“Sparkling”通过精心收集,向本站投稿了8篇电脑电源工作原理,下面是小编给大家带来关于电脑电源工作原理,一起来看看吧,希望对您有所帮助。

篇1:电脑电源工作原理
ATX开关电源的原理框图:
上图工作原理简述:
220V交流电经过第一、二级EMI滤波后变成较纯净的50Hz交流电,经全桥整流和滤波后输出300V的直流电压,300V直流电压同时加到主开关管、主开关变压器、待机电源开关管、待机电源开关变压器。
由于此时主开关管没有开关信号,处于截止状态,因此主电源开关变压器上没有电压输出,上图中的-12V至+3.3V,5组电压均没电压输出。
但我们同时注意到,300V直流电加到待机电源开关管和待机电源开关变压器后,由于待机电源开关管被设计成自激式振荡方式,待机电源开关管立即开始工作,在待机电源开关变压器的次级上输出二组交流电压,经整流滤波后,输出+5VSB和+22V电压,+22V电压是专门为主控IC供电的。+5VSB加到主板上作为待机电压。当用户按动机箱的Power
启动按键后,(绿)色线处于低电平,主控IC内部的振荡电路立即启动,产生脉冲信号,经推动管放大后,脉冲信号经推动变压器加到主开关管的基极,使主开关管工作在高频开关状态。主开关变压器输出各组电压,经整流和滤波后得到各组直流电压,输出到主板。但此时主板上的CPU仍未启动,必须等+5V的电压从零上升到95%后,IC检测到+5V上升到4.75V时,IC发出P.G信号,使CPU启动,电脑正常工作。当用户关机时,绿色线处于高电平,IC内部立即停止振荡,主开关管因没有脉冲信号而停止工作。-12至+3.3的各组电压降至为零。电源处于待机状态。
输出电压的稳定则是依赖对脉冲宽度的改变来实现,这就叫做脉宽调制PWM。由高压直流到低压多路直流的这一过程也可称DC-DC变换,是开关电源的核心技术。采用开关变换的显著优点是大大提高了电能的转换效率,典型的PC电源效率为70―75%,而相应的线性稳压电源的效率仅有50%左右。
保护电路的工作原理:
在正常使用过程中,当IC检测到负载处于:短路、过流、过压、欠压、过载等状态时,IC内部发出信号,使内部的振荡停止,主开关管因没有脉冲信而停止工作。从而达到保护电源的目的。
由上述原理可知,即使我们关了电脑后,如果不切断交流输入端,待机电源是一直工作的,电源仍有5到10瓦的功耗,
内部电路结构电源的内部电路分为抗干扰电路、整流滤波电路、开关电路、保护电路、输出电路等。
抗干扰电路电源的抗干扰电路位于电源输入插座后,由线圈和电容组成一个滤波电路(如图1 ),它可以滤除电源线上的高频杂波和同相干扰信号,构成了电源抗电磁干扰的第一道防线。由于这部分电路不影响电源的正常工作,很多便宜的电源会把它省略。随着3 C 认证制度的实施,在这部分开始增加P F C (功率因数校正)电路,凡是3 C 认证的电脑电源,必须增加P F C 电路。PFC 电路可以减少对电网的谐波污染和干扰。PFC 电路有两种:有源PFC 和无源P F C 。无源P F C 一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,有源P F C 由电感电容及电子元器件组成,能够获得更高的功率因数,但成本也相对较高。有源P F C 电路具有低损耗和高可靠性等优点, 可获得高度稳定的输出电压,因此,有源P F C 的电源不需要采用很大容量的滤波电容。PFC电路是面已经提到PFC,PFC电路称为功率因素校正电路,功率因素越高,电能利用率就越大,目前PFC电路有两种方式:无源PFC(对称作被动式PFC)和有源PFC(主动式PFC)。电+脑*维+修-知.识_网(w_ww*dnw_xzs*co_m)
无源PFC
无源PFC:通过一个笨重的工频电感来补尝交流输入的基波电流与电压的相位差,强逼电流与电压相位一致。无源PFC效率较低,一般只有65%―70%,且所用工频电感又大又笨重,但由于其成本低,许多ATX电源都采用这种方式(参见上图)。
有源PFC
有源PFC:有源PFC由电子元器件组成,体积小重量轻,通过专通的IC去调整电流波形的相位,效率大大提高,达95%以上。采用有源PFC的电源通常输入端只有一只高压滤波电容,同时由于有源PFC本身可作辅助电源,因而可省去待机电源,而且采用有源PFC的电源输出电压纹
极小。但由于有源PFC成本较高,所以通常只有在高级应用场合才能见到。如下图所示:
实物图如下图所示:
篇2:电脑显卡工作原理介绍
显卡全称显示接口卡,又称显示适配器,是计算机最基本配置、最重要的配件之一。这里给大家分享一些关于电脑显卡工作原理介绍,希望对大家能有所帮助。
显卡的简介
显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD超微半导体和Nvidia英伟达2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。
电脑显卡怎么看
首先要再电脑桌面上面鼠标右键点击我的电脑图标,然后在下拉菜单上面点击属性
点击属性以后进入到属性窗口,在属性窗口上面点击硬件
点击硬件以后进入到硬件窗口,在窗口上面的设备管理器栏里面点击设备管理器按钮
点击设备管理器按钮以后打开设备管理器窗口,在窗口上面点击最下面的’显示卡左侧的加号
点击显示卡左侧的加号以后就会看到自己的电脑上面配置的显卡是什么样的了
显卡的工作原理
数据data一旦离开CPU,必须通过4个步骤,最后才会到达显示屏:
1.从总线Bus进入GPUGraphics Processing Unit,图形处理器:将CPU送来的数据送到北桥主桥再送到GPU图形处理器里面进行处理。
2.从 Video Chipset显卡芯片组进入 Video RAM显存:将芯片处理完的数据送到显存。
3.从显存进入Digital Analog Converter = RAM DAC,随机读写存储数—模转换器:从显存读取出数据再送到RAM DAC进行数据转换的工作数字信号转模拟信号。但是如果是DVI接口类型的显卡,则不需要经过数字信号转模拟信号。而直接输出数字信号。
4.从DAC进入显示器Monitor:将转换完的模拟信号送到显示屏。
显示效能是系统效能的一部分,其效能的高低由以上四步所决定,它与显示卡的效能Video Performance不太一样,如要严格区分,显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是在显示卡的内部。第一步是由CPU运算器和控制器一起组成的计算机的核心,称为微处理器或中央处理器进入到显示卡里面,最后一步是由显示卡直接送资料到显示屏上。
装显卡后核显还工作吗
以电脑为例,装显卡后核显还工作,一般都是独显来处理显示运算任务,然后由核显来输出至显示器,会省电一些。
篇3:电脑主板的工作原理
相信用过电脑的人都知道主板这个词,那么电脑主板的工作原理呢?想必大家都不是很了解,这里给大家分享一些关于电脑主板的工作原理,希望对大家能有所帮助。
主板的工作原理是什么
在电路板上面,是错落有致的电路布线;在上面,则为棱角分明的各个部件:插槽、芯片、电阻、电容等。当主机加电时,电流会在瞬间通过CPU、南北桥芯片、内存插槽、AGP插槽、PCI插槽、IDE接口以及主板边缘的串口、并口、PS/2接口等。随后,主板会根据BIOS基本输入输出系统来识别硬件,并进入操作系统发挥出支撑系统平台工作的功能。
主板不工作怎么办
我们在给主板通电测试的时候不要连接硬盘,我们只要装好内存和CPU就可以了,因为那样容易损坏硬盘,如果内存和CPU没有问题,再连接硬盘进行测试。
1:外频或倍频跳线出错。
外频或倍频跳线出错,对于810的主板,很多跳线需要我们自己设置,包括外频和倍频,赛扬的外频一般是66,奔腾二,三的是66或100.
2:主板不能识别CPU外频。
很多主板是不能自动识别CPU外频的,这个时候我们要预设从新预设外频,使其匹配,如果预设跳线与CPU不符合,那么就会照成主板不工作,但是CPU风扇会转动,只要从新预设跳线就可以解决问题了。
3:主板供电问题。
如过主板供电与CPU电压不符也会出现这个问题。电压过高可能损坏CPU,电压过低会使CPU不能工作。
主板通电不工作的解决方法
1.判断电脑电源好坏
第1步,先接好主机电源ATX,按下主机开关按钮,如果不能通电,再把电源连接主板的电源插头拔下来。
第2步,用镊子把电源的绿线和黑线短路,检査看电源的风扇转不转。如果电源风扇转,说明电源是好的,故障在主机方面。
第3步,判断电脑主机开关好坏。ATX电源线和主板接好,把主板上的开关针、复位针等拔起,用镊子短路开关针触发电源开关,看能小能开机,如果能,就说明是主机箱的开关坏,把主机箱开关拆出清洗。
第4步,如果短路开关针触发电源还是不能开机,说明主板真的不能触发开机,把主板从机筘_.拆出来检修。
第5步,把主板拆下来,先把板上的灰尘清扫干净,以免防碍检修。先目测一下,看主板上面有无元器件烧坏,鼓包,电路板上有无烧焦、断线的。
第6步,把主板放好,插上CPU假负载,插好电源。插上主板测试卡,做好检修准备。
2.检査触发电路
当主板不通电时,首先通过强加电的方法定位主板小通电的具体故障电路。也就是说直接短路接绿线和黑线。如果此时可以加电开机说明故障在软开机电 路本身。如果此时不可以加电,说明有严重的短路现象。ATX电源内部保护,它不允许自己所输出的电压对地,所以电源内部自动保护了。
可能短路的有红线短路,黄线短路,紫线短路或者是CPU的主供电端短路。以上的短路现象,在实际主板故障中出现任何一种都会出现强行加电而加不上电。
对于红线短路可能的原因有:主板上某个场效应管短路或者是电源管理器短路,还有门电路短路或者是I/O短路,还有南桥短路,也有可能是5V滤波 电容短路。测一下5VATX对地数据或测供电管对地数?a href='//' target='_blank'>悼词欠穸缘囟搪妨恕U?5亩缘厥?凳?80U左右,如果明显测供电管对地0兆欧或接近0兆欧,表明 主板出现芯片对地短路现象造成ATX保护。
对于黄线12V短路,通常是电源管理本身和12V滤波电容短路,对于12V短路也有可能是串口芯片有问题。
对于紫线短路可能是南桥、I/O、场效应管和门电路,以及紫线滤波电容和紫线稳压二极管造成。
对于CPU主供电短路可能是场效应管,电源管理器和主供电滤波电容。对于P4后的主板,CPU主供电短路也有可能是北桥短路。测出对池短路的ATX电源线,再沿着线跑电路找到相关损坏的元器件换掠。
3.检査软开机电路
如果强行加电可以加电,则故障在软开机故障本身,此时应重点软开机电路本身和软开机电路有联系的其他一些电路。
1COMS电池。有些主板,电池电力不足也不能开机,怛大部分的主板没电池也不影响开机。正常愔况下COMS电池提供2.6V2.6~3.3V以上的电压。
2COMS®践。COMS跳线不正确也不能开机,一般是跳在一二针上是正确的,第三针是接地。如果跳在第二、第三针上就不能开机。注氬有的主线跳错以后,可以开机,因为实时晶振供电是由紫线提供的。
3测POWER开关针有无3.3V或5V电压,POWER开关针一针是接地,一针由紫5V供电,中间会经过一些电路、电阻等电子元件。如果没有5V或3.3电压到开关针,跑电路,从ATX电源紫5V到POWER之间的元器件看那个损坏,发现损坏的然后换掉。
4测南桥芯片旁边的晶振,看是否起振。起振电压为0.5V和1.6V左右,如果没有,就更换晶振旁边的滤波电容以及晶振元件。还有一种用手 去处摸实时晶振的两引脚,手触摸主板后可以加电,可以工作。
但是实时晶振损坏以后,你摸到实时晶振后可以加电,怛是CPU不工作。这时候还是继续用手触碰 实时晶振两个引脚,让加电又不过内存,再用于处摸实时晶振的两个引脚,电压乂会过内存。这种就是典型的实时晶振外围电路损坏的现象。
这样的主板比较难修。 实时晶振的电荞电路要求非常严格,损坏以后尽董用颜色和大小相同的实时晶振,还有偕振电容来更换,否则的话就会更换不成功。
篇4:电脑显卡的工作原理
显卡是电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备。你知道电脑显卡的工作原理有哪些吗?这里给大家分享一些关于电脑显卡的工作原理,希望对大家能有所帮助。
显卡的简介
显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。显卡接在电脑主板上,它将电脑的数字信号转换成模拟信号让显示器显示出来,同时显卡还是有图像处理能力,可协助CPU工作,提高整体的运行速度。对于从事专业图形设计的人来说显卡非常重要。 民用和军用显卡图形芯片供应商主要包括AMD超微半导体和Nvidia英伟达2家。现在的top500计算机,都包含显卡计算核心。在科学计算中,显卡被称为显示加速卡。
显卡的工作原理
数据data一旦离开CPU,必须通过4个步骤,最后才会到达显示屏:
1.从总线Bus进入GPUGraphics Processing Unit,图形处理器:将CPU送来的数据送到北桥主桥再送到GPU图形处理器里面进行处理。
2.从 Video Chipset显卡芯片组进入 Video RAM显存:将芯片处理完的数据送到显存。
3.从显存进入Digital Analog Converter = RAM DAC,随机读写存储数—模转换器:从显存读取出数据再送到RAM DAC进行数据转换的工作数字信号转模拟信号。但是如果是DVI接口类型的显卡,则不需要经过数字信号转模拟信号。而直接输出数字信号。
4.从DAC进入显示器Monitor:将转换完的模拟信号送到显示屏。
显示效能是系统效能的一部分,其效能的高低由以上四步所决定,它与显示卡的效能Video Performance不太一样,如要严格区分,显示卡的效能应该受中间两步所决定,因为这两步的资料传输都是在显示卡的内部。第一步是由CPU运算器和控制器一起组成的计算机的核心,称为微处理器或中央处理器进入到显示卡里面,最后一步是由显示卡直接送资料到显示屏上。
独显接口的介绍
AGP接口
AGPAccelerate Graphical Port,加速图像处理端口接口是Intel公司开发的一个视频接口技术标准,是为了解决PCI总线的低带宽而开发的接口技术。它通过将图形卡与系统主内存连接起来,在CPU和图形处理器之间直接开辟了更快的总线。其发展经历了AGP1.0AGP1X/2X、AGP2.0AGP4X、AGP3.0AGP8X。最新的AGP8X其理论带宽为2.1Gbit/秒。到,已经被PCI-E接口基本取代大部分厂家已经停止生产。
PCI-E接口
PCI Express简称PCI-E是新一代的总线接口,而采用此类接口的显卡产品,已经在正式面世。早在的春季“英特尔开发者论坛”上,英特尔公司就提出了要用新一代的技术取代PCI总线和多种芯片的内部连接,并称之为第三代I/O总线技术。随后在20底,包括Intel、AMD、DELL、IBM在内的20多家业界主导公司开始起草新技术的规范,并在完成,对其正式命名为PCI Express。
PCI接口
PCIPeripheral Component Interconnect接口由英特尔Intel公司1991年推出的用于定义局部总线的标准。此标准允许在计算机内安装多达10个遵从PCI标准的扩展卡。最早提出的PCI总线工作在33MHz频率之下,传输带宽达到133MB/s33MHz __32bit/s,基本上满足了当时处理器的发展需要。随着对更高性能的要求,1993年又提出了64bit的PCI总线,后来又提出把PCI 总线的频率提升到66MHz。PCI接口的速率最高只有266MB/S,之后便被AGP接口代替。不过仍然有新的PCI接口的显卡推出,因为有些服务器主板并没有提供AGP或者PCI-E接口,或者需要组建多屏输出,选购PCI显卡仍然是最实惠的方式。
篇5:说说电脑机箱电源
机箱和电源分别是电脑主机的外衣和动力源泉,以前在电脑DIY配置中往往被忽略,似乎只是品牌机才需要考虑的问题,但随着DIYer水平的提高和电脑组件耗电及发热量的剧增,大家也渐渐开始注重电源和机箱的问题,其实机箱电源虽小但其中学问却不少。
机箱被称电脑的外衣,除了外观的花哨外更注重的应该是机箱的结构和品质。优质的机箱常采用具有一定厚度的SECC冷镀锌钢板制成,面板采用ABS或HIPS工程塑料压制而成。电源采用开关电源,较传统线性电源具有体积小效率高的特点。
机箱电源结构与主板密不可分,主板是机箱中最大的房客之一,它的构造直接影响到机箱的结构,往往主板的制造与机箱电源具有统一的结构规范约束。
从外观上看AT机箱与ATX机箱最大的区别在于机箱背面接口的布局,由于ATX结构的主板规范是将所有的I/O端口直接焊接在主板上,位置相对固定,而AT结构的主板大多只在主板上提供端口的引出插针,通过界面卡或挡板引出,所以ATX主板绝对不可能装在常规AT机箱里,但AT主板可以轻易在ATX的机箱里安家(但必须提供ATX电源接口才能工作)。
在早期的ATX规范尚不够统一,所以有些ATX机箱提供了两种布局的I/O背板以适应不同的ATX主板。电源部分同样也有AT和ATX结构之分,他们间有本质的差别。
第一是电源提供的主板电源线,AT结构的6芯P8和P9分离式电源插头在ATX结构中被一个20芯的双列插头所代替,并带有反插保护,可以有效的防止错插或误插电源接线对主板带来毁灭性的打击;
第二,ATX电源输出电压组在AT电源的正负12V和5V外还提供了一路+3.3V电压输出,直接为部分3.3V的设备供电;
第三,ATX电源对整体电源控制较AT电源也不同,在AT电源中少不了电源开关的黑粗线,直接物理控制电源交流电的通断,而在ATX电源中却去除了这组线,机箱面板上的电源开关直接到主板的PowerSwitch引出针上,这样一来粗看是电源开关的优先级降低了,但正是通过此项电源设计改革实现了电脑的软关机。
ATX系统在WINDOWS中屏幕出现现在您可以安全地关闭计算机了的时候,ATX电源会自动切断对主板的供电,同时关闭自身绝大部分电路的工作,等待主机的POWER键再次发出启动的信号,不像AT电源每次开关机都要按动POWER键。
第四,ATX电源内部风扇的风向依照不同版本也有不同。所有的AT结构电源内置的风扇都采取将电源内部的热空气向外抽的方法。
在ATX1.0规范的制定中人们想通过改变传统风扇的位置和风向进一步提高散热效果,由于ATX结构将CPU和内存设计在电源出风口后部,希望能更有效起到降温作用,同时CPU和其他设备也能受到它的余荫,所以将风扇从机箱后部移往靠近CPU的机箱内侧。
但不久人们发现这样的做法效果并不明显,而它的副作用十分令人头痛。在大部分家庭和办公室的环境远达不到专业机房洁净要求,风扇向内送风的同时大大提高了电源以及CPU周围灰尘积聚的速度,要求用户定期清扫电源内部和主机板是不现实的,所以在ATX2.0规范以后又将电源风扇安置在原先的机箱后部位置并保持向外排风。
电源根据电源标称功率也有200W、230W、250W、300W等几个档次,分别提供不同的最大输出电流。由于电脑配件功耗越来越大,内部设备也有增加的趋势,所以电源的承载功率也有加大的必要。
按照机箱的外形大致可以分为卧式机箱、立式机箱和塔式机箱。卧式机箱和立式机箱没有大的区别,只是立式机箱没有高度限制,理论上可以提供更多的驱动器槽,而普通的卧式机箱受厚度限制,一般只提供一个3.5寸槽和两个5寸槽,虽然在当前的标准配置中还够用,但从发展的眼光看起来似乎有些欠缺。
卧式机箱多为商用机所采用。有的说法采用立式机箱更节省空间,个人认为大多数卧式机箱的上部都放置显示器而立式机箱与显示器必须独立放置,是否真的节省空间有待商榷。
立式机箱按照机箱提供的驱动器槽的多少分为全高、四分之三高、半高、MicroATX等。其中MicroATX型配合MicroATX主板只分别提供一个3.5寸和5寸驱动器槽,扩展性较差,不过作为入门级的设计也无可厚非。
有部分机箱模仿品牌机的设计,将1.44M软驱面板与机箱融为一体,增加机箱的美观程度。不过标准的软驱必须卸下面板才能安装在机箱的特定位置,不少此类机箱内置软驱一起出售。
由于卧式机箱和立式机箱各有所长,客户的口味也不尽相同,有的机箱设计成卧式/立式两用机箱,方便用户自由选择。一般5寸托架采用分离式设计,这样可以在机箱改变放置形式时使CD-ROM保持水平。
在机箱的驱动器区安装一块滑板(有的采用半透明材料),可以提高CD-ROM等设备的防尘能力,外观上给人以品牌机的韵味。有的机箱还给盖子加上小锁,颇有工控机和服务器的味道。
出于对经常需要打开机箱盖和更换驱动器的用户照顾,有的商家设计了无螺丝固定化的机箱,大部分常用连接全部采用锁扣镶嵌式结构,安装驱动器采用抽屉化结构,打开机箱和卸下驱动器可以不用螺丝刀。
传统的机箱内部靠近面板只有一个机箱风扇的位置,为了满足超频者的需求,部分机箱在插卡和驱动器位置附近也预留摆放机箱风扇的空间,省得DIYer用胶带自行粘贴,既不方便又不安全。
有的厂家出售机箱的附件,利用空余的5寸驱动器挡板槽安装特制挡板散热风扇(相当于在5寸驱动器挡板上打洞后并排安装两个类似CPU风扇的装置),帮助机箱高位通风,对于全高的机箱比较有效。
有的机箱在一个5寸驱动器托价中内置一个活动硬盘抽屉装置。可以将系统硬盘或者第二硬盘放置其中,在机箱内部活动硬盘盒提供与标准硬盘相同的电源和数据接口,装机时就像安装一块普通硬盘,即使没有实际的硬盘也没有关系,如果以后碰巧有人带硬盘上门交换数据时,就不必大动干戈拆机开箱了。
硬盘的抽屉盒可以容纳所有标准的3.5寸IDE硬盘,抽屉盒内接口采用类似SCSI的接口结构不易磨损。由于此硬盘盒与机箱是一体化设计,固定在机箱内部,所以不必像其他零售的活动硬盘盒做成一个严严实实的小盒子,它在机箱内的部分基本上只是一个骨架和一些导轨,抽屉硬盘盒也有所改进,增加了表面*面积,尽量减小盒体对硬盘的散热影响,
半导体制冷片利用电子的原理产生极片两端的温差,可以有效的降低CPU温度,不过由于单纯的半导体制冷片并非为电脑专门设计,所以存在诸多问题,最突出的就是电源功率、制冷片结露和制冷片自身散热问题。
由此有的厂家设计并投产了以电子制冷技术为核心的专用机箱,套件包括标准机箱+大功率的特制电源+特制带温控的半导体制冷片+特制的导热管。由于是带有温控结构可以使CPU恒温在20-25度,采用多层控制结构起到制冷但不结露的效果,对于制冷片产生的大量热量采用特制的导热管通到电源内部,最后由风扇将热气排出主机,有效的控制了机箱内的环境温度。总体上可以称为半导体制冷器应用的成功典范。
机箱外壳是用冷镀锌钢板制成,钢板的厚度直接关系到机箱的隔音和抗电磁波辐射的能力以及机箱的刚性。
机箱的面板上一般由三个指示灯,从286时代就代表了Power、HD、Tubro三个状态,分别代表电源接通、IDE上有数据传送、加速模式。
不过在时下的系统中CPU总是在全频状态下工作,目前除了部分移动笔记本电脑为了省电还在使用可手动切换全速/低速模式外,其他的台式电脑超频尚有所不及很难想象还有用户降频使用,所以在机箱上Tubro指示灯基本失去了他原有的含义。有的主板给他定义了诸如睡眠等其他定义,在部分机箱上甚至被省略了!
在486和早期奔腾时代的机箱曾经风行在机箱上用两至三个发光八字管显示工作频率,其时数字窗口显示的具体频率数是由人为通过跳线设定的,与主板的真实工作频率没有直接的关系,原意是用来告知用户当前用户采用全速/低速模式的具体工作频率。
既然是手工调线设定如果使用Pentium100的CPU也完全可以大胆的设定成150、166等数字,看着心理平衡些。随着低速模式的消亡,频率显示组件也渐渐被淡忘。
在机箱上有个凹陷的位置是给品牌电脑贴商标用的,对于兼容机用户可以贴上CPU的小贴牌,显示一下自己的电脑所用的CPU类型。
机箱上除了最常用的电源开关控制键,还有一个对计算机十分有用的按键RESET键,所有的主板都提供了RESET跳线,谁也不能保证计算机没有死机的时候,采用RESET键重新启动系统对主板的冲击远小于使用Power。
RESET键曾经一度被忽视,甚至被某些机箱省略,但它的作用已深入人心在不少新款的机箱中再次出现,有的新款机箱对此按键做了改进采用内凹的按键方式,RESET键属于非常用键,这样的设计可以方式误触。
在老式机箱上很多还有一个键盘锁,以前用来通过控制键盘是否允许被使用,达到外人无法操作电脑的目的,虽然大部分钥匙都是通用的,但在当时还是起到不小的作用。不过目前键盘早已不是唯一的常用外部输入设备,键盘锁也渐渐消亡。
全新的机箱在驱动器槽前有挡板,在安装驱动器时可以将其卸下,设计合理的机箱前塑料挡板采用塑料倒钩的连接方式,方便拆卸和再次安装。在机箱内部一般还有一层铁质挡板可以一次性的取下。
打开机箱内部看以看到一些带有插头的连线,主要是Power键和RESET键以及一些指示灯的引线。除此之外还有一个小型喇叭称之为PCSPEAK,用来发出提示音和报警,主板上都有相应的插座。
位于机箱的前部有驱动器托架,CD-ROM和小驱都安装在这些托架上,硬盘原本设计安装在机箱的尾部,不过有人认为太接近电源,容易受到电源内部电磁场的影响,所以更多的用户愿意将硬盘安装在3.5寸小驱托架上。
有的机箱在下部有个白色的塑料小盒子,是用来安装机箱风扇的,塑料盒四面采用卡口设计,只需将风扇卡在盒子里即可,不必大动螺丝刀。部分体积较大的机箱还会预留机箱第二风扇、第三风扇的位置。
在立式机箱的一侧和卧式机箱的底部有一块可以拆卸的铁板,它是用来固定主板的,固定方式也有较大的发展,从一开始的螺钉固定发展到如今流行的塑料固件,既方便又绝缘。
电脑开关电源外观上看只是一个带有很多引线的铁盒子。电源内部的构造和原理属于电子学的范畴在此从略。电源的后部两个插座分别用来连接外界电源和为显示器提供插座,一般雄性插座为电源插座。在两个插座间有个电压设定开关用于切换110V与220V两种电压制式,在国内普遍采用220V电压制式,如果错误的设定在110V档上会对电源造成伤害。
有许多ATX电源取消了显示器插座(以前的显示器插座与电源的关系不大,一般只是在电源的交流经进线口上并联一组电源线,完全没有经过开关电源内部的控制,对于优秀的高档电源最多只是占了带滤波器一体化电源插座的光,多了一道电源滤波而已),并在此位置上安装了电源开关,这到是一个真正的物理电源切断开关,与ATX机箱前的POWER键有本质的区别。
在部分电源的后部透过档板可以看到一个电源风扇,负责将电源内的热空气抽出(也有部分是向内吹风的)。打开电源内部可以看到有两块较大的散热片,散热片上的大功率管的性能和极限参数直接影响到电源的安全承载功率和产品成本,电源功率余量的大小与具体功率管的型号有着重要的关系,一部电源是否货真价实打开铁盒内部就能一目了然,高档电源的220V交流输入插座采用带有滤波器一体化插座虽然为此将增加近二十元的成本,但对于净化电源吸收浪涌电流都有好处。
ATX电源的提供多组插头,其中主要是二十芯的主板插头、四芯的驱动器插头和四芯小驱专用插头。二十芯的主板插头只有一个且具有方向性,可以有效的防止误插,插头上还带有固定装置可以钩住主板上的插座,不至于接头松动导致主板在工作状态下突然断电。四芯小驱专用插头原理和普通四芯插头是一样的,只是接口形式不同罢了,是专为传统的小驱供电设计的。ATX电源的版本结构也有不少有ATX1.0、ATX1.1、ATX2.01、ATX2.02等,目前以ATX2.01为主,对于高档的机箱配套或单买的高档电源有ATX2.02版本的产品。
四芯的驱动器电源插头用处最广泛,所有的CD-ROM、DVD-DOM、CD-RW、硬盘甚至部分风扇都要用到它。四芯插头提供了+12V和+5V两组电压,一般*电线代表+12V电源,红色电线代表+5V电源,黑色电线代表0V地线。这种四芯插头电源提供的数量是最多的,如果用户还不够用可以使用一转二的转接线。
篇6:电脑电源功率相关知识
Q:我想为电脑更换一款电源,但我发现有些电源产品的铭牌上标记的是最大功率,有些铭牌上标记了额定功率,请问电源的功率有哪些?它们有什么区别?
A:电源的功率可分为额定功率、最大功率和峰值功率,
电脑电源功率相关知识
,
额定功率是指环境温度在-5℃~50℃之间,输入电压在180V~264V之间,电源能长时间稳定输出的功率;最大功率是指环境温度在25℃左右,输入电压在200V~264V之间,电源可以长时间稳定输出的功率;而峰值功率是指电源模块在极短的时间内所能达到的最大功率,时间仅能维持30秒左右。只有额定功率和最大功率才具有实际参考价值,通常生产厂家会注明最大功率,但也有厂家标注的是峰值功率。
篇7:组装电脑如何选购电源
一、安全规格
PC电源在使用时,有可能被接错或短路,另外电源自身也有可能出现故障导致输出电压不正常,这种情况下为了防止或减少严重的后果,电源要能够停止工作,这就是电源的保护功能,因此,在电源的设计制造中,安全规格是非常重要的一环。电源的保护有两个方面,一是防止烧毁其他配件,另外要保护自身不受损坏。
电源对外部的保护主要是过压和欠压保护,也就是说当电源的输出电压偏高或偏低到不正常时,电源就要停止工作。这对整机非常重要,因为所有昂贵的部件,比如CPU、硬盘等都是比较脆弱的,很容易由于过高的电压而烧坏。
为了防止出现这种情况,需要对电源的每路输出电压监控。电源设计师的办法是通过采样电路对输出电压进行采样,采样回来的信号通过一个比较器后接到控制部分。一旦输出电压异常,采样信号即时反映出来,通知控制部分关机。这样可以有效地保护主板、CPU、内存、硬盘、光驱等贵重部件。电源是否具备快速的过压保护对于整机来说非常重要。为了防止电流过大造成烧毁,电源都设置有保险丝。
保险丝的主要工作,就是当电流突然过大时,保险丝先行烧毁,只要更换保险丝就能继续使用该电源,所以保险丝的安置方式非常重要,必需设计成可更换式,现在有一些厂家为了节约成本,将保险丝直接焊在电源的PCB(印刷电路板)上,保险丝一旦烧毁,整颗电源就一起报废。
好的电源多采用防火材质的PCB,消费者在购买电源时,可以透过散热孔仔细找一下这个电源的PCB是否使用防火材质。一般使用编号94V0的防火材质,可以耐105度的高温。至于采用94V1的防火材质,可以忍耐的温度就更高了。另外在电源每个零件外面必需加上热收缩膜进行保护,防止电子零件因为水分或是灰尘造成短路。如果没有,很容易出现故障。
有些名牌厂家为了确保不发生过压的现象,采用两组独立的过压保护电路,甚至有的为采用三重过压保护。
好好学习点评:上面二点牵涉到对内部结构的认识,普通消费者是难以做到的,需要事先在网上多方查阅评测资料,或直接上论坛提问。
另外还建议关注高压滤波电路及相应的电容,注意电容的规格和容量,一般来说350W或400W要用到1000μF以上,450W就必须要用1200μF的容量才能够达到电源的基本需求
二、线材和散热孔
电源所使用的线材粗细,与它的耐用度有很大的关系,
较细的线材,长时间使用,常常会因过热而烧毁。另外电源外壳上面或多或少都有散热孔,电源在工作的过程中,温度会不断升高,除了通过电源内附的风扇散热外,散热孔也是加大空气对流的重要设施。原则上电源的散热孔面积要越大越好,但是要注意散热孔的位置,位置放对才能使电源内部的热气及早排出。
三、吸风口、出风口的设计
电源的外壳上有许多孔隙,机箱内的热空气就是从这些孔隙进入电源从而排到外面。一般电源的进气部分在输出线侧,这种设计的电源一般可以直接吸入5寸驱动器附近的热空气,但机箱的内部结构决定了能否顺利吸入机箱内板卡产生的热空气。此外这种设计的另一个问题是进气孔到排风扇之间正好是电源的内线圈、电容密布的部分气流会受到很大的阻碍,进而从根本上影响了电源吸排机箱内热空气的能力。但这种设计有一个明显的好处,就是从外部吸入的空气会直接流经散热片,可以提高散热片的散热效果。对于以上问题,一些厂商在传统的基础之上做了改进,在电源的底部增开了栅孔,且面积很大。通过栅孔可以直接吸入板卡产生的热空气,完全不受机箱结构的限制,其吸气能力明显汇款单增强。另个,这种设计的电源的内部风道也很流畅,从进气的栅孔到排风扇的空间完全敞开。
出风口的设计对空气流量有很大影响。一般电源的出风口的栅条较宽,对空气的流动带来较大的阻碍,而有的电源则采用稀疏的钢网,在保证安全的前提下进一步减小了对空气的阻碍。
四、电源重量
通过重量往往能观察出电源是否符合规格,一般来说:好的电源外壳一般都使用优质钢材,材质好、质厚,所以较重的电源,材质都较好。电源内部的零件,比如变压器、散热片等,同样重的比较好。好电源使用的散热片应为铝制甚至铜制的散热片,而且体积越大散热效果越好。一般散热片都做成梳状,齿都深、分得越开、厚度越大,散热效果越好。基本上,我们很难在不拆开电源的情况下看清散热片,所以直观的办法就是从重量上去判断了。好的电源,一般会增加一些元件,以提高安全系数,所以重量自然会有所增加。劣质电源则会省掉一些电容和线圈,重量就比较轻。
篇8:电脑电源检测方法
电脑电源检测方法
1 人为唤醒电源检测
简单来说就是接电脑主板 20 针的插头,用一根导线(如一个细铁丝,具体 大家发挥想象) 一头插绿色的线, 一头插黑色的线(有 8 根任意其一), 若电源风扇转了就说明电源好了,
用一根细导线把 ATX 插头的 14 脚 PS-ON 和另一端的第 3、5、7、13、15、16、17 脚中的 任一短脚连接 ,这是 ATX 电源在待机状态下人为的唤醒启动,这时 PS-ON 信号应 该为低电平,PW-OK、+5VSB 信号应该为高电平,最重要的是开关电源风扇是否会旋转, 如果旋转说明电源应该没有问题 (在没有万用表的情况下这是判断电源是否损坏的最直接的方法) 。
2 脱机带电检测
通常情况下,在待机状态下的 PS-ON 和 PW-OK 的两路电源信号,一个是高电平,另一个 是低电平,插头 9 脚只输出+5VSB 电压,只要用万用表测量电压是否到了参数值,就可判 断出问题的结果。
电源维修常识 一、故障类型:电源无输出 此类为最常见故障,主要表现为电源不工作。在主机确认电源线已连接好(有些有交流开关 的电源要打到开状态)的情况下,开机无反应,显示器无显示(显示器指示灯闪烁) 。无输出故障又分为以下几种: ① +5VSB 无输出 前面已讲到+5VSB 在主机电源一接交流电即应有正常 5V 输出,并为主 板启动电路供电。因此,+5VSB 无输出,主板启动电路无法动作,将无法开机。 此故障制 定方法为:将电源从主机中拆下,接好主机电源交流输入线,用万用表测量电源输出到主板 的 20 芯插头中的紫色线(+5VSB)的电压,如无输出电压则说明+5VSB 线路已损坏,需更 换电源。对有些带有待机指示灯的主板,无万用表时,也可以用指示灯是否亮来判断+5VSB 是否有输出。此种故障显示电源内部有器件损坏,保险很可能已熔断。 ② +5VSB 有输出,但主电源无输出 此种情况待机指示灯亮,但按下开机键后无反应,电 源风扇不动。此现象显示保险丝未熔断,但主电源不工作。故障判定方法为:将电源从主机 中拆下,将 20 芯中绿线(PS ON/OFF)对地短路或接一小电阻对地使其电压在 0.8V 以下, 此时, 电源仍无输出且风扇无转动迹象 (注: 有极少数电源在空载时不工作, 此种情况除外) , 则说明主电源已损坏,需更换电源。 ③ +5VSB 有输出,但主电源保护 此情况也比较多,由于制造工艺或器件早期失效均会 造成此现象。此现象和②的区别在于开机时风扇会抖动一下,即电源已有输出,但由于故障 或外界因素而发生保护。为排除因电源负载(主板等)损坏短路或其它因素,可将电源从主 机中拆下,将芯中绿线对地短路,如电源输出正常,则可能为: I. 电源负载损坏导致
电源保护,更换损坏的电源负载; II. 电源内部异常导致保护,需更换电源; III. 电源和 负载配合,兼容性不好,导致在某种特定负载下保护,此种情况需做进一步分析。 ④ 电源正常, 但主板未给出开机信号 此种情况下也表现为电源无输出,可通过万用表测量 20 芯中绿色线对地电压是否在主机开机后下降到 0.8V 以下,若未下降或未在 0.8V 以下, 可能导致电源无法开机。 二 故障类型:电源有输出,但主机不显示。 这种情况比较复杂,判定起来也比较困难,但可以从以下几个方面考虑: 1) 电源的各路输 出中有一路或多路输出电压不正常,可用万用表测试; 2) 无 P.G 信号,即测量 20 芯线中 灰色线是否为高电平,如果为低电平,主机将一直处于复位状态,无法启动。 3) 电源输出 上升沿或时序异常,或和主板兼容性不好,也可导致主机不显示,但此种情况较复杂,需借 助存储示波器才可分析。
实用手册:电源输出导线对应功能全接触 实用手册 电源输出导线对应功能全接触 电源是主机的心脏,为电脑的稳定工作源源不断提供能量。是不是大家以为木头又要推荐电源了,哈哈, 今天我们不谈产品,主要聊一下每个电源上都具有的输出导线。对于不同定位的电源,它的输出导线的 数量有所不同,但都离不开花花绿绿的这 9 种颜色:黄、红、橙、紫、蓝、白、灰、绿、黑。健全的 PC 电源中都具备这 9 种颜色的导线(目前主流电源都省去了白线) ,它们的具体功能相信还有不少网友搞不 清楚,今天木头就给大家详细的讲解一下。
颜色多样的电源输出导线 黄色:+ 黄色:+12V :+ 黄色的线路在电源中应该是数量较多的一种, 随着加入了 CPU 和PCI-E 显卡供电成分, +12V 的作用 在电源里举足轻重。 +12V 一直以来硬盘、光驱、软驱的主轴电机和寻道电机提供电源,及为 ISA 插槽提供工作电压和串 口等电路逻辑信号电平。如果+12V 的电压输出不正常时,常会造成硬盘、光驱、软驱的读盘性能不稳定。 当电压偏低时,表现为光驱挑盘严重,硬盘的逻辑坏道增加,经常出现坏道,系统容易死机,无法正常 使用。偏高时,光驱的.转速过高,容易出现失控现象,较易出现炸盘现象,硬盘表现为失速,飞转。目 前,如果+12V 供电短缺直接会影响 PCI-E 显卡性能,并且影响到 CPU,直接造成死机。 蓝色:- 蓝色:-12V :- -12V 的电压是为串口提供逻辑判断电平,需要电流较小,一般在 1 安培以下,即使电压偏差较大, 也不会造成故障,因为逻辑电平的 0 电平为-3 到-15V,有很宽的范围。 红色:+ 红色:+5V :+ +5V 导线数量与黄色导线相当,+5V 电源是提供给 CPU 和 PCI、AGP、ISA 等集成电路的工作电压, 是计算机主要的工作电源。目前,CPU 都使用了+12V 和+5V 的混合供电,对于它的要求已经没有以前那么高。只是在最新的 Intel ATX12V 2.2 版本加强了+5V 的供电能力,加强双核 CPU 的供电。它的电源质量的好坏,直接关系着计算机的系统稳定性。 白色:- 白色:-5V :- 目前市售电源中很少有带白色导的,-5V 也是为逻辑电路提供判断电平的,需要的电流很小,一般 不会影响系统正常工作,出现故障机率很小,
橙色:+3.3V 这是 ATX 电源专门设置的,为内存提供电源。最新的 24pin 主接口电源中,着重加强了+3.3V 供电。 该电压要求严格,输出稳定,纹波系数要小,输出电流大,要 20 安培以上。一些中高档次的主板为了安 全都采用大功率场管控制内存的电源供应,不过也会因为内存插反而把这个管子烧毁。使用+2.5V DDR 内存和+1.8V DDR2 内存的平台,主板上都安装了电压变换电路。 紫色:+5VSB(+5V 待机电源) ATX 电源通过 PIN9 向主板提供+5V 720MA 的电源, 这个电源为 WOL(Wake-up On Lan)和开机电路, USB 接口等电路提供电源。如果你不使用网络唤醒等功能时,请将此类功能关闭,跳线去除,可以避免 这些设备从+5VSB 供电端分取电流。这路输出的供电质量,直接影响到了电脑待机是的功耗,与我们的 电费直接挂钩。绿色:P-ON(电源开关端) 通过电平控制电源的开启。当该端口的信号电平大于 1.8V 时,主电源为关;如果信号电平为低于 1.8V 时,主电源为开。使用万用表测试该脚的输出信号电平,一般为 4V 左右。因为该脚输出的电压为信 号电平。这里介绍一个初步判断电源好坏的土办法:使用金属丝短接绿色端口和任意一条黑色端口,如 果电源无反应,表示该电源损坏。现在的电源很多加入了保护电路,短接电源后判断没有额外负载,会 自动关闭。因此大家需要仔细观察电源一瞬间的启动。 灰色:P-OK(电源信号线) 一般情况下,灰色线 P-OK 的输出如果在 2V 以上,那么这个电源就可以正常使用;如果 P-OK 的输 出在 1V 以下时,这个电源将不能保证系统的正常工作,必须被更换。这也是判断电源寿命及是否合格的 主要手段之一。 认识导线种类作用是 DIY 玩家的必修课,是菜鸟用户晋级的必经之路,大家掌握了电源导线种类可 以更清晰的认识电源的输出规格,方便大家选购电源和排除故障。
微机的故障经常出在电源上,由电源造成的故障约占整机各类部件总故障数的20%~30%。而对主机各个部分的故障检测和维修,也必须建立在电源供应正常的基础上。下面我们对电源的常见故障做一些讨论。
微机电源一般容易出的故障有以下几种:保险丝熔断、电源无输出或输出电压不稳定、电源有输出但开机无显示、电源负载能力差。
下面分别介绍其检修方法:
1.保险丝熔断
故障分析与排除:出现此类故障时,先打开电源外壳,检查电源上的保险丝是否熔断,据此可以初步确定逆变电路是否发生了故障。若是,则不外如下三种情况造成:
・输入回路中某个桥式整流二极管被击穿
・高压滤波电解电容C5、C6被击穿
・逆变功率开关管Q1、Q2损坏
其主要原因是因为直流滤波及变换振荡电路长时间工作在高压(+300V)、大电流状态,特别是由于交流电压变化较大、输出负载较重时,易出现保险丝熔断的故障。直流滤波电路由四只整流二极管、两只100KΩ左右限流电阻和两只330μF左右的电解电容组成;变换振荡电路则主要由装在同一散热片上的两只型号相同的大功率开关管组成。
交流保险丝熔断后,关机拔掉电源插头,首先仔细观察电路板上各高压元件的外表是否有被击穿烧糊或电解液溢出的痕迹,若无异常,用万用表测量输入端的值,若小于200KΩ,说明后端有局部短路现象,再分别测量两个大功率开关管e、c极间的阻值,若小于100KΩ,则说明开关管已损坏,测量四只整流二级管正、反向电阻和两个限流电阻的阻值,用万用表测量其充放电情况以判定是否正常。另外在更换开关管时,如果无法找到同型号产品而选择代用品时,应注意集电极-发射极反向击穿电压Vceo、集电极最大允许耗散功率Pcm、集电极-基极反向击穿电压Vcbo的参数应大于或等于原晶体管的参数。再一个要注意的是:切不可在查出某元件损坏时,更换后便直接开机,这样很可能由于其它高压元件仍有故障又将更换的元件损坏。一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断故障。
2.无直流电压输出或电压输出不稳定
故障分析与排除:若保险丝完好,在有负载情况下,各级直流电压无输出,其可能原因有:电源中出现开路、短路现象,过压、过流保护电路出现故障,振荡电路没有工作,电源负载过重,高频整流滤电路中整流二极管被击穿,滤波电容漏电等。
处理方法为:
・用万用表测量系统板+5V电源的对地电阻,若大于0.8Ω,则说明系统板无短路现象;
・将微机配置改为最小化,即机器中只留主板、电源、蜂鸣器,测量各输出端的直流电压,若仍无输出,说明故障出在微机电源的控制电路中。控制电路主要由集成开关电源控制器(TL-496、GS3424等)和过压保护电路组成,控制电路工作是否正常直接关系到直流电压有无输出。过压保护电路主要由小功率三极管或可控硅及相关元件组成,可用万用表测量该三极管是否被击穿(若是可控硅则需焊下测量)、相关电阻及电容是否损坏。
・用万用表静态测量高频滤波电路中整流二极管及低压滤波电容是否损坏。
3.电源有输出,但开机无显示
故障分析与排除:出现此故障的可能原因是“POWER GOOD”输入的Reset信号延迟时间不够,或“POWER GOOD”无输出。
开机后,用电压表测量“POWER GOOD”的输出端(接主机电源插头的1脚),如果无+5V输出,再检查延时元器件,若有+5V输出,则更换延时电路的延时电容即可。
4.电源负载能力差
故障分析与排除:电源在只向主板、软驱供电时能正常工作,当接上硬盘、光驱或插上内存条后,屏幕变白而不能正常工作。其可能原因有:晶体管工作点未选择好,高压滤波电容漏电或损坏,稳压二极管发热漏电,整流二级管损坏等。
调换振荡回路中各晶体管,使其增益提高,或调大晶体管的工作点。用万用表检测出有问题的部件后,更换可控硅、稳压二极管、高压滤波电容或整流二极管即可。










