“吉安同乡会”通过精心收集,向本站投稿了11篇初三数学《两角差的余弦公式》说课稿,下面小编给大家带来初三数学《两角差的余弦公式》说课稿,希望能帮助到大家!

初三数学《两角差的余弦公式》说课稿

篇1:两角差的余弦公式高一数学说课稿

一、公式

二、证明

引例:

例2:

例3:

4:

小结:

教学评价分析

诊断性评价:

1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。

2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。

3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。

预期效果:

1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。

2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。

3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.

篇2:八年级数学《两角差的余弦公式》的说课稿

一、教材分析

“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。

二、学情分析

学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。对任意两角和、差的三角函数知之甚少。本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。

三、教法学法分析

(一)、说教法

基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:

1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。

2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。

3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。

4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。

(二)、说学法

从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。

四、教学目标

(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)

(一)、知识目标

1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。

(二)、能力目标

通过利用同角三角函数变换及向量推导两角差的余弦公式,学生体会利用已有知识解决问题的一般方法,提高学生分析问题和解决问题的能力。

(三)、情感目标

使学生经历数学知识的发现、探索和证明的过程,体验成功探索新知的乐趣,激发学生提出问题的意识以及努力分析问题、解决问题的激情。

五、教学重难点

(由于本节课主要内容是公式的推导,所以教学重难点如下:)

教学重点:两角差的余弦公式的推导过程及简单应用;

篇3:八年级数学《两角差的余弦公式》的说课稿

六、教学流程

七、教学过程

(一)创设情境,导入新课

问题1:任意角的三角函数是如何定义的?

旧知,角的终边与单位圆交于是两角差的余弦公式推导的基础)

(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)

问题2:我们在初中时就知道一些特殊角的三角函数值。那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。

(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的兴趣。)

(二)探索公式,建构新知

(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。)

方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:

所以:。

方法二(向量法):在平面直角坐标系xOy内作单位圆O,,它们的终边与单位圆O的交点分别为A,B,则由向量数量积的.坐标表示,有:向量的夹角就是,由数量积的定义,有于是

由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。

若(1)式是否依然成立呢?

当时,设与的夹角为,则

另一方面于是所以

也有

方法三(学生自主探究三角函数线法)

(三)例题讲解,知识迁移

例1化简求值:

(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)

(变式的教学中引导学生使用两种方法:

方法一:从公式本身思考

方法二:引导学生发现

提高学生应用知识的能力和逻辑思维能力)

(四)开放小结,归纳提升

小结:本节课你学到了那些知识,有什么样的心得体会?

口诀:余余正正异相连

(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。)

(五)分层作业,巩固提高(必做题)P127,练习1,3,4

(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)

八、板书设计

九、教后反思

篇4:两角和与差余弦公式的说课稿

一、教材分析:

㈠、地位和作用:

两角和与差的正弦、余弦、正切是本章的重要内容,它具有承上启下的作用.是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。

㈡、教学重点难点

篇5:两角和与差余弦公式的说课稿

教学难点:两角差余弦公式的推导

设计依据:由于“两角和与差余弦公式的推导及应用”对后几节内容是否掌握具有决定意义,因此它是本节课的一个重点。由于“两角差余弦公式的推导”需要构造向量来解决,所以它是本节课的一个难点。

二、目标分析

1、知识与技能: 使学生理解两角和与差余弦公式的推导,并能初步应用它们进行简的三角函数式的化简,求值及恒等式的`证明.

2、过程与方法:经历由向量的数量积推导两角和与差的余弦过程,体验和感受数学发现和数学创造的过程,体会向量和三角函数的联系,体会一般到特殊和数形结合的思想.

3、情感、态度、价值观

①让学生在公式的推导和运用过程中体会成功的喜悦,培养学生不怕困难勇于探索的求知精神.

②通过观察、对比体会公式的对称美、思维的和谐美,给学生以美的陶冶.

三、教学方法分析

本课时授课对象是对探索未知世界有主动意识,对新知识充满探求渴望的高一学生他们已经掌握了任意角的三角函数和向量的相关知识,但独立地运用向量的方法来推导公式存在的困难。根据学生已有的知识储备和心理特征,确定教法为:自主探究、小组讨论、合作交流。

本节课是一节公式推导和应用课,应该采用启发式教学,指导学生主动参与公式的发现、推导和应用过程。

四、教学过程分析

教学过程分为温故知新,引入新课、由特殊值探索公式结构、引导学生证明公式、通过例题体会公式的应用、通过练习题加深对本节内容的掌握、学生小结本节课的收获、布置作业几个环节。

Ⅰ、引入新课

问题1 :我们已经学习了向量的数量积,请用数量积的知识完成下列练习。

练习: 已知, ,则=

Ⅱ、新课探究

问题2 :由出发,你能推广对任意的两个角都成立吗?

如图所示,以x轴非负半轴为始边分别作角,

且>。假设它们都为锐角,设它们的终边分别交单

位圆于点,那么

表示的角是什么?

有平面向量数量积的两种表示形式,得到以下等式:

在推倒的过程中,因为为与的夹角,故。实际上,当时,为与的夹角,而,由于余弦函数的周期性,任意角都上的角可以转化为

综上所述, ,对于任意的角都成立。简记为。

问题3:由公式你能推出的余弦公式吗?

结论:

文本框:

简记为“余余正正符号异”

Ⅲ、应用举例

例1、   求值:

例2、已知,求的值。

变式:已知,求的值。

例3、

变式:

设计意图:逆用公式是学生认识和掌握公式的重要标志。通过步步加深,加强学生对公式的理解和应用,引导学生积极参与思维,培养学生观察,比较等思维能力。同时渗透了一种化归思想。

Ⅳ、课堂练习

教材练习

Ⅴ、课堂小结

1、知识层面的小结(对公式的探究过程激发方法的启示,用向量的数量积证明公式的主要思路以及公式的特点和功能);

2、数学思维能力层面的小结(在学生小结的基础上,教师概括提升------- 包括本节课所涉及到的特殊与一般的思想,数形结合的思想,换元思想的体现,逻辑思维能力的提高以及对数学和谐美的欣赏)。

设计意图:让学生通过小结,反思学习过程,加深对公式及其推导过程的理解。领会数学研究的有关基本方法和途径,学习并能应用数学思想与方法解决有关问题。

强调公式中α、β的任意性,是本节内容的主线,它赋予了公式的强大生命力。要深刻领会公式承上启下的核心作用。

Ⅵ、作业,

1. 必做:习题3-2A   2、,3.

2. 探究:能否由的公式得到的公式呢?

通过布置作业使学生进一步巩固本节的重点内容

板书设计

1、向量数量积公式:

2、问题1、2、3

3、总结提炼:

篇6:《两角差的余弦公式》教学反思

两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。

在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。

刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。

这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。

篇7:初三数学说课稿

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

教学目标

1.知识与技能

(1)理解二次根式的概念。

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0)。

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的'目的。

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点

1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

2.二次根式乘除法的规定及其运用。

3.最简二次根式的概念。

4.二次根式的加减运算。

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

2.二次根式的乘法、除法的条件限制。

3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

提出问题,根据问题给出概念,应用概念解决实际问题。

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“ (a≥0)”解决具体问题。

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。

问题2:由勾股定理得AB=

问题3:由方差的概念得S= .

二、探索新知

很明显 、、,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、、、(x>0)、、、- 、、(x≥0,y≥0)。

分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0.

解:二次根式有: 、(x>0)、、- 、(x≥0,y≥0);不是二次根式的有: 、、、.

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义。

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义。

例4(1)已知y= + +5,求 的值。(答案:2)

(2)若 + =0,求a+b2004的值。(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一个正方形的面积是5,那么它的边长是( )

A.5 B. C. D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式。

2.面积为a的正方形的边长为________.

3.负数________平方根。

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个。

A.0 B.1 C.2 D.无数

5.已知a、b为实数,且 +2 =b+4,求a、b的值。

第一课时作业设计答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x= .

2.依题意得: ,

∴当x>- 且x≠0时, +x2在实数范围内没有意义。

3.

4.B

5.a=5,b=-4

21.1 二次根式(2)

第二课时

教学内容

1. (a≥0)是一个非负数;

2.( )2=a(a≥0)。

教学目标

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。

教学重难点关键

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时, 叫什么?当a<0时, 有意义吗?

老师点评(略)。

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数。

做一做:根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我们可以直接利用( )2=a(a≥0)的结论解题。

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、巩固练习

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、应用拓展

初三数学《两角差的余弦公式》说课稿例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。

解:(1)因为x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0)。

六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.下列各式中 、、、、、,二次根式的个数是( )。

A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( )。

A.a>0 B.a≥0 C.a<0 D.a=0

二、填空题

1.(- )2=________.

2.已知 有意义,那么是一个_______数。

三、综合提高题

1.计算

(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

(5)

2.把下列非负数写成一个数的平方的形式:

(1)5 (2)3.4 (3) (4)x(x≥0)

3.已知 + =0,求xy的值。

4.在实数范围内分解下列因式:

(1)x2-2 (2)x4-9 3x2-5

第二课时作业设计答案:

一、1.B 2.C

二、1.3 2.非负数

三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

(4)(-3 )2=9× =6 (5)-6

2.(1)5=( )2 (2)3.4=( )2

(3) =( )2 (4)x=( )2(x≥0)

3. xy=34=81

4.(1)x2-2=(x+ )(x- )

(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

(3)略

21.1 二次根式(3)

第三课时

教学内容

=a(a≥0)

教学目标

理解 =a(a≥0)并利用它进行计算和化简。

通过具体数据的解答,探究 =a(a≥0),并利用这个结论解决具体问题。

教学重难点关键

1.重点: =a(a≥0)。

2.难点:探究结论。

3.关键:讲清a≥0时, =a才成立。

教学过程

一、复习引入

老师口述并板收上两节课的重要内容;

1.形如 (a≥0)的式子叫做二次根式;

2. (a≥0)是一个非负数;

3.( )2=a(a≥0)。

那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。

二、探究新知

(学生活动)填空:

=_______; =_______; =______;

=________; =________; =_______.

(老师点评):根据算术平方根的意义,我们可以得到:

=2; =0.01; = ; = ; =0; = .

因此,一般地: =a(a≥0)

例1 化简

(1) (2) (3) (4)

分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,

(4)(-3)2=32,所以都可运用 =a(a≥0)去化简。

解:(1) = =3 (2) = =4

(3) = =5 (4) = =3

三、巩固练习

教材P7练习2.

四、应用拓展

例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。

(1)若 =a,则a可以是什么数?

(2)若 =-a,则a可以是什么数?

(3) >a,则a可以是什么数?

分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时, = ,那么-a≥0.

(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

解:(1)因为 =a,所以a≥0;

(2)因为 =-a,所以a≤0;

(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

例3当x>2,化简 - .

分析:(略)

五、归纳小结

本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。

六、布置作业

1.教材P8习题21.1 3、4、6、8.

2.选作课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1. 的值是( )。

A.0 B. C.4 D.以上都不对

2.a≥0时, 、、- ,比较它们的结果,下面四个选项中正确的是( )。

A. = ≥- B. >>-

C. < <- d.-=“”>=

二、填空题

1.- =________.

2.若 是一个正整数,则正整数m的最小值是________.

三、综合提高题

1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:

甲的解答为:原式=a+ =a+(1-a)=1;

乙的解答为:原式=a+ =a+(a-1)=2a-1=17.

两种解答中,_______的解答是错误的,错误的原因是__________.

2.若│1995-a│+ =a,求a-19952的值。

(提示:先由a-≥0,判断1995-a的值是正数还是负数,去掉绝对值)

3. 若-3≤x≤2时,试化简│x-2│+ + .

答案:

一、1.C 2.A

二、1.-0.02 2.5

三、1.甲 甲没有先判定1-a是正数还是负数

2.由已知得a-2000≥0,a≥2000

所以a-1995+ =a, =1995,a-2000=19952,

所以a-19952=2000.

3. 10-x

21.2 二次根式的乘除

第一课时

教学内容

? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。

教学目标

理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简

由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。

教学重难点关键

重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。

难点:发现规律,导出 ? = (a≥0,b≥0)。

关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .

教学过程

一、复习引入

(学生活动)请同学们完成下列各题。

1.填空

(1) × =_______, =______;

(2) × =_______, =________.

(3) × =________, =_______.

参考上面的结果,用“>、<或=”填空。

× _____ , × _____ , × ________

2.利用计算器计算填空

(1) × ______ ,(2) × ______ ,

(3) × ______ ,(4) × ______ ,

(5) × ______ .

老师点评(纠正学生练习中的错误)

二、探索新知

(学生活动)让3、4个同学上台总结规律。

老师点评:(1)被开方数都是正数;

(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

一般地,对二次根式的乘法规定为

? = .(a≥0,b≥0)

反过来: = ? (a≥0,b≥0)

例1.计算

(1) × (2) × (3) × (4) ×

分析:直接利用 ? = (a≥0,b≥0)计算即可。

解:(1) × =

(2) × = =

(3) × = =9

(4) × = =

例2 化简

(1) (2) (3)

(4) (5)

分析:利用 = ? (a≥0,b≥0)直接化简即可。

解:(1) = × =3×4=12

(2) = × =4×9=36

(3) = × =9×10=90

(4) = × = × × =3xy

(5) = = × =3

三、巩固练习

(1)计算(学生练习,老师点评)

① × ②3 ×2 ③ ?

(2) 化简: ; ; ; ;

教材P11练习全部

四、应用拓展

例3.判断下列各式是否正确,不正确的请予以改正:

(1)

(2) × =4× × =4 × =4 =8

解:(1)不正确。

改正: = = × =2×3=6

(2)不正确。

改正: × = × = = = =4

五、归纳小结

本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。

六、布置作业

1.课本P15 1,4,5,6.(1)(2)。

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题

1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。

A.3 cm B.3 cm C.9cm D.27cm

2.化简a 的结果是( )。

A. B. C.- D.-

3.等式 成立的条件是( )

A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1

4.下列各等式成立的是( )。

A.4 ×2 =8 B.5 ×4 =20

C.4 ×3 =7 D.5 ×4 =20

二、填空题

1. =_______.

2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.

三、综合提高题

1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?

2.探究过程:观察下列各式及其验证过程。

(1)2 =

验证:2 = × = =

= =

(2)3 =

验证:3 = × = =

= =

同理可得:4

5 ,……

通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。

答案:

一、1.B 2.C 3.A 4.D

二、1.13 2.12s

三、1.设:底面正方形铁桶的底面边长为x,

则x2×10=30×30×20,x2=30×30×2,

x= × =30 .

2. a =

验证:a =

= = = .

21.2 二次根式的乘除

第二课时

教学内容

= (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。

教学目标

理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。

利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。

教学重难点关键

1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。

2.难点关键:发现规律,归纳出二次根式的除法规定。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题:

1.写出二次根式的乘法规定及逆向等式。

2.填空

(1) =________, =_________;

(2) =________, =________;

(3) =________, =_________;

(4) =________, =________.

规律: ______ ; ______ ; _______ ;

_______ .

3.利用计算器计算填空:

(1) =_________,(2) =_________,(3) =______,(4) =________.

规律: ______ ; _______ ; _____ ; _____ .

每组推荐一名学生上台阐述运算结果。

(老师点评)

二、探索新知

刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:

一般地,对二次根式的除法规定:

= (a≥0,b>0),

反过来, = (a≥0,b>0)

下面我们利用这个规定来计算和化简一些题目。

例1.计算:(1) (2) (3) (4)

分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。

解:(1) = = =2

(2) = = ×=2

(3) = = =2

(4) = = =2

例2.化简:

(1) (2) (3) (4)

分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。

解:(1) =

(2) =

(3) =

(4) =

三、巩固练习

教材P14 练习1.

四、应用拓展

例3.已知 ,且x为偶数,求(1+x) 的值。

分析:式子 = ,只有a≥0,b>0时才能成立。

因此得到9-x≥0且x-6>0,即6

解:由题意得 ,即

∴6

∵x为偶数

∴x=8

∴原式=(1+x)

=(1+x)

=(1+x) =

∴当x=8时,原式的值= =6.

五、归纳小结

本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。

六、布置作业

1.教材P15习题21.2 2、7、8、9.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.计算 的结果是( )。

A. B. C. D.

2.阅读下列运算过程:

,

数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简 的结果是( )。

A.2 B.6 C. D.

二、填空题

1.分母有理化:(1) =_________;(2) =________;(3) =______.

2.已知x=3,y=4,z=5,那么 的最后结果是_______.

三、综合提高题

1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

2.计算

(1) ?(- )÷ (m>0,n>0)

(2)-3 ÷( )× (a>0)

答案:

一、1.A 2.C

二、1.(1) ;(2) ;(3)

2.

三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意,

得:( x)2+x2=(3 )2,

4x2=9×15,x= (cm),

x?x= x2= (cm2)。

2.(1)原式=- ÷ =-

=- =-

(2)原式=-2 =-2 =- a

21.2 二次根式的乘除(3)

第三课时

教学内容

最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

教学目标

理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。

通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。

重难点关键

1.重点:最简二次根式的运用。

2.难点关键:会判断这个二次根式是否是最简二次根式。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题(请三位同学上台板书)

1.计算(1) ,(2) ,(3)

老师点评: = , = , =

2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________.

它们的比是 .

二、探索新知

观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:

1.被开方数不含分母;

2.被开方数中不含能开得尽方的因数或因式。

我们把满足上述两个条件的二次根式,叫做最简二次根式。

那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。

学生分组讨论,推荐3~4个人到黑板上板书。

老师点评:不是。

= .

例1.(1) ; (2) ; (3)

例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。

解:因为AB2=AC2+BC2

所以AB= = =6.5(cm)

因此AB的长为6.5cm.

三、巩固练习

教材P14 练习2、3

四、应用拓展

例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

= = -1,

= = - ,

同理可得: = - ,……

从计算结果中找出规律,并利用这一规律计算

( + + +…… )( +1)的值。

分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。

解:原式=( -1+ - + - +……+ - )×( +1)

=( -1)( +1)

=-1=

五、归纳小结

本节课应掌握:最简二次根式的概念及其运用。

六、布置作业

1.教材P15习题21.2 3、7、10.

2.选用课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。

A. (y>0) B. (y>0) C. (y>0) D.以上都不对

2.把(a-1) 中根号外的(a-1)移入根号内得( )。

A. B. C.- D.-

3.在下列各式中,化简正确的是( )

A. =3 B. =±

C. =a2 D. =x

4.化简 的结果是( )

A.- B.- C.- D.-

二、填空题

1.化简 =_________.(x≥0)

2.a 化简二次根式号后的结果是_________.

三、综合提高题

1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:

解: -a =a -a? =(a-1)

2.若x、y为实数,且y= ,求 的值。

答案:

一、1.C 2.D 3.C 4.C

二、1.x 2.-

三、1.不正确,正确解答:

因为 ,所以a<0,

原式= -a? = ? -a? =-a + =(1-a)

2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=

篇8:初三数学说课稿精选

各位老师,今天我说课的内容是:22.3 实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1 复习回顾解决课前参与

活动2 封面设计问题的探究

活动3 草坪规划问题的延伸

活动4 课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1 复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容—— 面积问题。

活动2 封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3 草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4 课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

作业布置

共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

篇9:初三数学说课稿精选

[本课知识要点]

会画出 这类函数的图象,通过比较,了解这类函数的性质.

[MM及创新思维]

同学们还记得一次函数 与 的图象的关系吗?

,你能由此推测二次函数 与 的图象之间的关系吗?

,那么 与 的图象之间又有何关系?

[实践与探索]

例1.在同一直角坐标系中,画出函数 与 的图象.

解 列表.

x … -3 -2 -1 0 1 2 3 …

… 18 8 2 0 2 8 18 …

… 20 10 4 2 4 10 20 …

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思 当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索 观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数 与 的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数 与 的图象,并说明,通过怎样的平移,可以由抛物线 得到抛物线 .

解 列表.

x … -3 -2 -1 0 1 2 3 …

… -8 -3 0 1 0 -3 -8 …

… -10 -5 -2 -1 -2 -5 -10 …

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线 是由抛物线 向下平移两个单位得到的.

回顾与反思 抛物线 和抛物线 分别是由抛物线 向上、向下平移一个单位得到的.

探索 如果要得到抛物线 ,应将抛物线 作怎样的平移?

例3.一条抛物线的开口方向、对称轴与 相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解 由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作 , 又抛物线经过点(1,1),

所以, ,

解得 .

故所求函数关系式为 .

回顾与反思 (a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向 对称轴 顶点坐标

[当堂课内练习]

1. 在同一直角坐标系中,画出下列二次函数的图象:

, , .

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线 的开口方向及对称轴、顶点的位置吗?

2.抛物线 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线 向平移 个单位得到的.

3.函数 ,当x 时,函数值y随x的增大而减小.当x 时,函数取得最 值,最 值y= .

[本课课外作业]

A组

1.已知函数 , , .

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数 的图象的开口方向、对称轴、顶点坐标.

2. 不画图象,说出函数 的开口方向、对称轴和顶点坐标,并说明它是由函数 通过怎样的平移得到的.

3.若二次函数 的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中 与 的图象的大致位置是( )

5.已知二次函数 ,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

篇10:初三上册数学课件说课稿

一.说教材

1.教材的地位与作用

《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。

2.教学目标

(1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。

(2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。

(3)通过学生间合作交流、探索,进一步激发学生的.学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。

3.教学重难点

重点:用适当的方法解一元二次方程。

难点:对解一远二次方程的基本思想是“降次”的理解。

二.说教法学法

常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。

1.学情分析

在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。

2.教法学法

本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。

所以,本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。

三.说教学过程

1. 回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)

2. 探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。教师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。

3. 归纳小结:教师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。

4. 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。

5. 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。

篇11:初三下数学全等三角形识别说课稿

初三下数学全等三角形识别说课稿

一、教材分析

我说课的内容是华东师大版义务教育课程标准实验教科书,数学九年级上册第二十四章图形的全等的第二节全等三角形的识别的第四课时――利用角边角、角角边说明两个三角形全等。

《数学课程标准》对本节的要求是:经历三角形全等识别方法的探索过程,并会运用这些方法识别三角形全等。

本章是在前面学习了相似三角形、三角形的平移、旋转、轴对称变换基础上的学习。图形的全等在生产、生活、科学技术方面有广泛应用。本章第一节图形的全等和第二节全等三角形的识别两部分是一个整体。第一节给出一般概念,第二节是对特殊图形的深入研究。全等三角形的识别既是前面所学知识的延伸与拓展,又是后继学习的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。本节课在探索ASA、AAS全等三角形的识别方法过程中渗透了分类及转化的数学思想,掌握好全等三角形的识别方法这个有效的工具,就找到了联系很多初中几何图形之间的纽带,找到了解决很多综合型问题的钥匙。

基于对教材的分析,我确定了本节课的教学重点是:探索全等三角形的识别方法,会运用ASA、AAS方法识别三角形全等。

二、学情分析

从学生学习的心理基础和认知特点来说:学生已经学习过相似三角形和三角形的几种全等变换,特别是经过SSS、SAS的操作探究之后已经有了一定的数学化能力,能进行数学建模和简单的解释应用。而且初三学生已经从感性认识过渡向理性认识,有一定的合情推理能力。但学生在具体问题,特别是复杂的图形中综合运用多种方法来识别全等三角形、构造全等三角形,可能会产生一定的障碍。

因此我对本节课的设计是采用自主探究与合作交流相结合的.模式,通过操作探究、开放性问题等各种数学活动,让学生独立思考,合作交流,从而引导其自主学习。特别是在练习的配置上,为了防止学生对纷繁的图形产生杂乱的感觉,所有的练习都是在例题图形的基础上做的变式,使学生更易于理解、接受,在变化中寻求统一,在变化中寻求发展。

基于对学情的分析,我确定了本节课的教学难点是:综合运用多种方法识别三角形全等。

三、教学目标

在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:

1、能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。

2、会运用ASA、AAS识别三角形全等,能在探索及说理过程中进行有条理的思考,发展合情推理能力,渗透分类和转化的数学思想。

3、能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。

四、教学手段

本节课借助多媒体设备,通过设计恰当的问题情境,引导学生主动参与探究,采用剪刀、卡纸、刻度尺、量角器等学具,进行操作确认、合作交流。并利用几何画板课件,对习题图形进行变式,在练习上设计了大量开放性问题,引发学生深层思考,使学生经历操作确认―建立模型―解释应用――拓展反思过程,在原有基础上数学能力得到提高。

五、教学过程

本节课我设计了四个活动:

活动一、创设情境、引出新知

首先放一组图片,介绍金字塔的背景。

师生活动:教师通过金字塔这个对于学生神秘而又感兴趣的问题情境,激发学生的探究欲望,为本节课的继续探索做好准备。

问题1:经过科学家测量,这个金字塔的四个侧面的三角形是全等的,你认为测量哪些数据能方便而快捷的识别这些三角形是全等的呢?

师生活动:教师提出问题(1),学生可以畅所欲言的来回答,提出猜想。

教学效果预估与对策:如果学生猜想的不准确,教师可以提出测量三角形与地面相交的一边与夹这边的两角,是否可行。

设计意图:学生提出猜想的同时明确本节课的学习任务。

问题2:具备两角一边分别对应相等的两个三角形是否全等呢?这就是我们本节课要来探究的内容。

设计意图:引出新课

活动二、操作探究、得出结论

问题1:已知一个三角形的两角及一边,有几种可能的情况?

师生活动:在学生回答出两角夹一边、两角及其中一角的对边后,提出问题2。

设计意图:渗透分类的数学思想。

问题2:针对第一种情况,你有什么办法确认这种情况下的两个三角形是否全等呢?4人一个小组进行实验操作,大家要注意分工合作。

师生活动:这个问题设计的比较开放,教师提示可使用刻度尺、量角器、剪刀、卡纸等物品。学生以小组为单位自我确定方案,合作交流、比较确认。

教学效果预估与对策:这个环节是突破重点的重要过程,因此要给学生充分的时间去亲身体验、去感受。这个环节以学生画图、剪纸为主线展开探究活动,注重ASA条件的发生过程。在此过程中,教师应关注(1)学生在操作过程中的参与意识,合作交流能力。(2)学生是否能提出探索方案,并通过观察、比较得到结论。

设计意图:培养学生合作交流意识,提高学生探究问题的能力。同时体现了教学目标中的“能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。”

问题3:通过刚才大家的操作探究得到了什么结论呢?

师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。

教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够得出结论,如果不全面教师要耐心加以引导。

问题4:对于第二种情况,你怎样来确认这两个三角形是否全等呢?

设计意图:让学生调动思维,认识到除了可以仍然通过操作来确认,还可以通过三角形内角和定理将两角及其一角的对边转化成两角夹边的情况,用推理的方法得到。也体现了教学目标中渗透转化的数学思想。

问题5:通过同学们的推理又得到了满足什么条件的两个三角形是全等的呢?

师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。并且师生共同总结出具有两角一边对应相等的两个三角形是全等的,无论这边是夹边还是某一角的对边。

活动三、解释应用,拓展延伸

问题1:现在同学们能来解决金字塔的问题了吗?

师生活动:师生共同解决引例中的问题,破解学生心中的疑团。

教学效果预估与对策:预计学生能比较容易的解决这个问题。

设计意图:使学生进一步体会到全等的实际应用价值,树立知识来源于实践又用于实践的观念。

问题2:到目前为止,我们学习了哪些全等三角形的识别方法?

设计意图:在教学中及时总结,目的是随时巩固新知识,完善学生的认知结构。并提醒学生在具体问题中要注意选择合适、便捷的方法。

练习:填空

(1)已知EB=EC,∠B=∠C,△EBD≌△ECA的根据是()

(2)已知BD=CA,∠B=∠C,△EBD≌△ECA的根据是()

(3)已知EB=EC,ED=EA,△EBD≌△ECA的根据是()

设计意图:加深学生对本节课知识的掌握并提示学生在寻找全等条件时,要注意挖掘题中的隐含条件。体现了教学目标中的“会运用ASA、AAS识别三角形全等”。

例:如图,∠ABC=∠DCB,

∠1=∠2,试说明△ABC≌△DCB.

师生活动:例题中的已知条件比较清晰、明了,难度不大,可以让一名学生板演,其余学生共同评价。

问题:在这两个三角形全等的基础上,你还能得到什么结论?

教学效果预估与对策:学生可能会得到线段相等、角相等、三角形全等等结论,教师要给予充分的肯定。

设计意图:开放性结论的设置可以引起学生的多种想法和深层思考。同时强调全等的作用,全等可以作为说明两个角相等、两条线段相等的重要途径。也体现了“能在探索及说理过程中进行有条理的思考,发展合情推理能力。”的教学目标。

例题变式1(条件不变,用几何画板进行图形的变式)

问题1:条件不变∠3=∠4,∠1=∠2,△ABC≌△DCB吗?

师生活动:教师运用几何画板,将例题中的点D沿BC翻折下来,学生思考,口述。

问题2:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?

师生活动:教师运用几何画板,将变式(1)中的一个三角形进行平移。

问题3:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?

师生活动:教师运用几何画板,将变式(2)中的一个三角形进行旋转。

设计意图:经过这组题目,既对利用ASA、AAS方法识别三角形全等加以巩固,突出了本节课的重点,也使学生对于平移、旋转、轴对称变换和全等的关系有更进一步的理解。

例题变式2:

已知:EB=EC,点A在BE上,点D在CE上,给CA和BD赋予什么条件能使△ABC≌△DCB或使△EBD≌△ECA?

师生活动:这个练习采用了对问题的条件进行开放,以小组比赛的方式进行。

教学效果预估与对策:学生可能添加的条件是多种多样的,如:CA和BD是三角形的两条中线、高、角平分线等。在此环节中,教师应关注以下三点:

(1)学生对本节所学的ASA、AAS的理解程度。

(2)学生是否能顺利挖掘公共角、公共边这些隐含条件。

(3)是否有出现添加CA=BD,然后运用“SSA”来说明两个三角形全等这样的错误。

设计意图:这个习题的设置能培养学生观察图形和分析能力,同时也体现了教学目标中的“能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验数学的价值。”

变式3:探究升级

已知:EB=EC,点A在BE上,点D在EC的延长线上,AD交BC于F,说明点F是AD的中点.

设计意图:这道题有一定难度,用于满足不同层次学生的学习需求。通过作不同的辅助线,构造全等三角形或相似三角形来解决问题。这道题综合运用了本节和以前所学的知识,既可以培养学生的发散思维能力和创新意识,又使学生构造出比较完整的知识体系,体现了解决问题策略的多样性的教学目标。可以给学生一定的讨论时间,使他们的思维碰撞、思维互补,更大激发学生的积极性。没有完成的部分可以作为课下研究的课题,调动学生的研究兴趣。

活动4总结反思,布置作业

我会以采访的形式提出两个问题:

1.通过本课的学习,你学到了哪些新的知识?

2.在学习这些知识的过程中,你的经验与教训是什么?

师生活动:教师提出问题,学生回答,互相补充。

教学效果预估与对策:预计学生能够概括出本节知识,总结出经验和教训,并有所收获。教师要加以引导,师生之间相互完善。

设计意图:通过第一个问题,学生可以回顾出本节课所学到的知识;通过第二个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。

布置作业:

必做P91―4、5题。

选做用多种方法完成(探究升级)思考题。

设计意图:分层布置作业,使学生在原有的基础上都能得到提高。

点评:本稿是汤琦老师参加xxxx年辽宁省初中数学学科优秀课观摩评比活动获得一等奖的说课稿,她在教学内容、教学目标、学情分析和教学过程设计上作了较详细地说明,尤其是在学情分析和教学过程设计上把握到位,较好的体现了说课的基本要求。

在学情分析中,根据自己的教学经验、数学内在的逻辑关系以及思维发展理论,对本课内容在教与学中可能遇到的障碍进行预测,并对出现障碍的原因进行分析,做到言之有物,以具体数学内容为载体进行说明。

在教学过程设计中,做到与设定的教学目标相呼应,并在每一个问题后,都写出了问题的师生活动、设计意图、教学效果预估及对策,如问题3的教学效果预估与对策是在预知多数学生在经历了上述的探索过程后能够得出的结论,如果不全面教师要耐心加以引导。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。