“南海野战”通过精心收集,向本站投稿了6篇3年级数学重点知识怎么,下面就是小编给大家分享的3年级数学重点知识怎么,希望大家喜欢!

篇1:3年级数学重点知识怎么
3年级数学重点知识
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )
① 进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
② 进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③ 进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米 =1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克 1千克=1000克
1000千克= 1吨 1000克=1千克
倍的认识
1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
2、求一个数的几倍是多少用乘法: 这个数×倍数=这个数的几倍
多位数乘一位数
1、估算 。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程
每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。
正方形的周长=边长×4
正方形的边长=周长÷4,
长方形的周长=(长+宽)×2
长方形的长=周长÷2-宽,
长方形的宽=周长÷2-长
分数的初步认识
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、① 分子相同,分母小的分数反而大,分母大的分数反而小。
② 分母相同,分子大的分数就大,分子小的分数就小。
4、① 相同分母的分数相加、减:分母不变,只和分子相加、减。
② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。
3年级数学复习方法
1.回归课本
考前要回归课本,掌握了教材就把握了考试的根本。在老师的指导下把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2.查漏补缺
数学的学习一定要加强对以往错题的研究,找错误的原因,对易错知识点进行列举、易误用的方法进行归纳。找准了错误的原因,就能对症下药,使犯过的错误不再发生,会做的题目不再做错。同学们还可两人一组互提互问,在争论和研讨中矫正,效果更好。
3.时间分配
好多同学都觉得几天不做数学题后再考试,审题就会迟疑缓慢,入手不顺,运算不畅且易出错。所以每天必须坚持做适量的练习,特别是重点和热点题型,防止思想退化和惰化,保持思维的灵活和流畅。特别是停课复习期间,更要掌握好看和做的时间分配。
4.规范作答
一些同学考试时试题被扣分,大多是答题不规范,抓不住得分要点。如看不清题目要求,不理解题目意思,书写不规范,应用题思路不清楚等一系列原因。
5.归纳考试窍门
熟练掌握数学方法,以不变应万变。一般同一份试卷,相同的方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。
3年级数学复习建议
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 小学数学练习机49.0版250种类的随机练习题,题目数量无限多,电脑自动批改,家长省心省力,而且孩子还喜欢做爱做。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。
篇2:3年级数学有哪些重点知识
3年级数学重点知识点归纳
第一单元 测量
1、在生活中,测量比较短的物品,可以用(毫米、厘米、分米 )做单位;测量比较长的物体,常用( 米 )做单位;测量比较长的路程一般用( 千米 )做单位,千米也叫( 公里 )。10个100米就是1千米,1千米(公里)=1000米。
2、1厘米的长度里有( 10 )小格,每个小格的长度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的长度单位。1厘米=10毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、10厘米的长度就是1分米,因此1分米=10厘米。1米=10分米。
5、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
6、长度单位的关系式有:
① 进率是10
1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米
10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米
② 进率是100
1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米
③ 进率是1000
1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里
7、当我们表示物体有多重时,通常要用到(质量单位 )。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。如:3吨=3000千克 5000千克=5吨
7、(相邻)质量单位进率是1000 。
1 吨 = 1000千克 1千克=1000克
1000千克 = 1 吨 1000克=1千克
第二单元 万以内的加法和减法(二)
1、笔算加、减法要注意:
(1)相同数位要对齐;
(2)从个位算起;
(3)哪一位上的数相加满十,就向前一位进1;哪一位上的数不够减,就从前一位退1作十再减。
2、估算的方法:
结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数范围。
3、加、减法验算的方法:

(1)加法的验算:
①交换加数的位置再加一遍,看看两次相加的和是不是相同;
②用“和”减去“其中一个加数”,看看结果是不是等于“另一个加数”。
(2)减法的验算:
①用“被减数”减去“差”,看看结果是不是等于“减数”;
②用“差”加“减数”,看看结果是不是等于“被减数”。
第三单元 四边形
1、由4条直的边和4个角组成的图形叫做四边形。
2、四边形的特点:有四条直的边;有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形都是特殊的平行四边形。
6、平行四边形的特点:对边相等、对角相等。平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、要求长方形的周长必须知道长方形的(长)和(宽);要求正方形的周长必须知道正方形的(边长)。
9、公式。
长方形的周长 = (长+宽)×2 长方形的长 = 周长÷2-宽 长方形的宽 = 周长÷2-长
正方形的周长 = 边长×4 正方形的边长 = 周长÷4
3年级数学复习方法
一、制定切实可行的复习计划,并认真执行计划。
为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。
二,要学会在原有知识的基础上,进行归类整理,理清每一个单元的重点是什么,形成知识网络体系。
可充分老师发的概念卷和平时在课堂上作的听课笔记。还要学会分析每次单元考试的题型,一般的来讲是这样几个方面:一是概念题,二是计算题,三是实践应用题,四是操作题四个方面。复习的作用就是要:熟能生巧。所以复习阶段,可能要多做一些题型,当然也不是说要搞题海战术,但数学方面不做题又不行,要把握一个度。做一份题目要有一份题目的收获。题无非是就哪几种类型,做完一份题目以后要反思,多问几个为什么?
三、一定要在反馈矫正上下功夫,正确对待错题本。
把你做错的题目摘抄到本子上,先改错,再进行分类整理,找到自己的不足,针对错题的错因对症下药。千万不要认为订正麻烦,要养成习惯,学习成绩优秀稳定的同学,往往很重视订正和收集错题。如果针对错题一定能很好地做到查漏补缺,那复习的效果会更好!
四、一题多解,多题一解,提高解题的灵活性。
有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。
五、有的放矢,挖掘创新。
机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。习题要具有开放性,创新性,使思维得到充分发展,要正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。
3年级数学复习建议
1回归课本,巩固基础
课本是数学学习的重要工具,做做例题和习题,巩固学习每个知识点的前因后果,即为什么要这么做,正推的同时,还要学会反推,这样知识点才会掌握得更好。
此外,要多进行归类整理,理清每一个单元的重点,学会分析每个单元考试的题型,去发现知识点之间的联系。(细心的同学会发现,小学数学的题型一般分为概念题、计算题、实践应用题、操作题。)
2找出和解决知识漏洞
数学学习,查漏补缺必不可少,多对以往的错题多研究,找错误的原因,对易错知识点进行列举、易误用的方法进行归纳。找准了错误的原因,就能对症下药,使犯过的错误不再发生,会做的题目不再做错。
同学们还可两人一组互提互问,在争论和研讨中矫正,效果更好。千万不要认为使用和分析错题本既费时又费力,一定要养成习惯,因为学习成绩优秀稳定的同学,就非常重视收集错题,然后在错题的分析和处理中得到提升。
3要养成检查的习惯
粗心和马虎是数学考试常见的扣分点,一些同学考试时题题被扣分,大多是答题不规范,抓不住得分要点。复习时,若能注意检查,发现和改正“不拘小节”的地方,规范作答,做好了,效果也会事半功倍,对此,建议以下地方多注意:
(1)检查列式是否正确。读题,看是否该用加法、减法、乘法或是除法来算;
(2)列式正确后,看算式中的数字是否抄错,是否和题中给我们的一样;
(3)用估算的方法检查得数,如259+487,我们一看至少要等于六七百,如果得数是四百多,或三百多等,那计算一定错了;
(4)精确地再算一遍,以得到正确的结果。注意要尽量笔算,五年级后,小数计算用口算很容易错。
(5)使用草稿本也要多注意,草稿本稍微工整一点,极客数学帮老师就曾发现不少同学在使用草稿本时乱写乱画,导致草稿纸画面混乱,导致抄答案都抄错了;
(6)检查单位和答案有没有填写齐全;
(7)遇上操作题,要用铅笔,尺、三角板画图,切不可信手乱画,画完后记得标明条件(如:直角符号、长2厘米、高3厘米等),是否和题目要求一致。
篇3:初中数学重点知识
初中数学重点知识归纳
1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的最大公约数·相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;
(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式
1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B 的形式,如果AB 中含有字母,式子B 叫做分式.
⎧整式有理式⎨⎩分式2.有理式:整式与分式统称有理式;即 .
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.
4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.
5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.
6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.
a c ac ⋅=, 7.分式的乘除法法则:b d bd
n n a b ÷c d =a d ad ⋅=b c bc . a ⎛a ⎫ ⎪=n . (n 为正整数)b 8.分式的乘方:⎝b ⎭.
9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n=a (a≠0) ;
(2)正整指数的运算法则都可用于负整指数计算;
⎛a ⎫ ⎪
(3)公式:⎝b ⎭-n n n ⎛b ⎫= ⎪⎝a ⎭a -n -m ,b =b
a m n ;
(4)公式: (-1)-2=1, (-1)-3=-1.
10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.
11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.
12.同分母与异分母的分式加减法法则
13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0) 中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程. 注意:在字母方程中, 一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.
14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程. 特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.
15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.
16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.
17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.
18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.
初中数学考试必备公式
圆与弧的公式:
正n边形的每个内角都等于(n-2)×180°/n
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2
①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R>r)⑤两圆内含dr)
定理:相交两圆的连心线垂直平分两圆的公共弦
定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
因式分解公式:
公式:a^3+b^3+c^3-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
解:a^3+b^3+c^3-3abc
=(a+b)(a^2-ab+b^2)+c(c^2-3ab)
=(a+b)(a^2-ab+b^2)+c(c^2-3ab+a^2-ab+b^2-a^2+ab-b^2)
=(a+b)(a^2-ab+b^2)+c[(c^2-a^2-2ab-b^2)+(a^2-ab+b^2)]
=(a+b)(a^2-ab+b^2)+c[c^2-(a+b)^2]+c(a^2-ab+b^2)
=(a+b+c)(a^2-ab+b^2)+c(a+b+c)(c-a-b)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式: (a+b)平方=a²+2ab+b²
完全平方差公式: (a-b)平方=a²-2ab+b²
两根式: ax²+bx+c=a[x-(-b+√(b²-4ac))/2a][x-(-b-√(b²-4ac))/2a]两根式
立方和公式: a^3+b^3=(a+b)(a²-ab+b²)
立方差公式:a^3-b^3=(a-b)(a²+ab+b²)
完全立方公式: a^3±3a²b+3ab²±b^3=(a±b)^3.
一元二次方程公式与判别式:
一元二次方程的解 -b+√(b²-4ac)/2a ,-b-√(b²-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b²-4ac=0 注:方程有两个相等的实根
b²-4ac>0 注:方程有两个不等的实根
b²-4ac<0 注:方程没有实根,有共轭复数根
三角不等式:
|a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|
等差数列公式:
某些数列前n项和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
三角函数公式--两角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
三角函数公式--倍角公式:
tan2A=2tanA/(1-tan2A)
cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a
三角函数公式--半角公式:
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
三角函数公式--和差化积:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) 2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos(A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
初中数学学习方法
一、通读全卷一是看题量多少,不要漏题;二是选出容易题,准备先作答;三是把自己容易忽略和出错的事项在题的空白处用铅笔做个记号
二、认真审题审题一定要细心.要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意不背答案),从多角度挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据
三、由易到难先做容易题,后做难题.遇到难题,要敢于暂时“放弃”,不要浪费太多时间,等把会做的题目解答完后,再回头集中精力解决它
四、分段得分数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大.因此,解答时应注意“分段得分”,步步为营.首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分
五、跳跃解答当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问
六、逆向分析当用直接法解答或证明某一问题遇到“卡子”时,可以采用分析法.格式如下:假设“卡子”成立,则···(推出已知的条件和结论),以上步步可逆,所以“卡子”成立
七、先思后划当发现自己答错时,不要急于划掉重写.这是因为重新改正的答案可能和划掉的答题无多大区别
八、学会联想当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始模拟联想.如“课本上怎么说的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等
初中数学解题技巧
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
六、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法.运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决.
七、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.
八、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果.运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法.
用归纳法或分析法证明平面几何题,其困难在添置辅助线.面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果.所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置辅助线,即使需要添置辅助线,也很容易考虑到.
九、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决.中学数学中所涉及的变换主要是初等变换.有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易.另一方面,也可将变换的观点渗透到中学数学教学中.将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识.
十、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型.选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面.
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识覆盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况.
篇4:初二数学重点知识
全等三角形知识点
1.全等图形:能够完全重合的两个图形就是全等图形。
2.全等图形的性质:全等多边形的对应边、对应角分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:
全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:
(1)周长相等的两个三角形,不一定全等;
(2)面积相等的两个三角形,也不一定全等。
小练习
1.下列说法中正确的说法为
①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,
A.①②③④B.①③④C.①②④D.②③④
2.一个正方形的侧面展开图有()个全等的正方形.
A.2个B.3个C.4个D.6个
3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()
①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.
A.1个B.2个C.3个D.4个
篇5:初二数学重点知识
角的平分线的性质知识点
1.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
2.判定定理:到角的两边距离相等的点在该角的角平分线上。
3.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),
②、回顾三角形判定,搞清我们还需要什么,
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)
篇6:初二数学重点知识
三角形全等的判定知识点
1、三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。
(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。
(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.
斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).
注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
小练习
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______
核心考点:全等三角形的判定
2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______
核心考点:三角形的稳定性
3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______
核心考点:全等三角形的判定









