“Xsophie”通过精心收集,向本站投稿了3篇等腰直角三角形三边比例,下面是小编整理后的等腰直角三角形三边比例,欢迎大家阅读分享借鉴,欢迎大家分享。

等腰直角三角形三边比例

篇1:第九册等腰直角三角形

教学内容:等腰直角三角形(活动课)

教学目标 :

1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。

2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。

3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。

教学过程 :

一、创设情景,揭示课题。

1、学生拿出课前准备好的正方形纸沿对角线对折。

提问:“得到一个什么图形?”(三角形)

2、通过观察、测量和比较说说这个三角形的.特征。

(两条边相等,一个角是直角)

提问:“那么,这样的三角形我们叫它什么三角形?”

揭示课题,板书:等腰直角三角形

这节课就让我们一起来研究“等腰直角三角形”。

二、动手操作,探索新知。

1、

斜 边

45°

直角边

认识各部分名称和各个角的度数。

投影出示一个等腰直角三角形让学生试说。

边说边课件演示。

45°

90°

接着让学生指着折成的等腰直角三角形同桌

直 角 边

互相说各部分名称和每个角的度数。

2、把刚才折成的等腰直角三角形再对折,看看又得到什么图形?

3、展开后把4个三角形都剪下来,重叠在一起,发现了什么?

4、取出其中一个等腰直角三角形指出已有的底和高。

提问:“斜边上的高你能不能画出来?”

出示探究要求:

①动手画出斜边上的高,同桌互相检验。

②量出斜边和斜边上高的长度,填在表格里。

③根据表格里的数据,小组讨论,说说有什么发现?

④交流发现。

5、电脑演示并出示结论。

学生齐读:等腰直角三角形斜边上的高等于斜边的一半。

6、拼图游戏

(1)拿出2个完全一样的等腰直角三角形拼以前学过的平面图形。

(2)拿出4个完全一样的等腰直角三角形拼以前学过的平面图形。

学生小组合作拼图,到实物投影上展示。

(3)电脑演示拼成的没学过的平面图形。

三、合作交流,探求一题多解。

1、出示题目:已知等腰直角三角形的直

角边长是20厘米,求它的面积是多少?

20厘米

20厘米

(学生独立解答,一生板演,说说理由。)

2、出示题目:已知等腰直角三角形的斜边

长是20厘米,求它的面积是多少?

20厘米

(学生小组讨论,可以借助剪下的等腰直角三

角形拼一拼、摆一摆。)

各小组汇报交流,说说想法。

教师板书各种解法。

等腰直角三角形三边比例

四、

20厘米

应用创新,总结升华。

1、一个边长为20厘米的正方形,连接

每边的中点,又得到一个正方形,求

涂色部分的面积是多少?

(学生互相探讨,交流解法。)

20厘米

2、再连接空白部分正方形每边的中点,

所得的小正方形面积与空白正方形面

积有什么联系?与原正方形面积有什

么联系?你能求出它的面积吗?

(各小组之间互相讨论,说说想法。)

3、依次连接正方形每边的中点,每次得

到的新正方形面积与原正方形面积有什

么联系?从中你能发现什么规律?

(各小组之间互相讨论,交流发现的规律。)

五、回忆所学,谈谈收获。

本课我们学习了什么内容,你有什么收获?

篇2:数学教案-等腰直角三角形

数学教案-等腰直角三角形

等腰直角三角形

教学内容:等腰直角三角形(活动课)

教学目标:

1、认识等腰直角三角形,知道等腰直角三角形各部分名称、各个角的度数和各条边的关系。

2、通过实践操作,拓宽学生的解题渠道,诱发求异思维,培养创新意识。

3、采用小组合作的学习方式,体验探索知识的过程,培养合作意识和集体精神。

教学过程():

一、创设情景,揭示课题。

1、学生拿出课前准备好的正方形纸沿对角线对折。

提问:“得到一个什么图形?”(三角形)

2、通过观察、测量和比较说说这个三角形的特征。

(两条边相等,一个角是直角)

提问:“那么,这样的三角形我们叫它什么三角形?”

揭示课题,板书:等腰直角三角形

这节课就让我们一起来研究“等腰直角三角形”。

二、

动手操作,探索新知。

1、

斜 边

45°

直角边

认识各部分名称和各个角的度数。

投影出示一个等腰直角三角形让学生试说。

边说边课件演示。

45°

90°

接着让学生指着折成的等腰直角三角形同桌

直 角 边

互相说各部分名称和每个角的度数。

2、把刚才折成的等腰直角三角形再对折,看看又得到什么图形?

3、展开后把4个三角形都剪下来,重叠在一起,发现了什么?

4、取出其中一个等腰直角三角形指出已有的底和高。

提问:“斜边上的高你能不能画出来?”

出示探究要求:

①动手画出斜边上的高,同桌互相检验。

②量出斜边和斜边上高的长度,填在表格里。

③根据表格里的数据,小组讨论,说说有什么发现?

④交流发现。

5、电脑演示并出示结论。

学生齐读:等腰直角三角形斜边上的高等于斜边的一半。

6、拼图游戏

(1)拿出2个完全一样的等腰直角三角形拼以前学过的平面图形。

(2)拿出4个完全一样的等腰直角三角形拼以前学过的平面图形。

学生小组合作拼图,到实物投影上展示。

(3)电脑演示拼成的没学过的平面图形。

三、合作交流,探求一题多解。

1、出示题目:已知等腰直角三角形的直

角边长是20厘米,求它的.面积是多少?

20厘米

20厘米

(学生独立解答,一生板演,说说理由。)

2、出示题目:已知等腰直角三角形的斜边

长是20厘米,求它的面积是多少?

20厘米

(学生小组讨论,可以借助剪下的等腰直角三

角形拼一拼、摆一摆。)

各小组汇报交流,说说想法。

教师板书各种解法。

四、

20厘米

应用创新,总结升华。

1、一个边长为20厘米的正方形,连接

每边的中点,又得到一个正方形,求

涂色部分的面积是多少?

(学生互相探讨,交流解法。)

20厘米

2、再连接空白部分正方形每边的中点,

所得的小正方形面积与空白正方形面

积有什么联系?与原正方形面积有什

么联系?你能求出它的面积吗?

(各小组之间互相讨论,说说想法。)

3、依次连接正方形每边的中点,每次得

到的新正方形面积与原正方形面积有什

么联系?从中你能发现什么规律?

(各小组之间互相讨论,交流发现的规律。)

五、回忆所学,谈谈收获。

本课我们学习了什么内容,你有什么收获?

篇3:直角三角形三边关系

直角三角形三边关系

①三角形两边之和大于第三边,两边之差小于第三边。(三角形两边之和大于第三边中的两边是指两条较小的边,两边之差小于第三边的两边是指两条较大的边。)

②在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

勾股定理逆定理:如果三角形的.三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

③直角三角形斜边的中线等于斜边的一半。

④三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。

⑤三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。

⑥等底同高的三角形面积相等。

⑦底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。

⑧三角形的任意一条中线将这个三角形分为两个面积相等的三角形。

⑨等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。