

4.甲、乙二人从A地去B地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B地,求A、B两地之间的距离.

5.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?

答案:

一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11

二、2.705人,设育红小学1995年学生人数为·人,列方程320= ·-150.

3.(1)4 小时,设出发后·小时相遇,列方程60·+48·=460.

(2)3 小时,设B车开出后·小时两车相遇,列方程60 +60·+48·=460.

4.3千米,设A、B两地间的距离为·千米, - = .

5.1 分钟,设经过·分钟两人首次相遇,列方程550·-250·=400.

解一元一次方程

──移项(第3课时)

一、教学内容

课本第89页至第91页.

二、教学目标

(一).知识与技能

理解移项法,并知道移项法的依据,会用移项法则解方程.

(二).情感态度与价值观

鼓励学生自主探索与合作交流,发展思维策略,体会方程的应用价值.

三、重、难点与关键

(一).重点:运用方程解决实际问题,会用移项法则解方程.方程的各项应包括前面的符号

(二).难点:对立相等关系.

(三).关键:理解移项法则的依据,以及寻找问题中的等量关系.

四、教学过程 (一)、复习提问

1.运用方程解决实际问题的步骤是什么?

2.解方程: + =10.

(二)、新授

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

分析:设这个班有·名学生,根据第一种分法,分析已知量和未知量间的关系.

1.每人分3本,那么共分出多少本?(3·本)

2.共分出3·本和剩余的20本,可知道什么?

答:这批书共有(3·+20)本.

根据第二种分法,分析已知量与未知量之间的关系.

3.每人分4本,那么需要分出多少本?(4·本)

4.需要分出4·本和还缺少25本那么这批书共有多少本?

答:这批书共有(4·-25)本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可以作为列方程的依据?

这批书的总数是一个定值(不变量)表示它的两个式子应相等.

根据这一相等关系,列方程:

3·+20=4·-25

本题还可以画示意图,帮助我们分析:

从示意图中容易得到这批书的总数与分出书、剩下书的关系是:

这批书的总数=3·+30

这批书的总数与需要分出的书的数量、还缺少书的数量关系是:

这批书的总数=4·-25

根据两种分法,这批书的总数是相等的.

所以,列方程3·+20=4·-25.

注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:表示同一个量的两个不同式子相等.

思考:方程3·+20=4·-25的两边都含有·的项(3·与4·),也都含有不含字母的常数项(20与-25)怎样才能使它转化为·=a(常数)的形式呢?

要使方程右边不含·的项,根据等式性质1,两边都减去4·,同样,把方程两边都减去20,方程左边就不含常数项20,即

3·+20 -4·-20 =4·-25 -4·-20

即 3·-4·=-25-20

将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4·变为-4·后移到左边.

像上面那样,把等式一边的某项变号后移到另一边,叫做移项.

方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.

下面的框图表示了解这个方程的具体过程.

3·+20=4·-25

移项

3·-4·=-25-20

合并

-·=-45

系数化为1

·=46

由此可知这个班共有45个学生.

思考:上面解方程中移项起了什么作用?

答:移项使方程中含·的项归到方程的同一边(左边),不含·的项即常数项归到方程的另一边(右边),这样就可以通过合并把方程转化为·=a形式.

在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?

解方程时经常要合并和移项,前面提到的古老的代数书中的对消和还原,指的就是合并和移项.

如果把上面的问题2的条件不变,这个班有多少学生改为这批书有多少本?你会解吗?试试看.

解法1:从原问题的解答中,已求的这个班有45个学生,只要把·=45代入3·+20(或4·-25)就可以求得这批书的总数为:

345+20=135+20=155(本)

解法2:如果不先求学生数,直接设这批书共有·本,又如何布列方程?这时该用哪个相等关系列方程呢?

这批书共有·本,余下20本,共分出(·-20)本,每人分3本,可以分给 人,即这个班共有 人.

这批书有·本,每人分4本,还缺少25本,共需要(·+25)本,可以分给 人,即这个班共有 人.

这个班的人数是一个定值,表示它的两个式子应相等,根据这个相等关系列方程.

= (你会解这个方程吗?)

即 - = +

移项,得 - = +

合并,得 =

系数化为1,得·=155.

答:这批书共有155本.

(三)、巩固练习

1.课本第91页练习.

(1)解:移项,得6·-4·=-5+7

合并,得 2·=2

系数化为1,得·=1

(2)解:移项,得 ·- ·=6

合并,得- ·=6

系数化为1,得·=-24

2.补充练习.

下列移项对不对?如果不对,错在哪里?应当怎样改正?

(1)从3·+6=0得3·=6;

(2)从2·=·-1得到2·-·=1;

(3)从2+·-3=2·+1得到2-3-1=2·-·.

解:(1)错,移项忘了要变号,应改为3·=-6.

(2)错.原方程中的-1仍然在方程右边,并没有移项,所以不要变号,应改为2·-·-=-1.

(3)正确.

四、课堂小结

1.列一元一次方程解决实际问题的关键是审题、读懂题意和找相等关系,今天解决的这个问题的相等关系不明显,隐含在问题中,表示同一个量的两个式子是相等.这个相等关系可以作列方程的依据.

2.正确理解移项法则,移项中常犯的错误是忘记变号,还要注意移项与在方程的一边交换两项的位置有本质区别,移项的依据是等式性质,在方程的一边交换两项的位置是根据交换律.

五、作业布置

1.课本第93页至第94页习题3.2第2、3(3)(4)、6、7、8题.

2.选用课时作业设计.

移项习题课(第4课时)

一、填空题.

1.在方程的两边加上或减去同一项,相当于把原方程中的项______后,从方程的一边移到另一边,这种变形叫做________,其依据是________,移项要注意_____.

2.在方程的一边交换两项的位置______改变项的符号,而移项______改变符号.

3.解方程·+21=36得·=________;由10·-3=9得·=______.

二、判断题.(对的打,错的打)

4.移项就是把方程中的某一项移到等号的另一边.( )

5.从6·=1,移项,得·=1-6,·=-5. ( )

6.由方程-4+·=7移项得·=7-4. ( )

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5·-2=7·+8; (4)1- ·=3·+ ;

(5)2·- =- +2; (6)- ·+6=4·+1;

(7) -·=0.5·-3.

四、解答题.

8.设m=3·-2,n=-2·+3,当·为何值时m=n?

9.甲粮仓存粮1000吨,乙粮仓存粮798吨,现要从两个粮仓中运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨?

答案:

一、1.合并 移项 合并同类项 变号 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)·= (3)·=-5 (4)·=-

(5)·=1 (6)·= (7)·=3

四、8.·=1 9.207,5,设从甲粮仓运出·吨,1000-·=798-(212-·)

篇6:初中七年级上册数学《解一元一次方程》教案优质

教学目标

1、进一步掌握列一元一次方程解应用题;

2、通过分析“顺逆水”和“配套”问题,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。

重点难点

分析题意、找等量关系和列方程是重点;找出能够表示问题全部含义的相等关系是难点。

教学方法

指导探究,合作交流

教学资源

小黑板

教学过程

一、复习导入

上节课我们学习了解含有括号的一元一次方程,现在我们来解两道题:

(1)2(·+3)=2.5(·-3);(2)2×1200·=(22-·)

怎样运用这样的方程来解决实际问题呢?今天我们就来讨论一下。

二、例题

例1 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的平均速度。

(分析:顺流行驶的速度、逆流行驶的速度、水流的速度、静水中的速度之间有什么关系?

顺流的速度=静水中的速度+水流的速度;

逆流的速度=静水中的速度-水流的速度。)

问题中的相等关系是什么?

设船在静水中的平均速度为·千米/时,那么顺流的速度是什么?逆流的速度是什么?

顺流的速度是(·+3)千米/时逆流的速度是(·-3)千米/时。

由些可得方程

2(·+3)=2.5(·-3)

由前面的解答,知·=27

所以船在静水中的速度是27千米/时。

注意:要牢牢记住顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。

例2 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?

分析:当问题中的量比较多,关系比较复杂时,我们可以把量分成两类列表,从而使条件条理化,设未知数。

问题中的等量关系是什么?

螺母的数量=2×螺钉的数量。

由此,可列方程

2×1200·=2000(22-·)

由前面的解答可知·=10

22-·=22-10=12

所以应分配10名工人生产螺钉,12名工人生产螺母。

注意:列表法是列方程解应用题的一种行之有效的方法,有注意学习。

三、五分钟测试

1、在一次美化校园活动中,先安排31人去拔草,18人去植树,后又是增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?

(2、解下列方程:

(1)0.6·=1/5 ·-3; (2)2(·-1)-3(·+1)=-6。

四、课堂小结

通过前面的学习讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的相等关系;同时知道所列方程的解不一定就是问题的答案,必须检验之后才能确定,这是一个要注意的问题。

作业:

课本98面4、5。

篇7:高中数学必修1《用二分法求方程近似解》说课稿

高中数学必修1《用二分法求方程近似解》说课稿

一、本节课内容的数学本质

本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。

所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。

二、本节课内容的地位、作用

“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。

三、学生情况分析

学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。

四、教学目标定位

根据教材内容和学生的实际情况,本节课的教学目标设定如下:

通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。

借助计算器用二分法求方程的近似解,让学生充分体验近似的'思想、逼近的思想和程序化地处理问题的思想及其重要作用,并为下一步学习算法做知识准备.

通过探究、展示、交流,养成良好的学习品质,增强合作意识。

通过具体问题体会逼近过程,感受精确与近似的相对统一。

五、教学诊断分析

“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。

六、教学方法和特点

本节课采用的是问题驱动、启发探究的教学方法。

通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。

本节课特点主要有以下几方面:

1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。

2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。

以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。

3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。

本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。

4、恰当地利用现代信息技术,帮助学生揭示数学本质。

本节课中利用计算器进行了多次计算,逐步缩小实数解所在范围,精确度的确定就显得非常自然,突破了教学上的难点,提高了探究活动的有效性。整个课件都以PowerPoint为制作平台,演示Excel

程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。

七、预期效果分析

以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。

另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。

篇8:五年级数学《用方程和用算术方法解应用题的比较》教案

五年级数学《用方程和用算术方法解应用题的比较》教案

教学内容:

教科书第129页例7及练习三十二的第1~3题。

教学目的:

使学生知道用方程解应用题和用算术方法解应用题的区别,并能根据题目中的数量关系的特点灵活选择解题方法,培养学生灵活的思维能力。

教学过程:

一、复习。

1、用式子表示下面的数量关系。

一班有45人,二班比一班多3人,二班有多少人?如果一班有X人,二班有多少人?

2、找出下题中数量间的相等关系。

商店运来500千克水果,其中有8筐苹果,剩下的是梨,梨有300千克,每筐苹果有多少千克?

让学生说出:

8筐苹果的重量+梨的'重量=运来水果总重量

8X+300=500

运来水果总重量-8筐苹果的重量=梨的重量

500-8X=300

运来的水果总重量-梨的重量=8筐苹果的重量

二、新授。

1、出示例7。

(1)让学生读题,找出已知条件和问题后,要求学生在练习本上先列方程解答,再用算术方法解答。

(2)指名说出自己列方程解答的过程(先说出题目中数量间的相等关系,再说出所列方程和解答)。板书:

解:设每副乒乓球拍X元。

总钱数-3副乒乓球拍的钱数=找回的钱数

30-3X=1.8

X=30-1.8

X=28.2÷3

X=9.4

3副乒乓球拍的钱数+找回的钱数=付出的钱数

3X+1.8=30

总钱数-找回的钱数=3副球拍的钱数

30-1.8=3X

(3)指名学生说出自己是怎样用算术方法解答的,并说明分析过程,教师把分析解答的步骤写在黑板的右侧。

先求3副球拍多少元,再求每副球拍多少元。

(30-1.8)÷3

=28.2÷3

=9.4(元)

最后写答。

2、引导学生比较。

问:看上面用两种方法解答应用题的过程,想一想用方程解应用题与用算术方法解应用题有什么不同?

让学生自由发言,讲出自己的意见。再引导学生看黑板:列方程解应用题时,未知数用X表示,并参加列式。而算术解法未知数不参加列式。

两种方法的解题思路有什么不同?

引导学生得出:用方程解题时是根据题意,找出数量间的相等关系,列出方程;用算术方法解题时是根据题里已知数和未知数间的关系,确定解答步骤,再列式解答。

指导阅读课本上的内容。

补充说明:无论是用方程解答还是用算术方法解答,都要依据四则运算的意义进行列式;都要在理解题意的基础上,分析题里的数量关系。

三、巩固练习。

1、P129页做一做。

订正时要学生结合自己的两种解法,说说解题思路。指出:以后解答应用题时,除了题目中指定解题方法以外,都可以根据题目中数量关系的特点,灵活选择解题方法。

2、练习三十二的第2题。

3、练习三十二的第1题。

四、小结:

今天我们把用方程解和用算术解应用题进行了比较。说一说这两种解题方法有什么不同?今后在解答应用题时,要认真审题,学会根据题里数量关系的特点选择解答方法,提高我们分析解答应用题的能力。

篇9:初中数学《从算式到方程》教师教案

初中数学《从算式到方程》教师教案

一 、教学目标

(一)基础知识目标:

1.理解方程的概念,掌握如何判断方程。

2.理解用字母表示数的好处。

(二)能力目标

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标

增强用数学的意识,激发学习数学的热情。

二、教学重点

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点

如何找相等关系列方程

四、教学过程

(一)创设情景,引入新课

由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

(二)提出问题

章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

你会用算术方法解决这个实际问题么?不妨试一下。

如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

根据题意画出示意图。

由图可以用含x的式子表示关于路程的数量,

王家庄距青山 千米,王家庄距秀水 千米,

由时间表可以得出关于路程的'数量,

从王家庄到青山行车 小时,王家庄到秀水 小时,

汽车匀速行驶,各路段车速相等,于是列出方程:

各表示的意义是什么?

以后我们将学习如何解出x,从而得到结果。

例1 某数的3倍减2等于某数与4的和,求某数.

例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

五、课堂小结

用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

六、作业布置

习题3.1 第1,2两题。

篇10:初中数学方程题的解题技巧

方程或方程组的解法

(1)等式的性质:等式的两边同时加上(或减去)同一个代数式(或除以同一个不为0的数),所得结果仍是等式。

(2)一元一次方程的解:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1,把一个一元一次方程“转化”成x=a的形式。

(3)二元一次方程组的解法:解方程组的基本思路是“消元”--把“二元”变为“一元”。主要方法有代入消元法和加减消元法。其中代入消元法常用步骤是:要消哪一个字母,就用含其它字母的代数式表示出这个字母,然后用表示这个字母的代数式代替另外的方程中的这个字母即可。

(4)一元二次方程的解法有配方法、公式法、分解因式法。

(5)一元二次方程的判别式。当>0时有两个不相等的实数根;当=0时有两个相等的实数根;当<0时没有实数根。

(6)若、是的两实数根,则有,。

(7)对于一元二次方程,方程有一个根为0;方程有一个根为1;方程有一个根为-1;

方程(组)及解的概念

含有未知数的等式叫做方程。在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程,其标准形式为。使方程左右两边的值相等的未知数的值叫做方程的解。含有两个未知数,并且所含未知数的的项的次数都是1的方程叫做二元一次方程。含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。只含有一个未知数的整式方程,并且未知数最高次数是2的方程叫做一元二次方程,其一般形式为。

可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如,)

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

篇11:初中七年级上册数学《从算式到方程》教案

1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列 出方程.

2.理解方程、一元一次方程的定义及解的概念.

3.掌握检验某个数值是不是方程的解的方法.

阅读教材P78~80,思考下列问题.

什么是方程、一元一次方程及它们的 解?怎样列方程?

知识探究

1.含有未知数的等式叫方程.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.

2.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.

自学反馈

根据下面实际问题中的数量关系,设未知数列出方程:

1.用一根长为2 4 cm的铁丝围成一个正方形,正方形的边长为多少?

解:设正方形的边长为` cm,列方程得:4`=24.

2.某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

解:设这个学校的学生数为`,则女生数为52%`,男生数为52%`-80,依 题意得方程:52%`+52%`-80=`.

3.练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?

解:设小明买了`本,列方程得:0.8`=10-4.4.

4.长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.

解:设长为`cm,则宽为(`-2)cm,依题意得方程:2(`+`-2)=24.

活动1 小组讨论

例1 判断下列是不是一元一次方程,是打“√”,不是打“×”.

①`+3=4;(√)

②-2`+3=1;(√)

③2`+13=6-y;(×)

④1`=6;(×)

⑤2`-8>-10;(×)

⑥3+4`=7`.(√)

例2 检验2和-3是否为方程`-52-1=`-2的解.

解:-3是,2不是.

带入方程中左右两边相等的值就是方程的解.

例3 设未知数列出方程:

(1)用一根长为100 cm的铁丝围成一个正方形,正方形的边长为多少?

(2)长方形的周长为40 cm,长比宽 多3 cm,求长和宽分别是多少.

(3)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?

(4)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小车的平均速度.

解:略.

设未知数,找等量关系,用方程表示简单实际问题中的相等关系.

活动2 跟踪训练

1.下列方程的解为`=2的是(C)

A.5-`=2

B.3`-1=4-2`

C.3-(`-1)=2`-2

D.`-4=5`-2

2.在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(A)

A.1个 B.2个 C.3个 D.4个

3.老师要求把一篇有2 000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)

解:设小华要`分钟完成,由题意,得

50`+700=2 000,

`=26.

活动3 课堂小结

1.方程及一元一次方程的定义.

2.如何列方程,什么是方程的解.

3.1.2 等式的性质

1.了解等式的两条性质.

2.会用等式的性质解简单的一元一次方程.

阅读教材P81~82,思考下列问题.

1.等式的性质有哪几条?用字母怎样表示?字母代表什么?

2.解方程的依据是什么?

知识探究

1.如果a=b,那么a±c=b±c(字母a、b、c可以表示具体的数,也可以表示一个式子).

2.如果a=b,那么ac=bc.

3.如果a=b(c≠0),那么ac=bc.

自学反馈

1.已知a=b,请用“=”或“≠”填空:

(1)3a=3b;(2)a4=b4;(3)-5a=-5b.

2.利用等式的性质解下列方程:

(1)`+7=26;

(2)- 5`=20;

(3)-2(`+1)=10.

注意用等式的性质对方程进行逐步变形,最终可变形为“`=a”的形式.

活动1 小组讨论

例 利用等式的性质解下列方程并检 验:

(1)`-9 =6;

(2)-0.2`=10;

(3)3-13`=2;

(4)-2`+1=0;

(5)4(`+1)=-20.

解:(1)`=15.(2)`=-50.(3)`=3.(4)`=12.(5)`=-6.

运用等式的性质解方程不能漏掉某一边或某一项.

活动2 跟踪训练

利用等式的性质解下列方程并检验:

(3)-2-14`=2;

(4)6`-2=0.

解:(1)`=3.(2)`=-1.(3)=-16.(4)`=13 .

活动3 课堂小 结

1.等式有哪些性质?

2.在用等式的性质解方程时要注意什么?

会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题.

阅读教材P104~105探究3的内容,思考题中所提出的问题.

知识探究

自学反馈

解:100次,购买IC卡合算.

活动1 小组讨论

例 (教 材P104探究3)电话计费问题

下表中有两种移动电话计费方式.

月使用

费/元 主叫限定

时间/min 主叫超时

费/(元/min) 被叫

方式一 58 150 0.25 免费

方式二 88 350 0.19 免费

考虑下列问题:

(1)设一个月 用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费;

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

活动2 跟踪训练

某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?

解:60吨,用第二种结算方法可多拿工 资.

活动3 课堂小结

电话计费等有关的方案决策问题.

篇12:初中七年级上册数学《从算式到方程》教案

【学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

【重点难点】能验证一个数是否是一个方程 的解。

【导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

1. 一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

2.方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

【课堂练习】

1.判断下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

2.检验3和-1是否为方程 的解。

3.`=1是下列方程( )的解:

(A) , ( B) ,

(C) ), ( D)

4 、已知方程 是关于`的一元一次方程,则a= 。

【要点归纳】:

1. 这节课我们学习了什么内容?

2.什么是方程的解?如何检验一个数是否是方程的解?

【拓展训练】:

1.检验2和 是否为方程 的解。

2.老师要求把一篇有2000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

【总结反思】:

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。