“晓仙的女儿”通过精心收集,向本站投稿了15篇《解决问题的策略》说课稿,下面是小编为大家准备的《解决问题的策略》说课稿,欢迎阅读借鉴。

篇1:解决问题的策略说课稿
解决问题的策略说课稿
教学目标:
1、使学生在解决较复杂的实际问题中,学会用画示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题不断的反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图策略是解决问题的一种常用的策略。
3、使学生进一步积累解决问题的经验,增强解决问题的意识,获得解决问题的成功体验,提高学好数学的`信心。
教学重难点:学会用示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系。
教学过程:
基于上述目标和重难点,我设计了这样几次画图,以达成目标和突破难点
第一次画图:
出示例题,学生读题,说说你知道了哪些条件,要求什么?先让学生明确条件和问题。可以根据题目的条件和问题,画出示意图。学生已经认识绘制过长方形,所以可以学生自己画图。展示学生作业,对比学生作业。1、没有数据的。2、画错的。3、标了条件的。4、长度的比例。学生修改,结合画好的图,说说图表达的意思。指生完整地说说图意,条件和问题。
要求原来花圃的面积,先要求出什么?通过这样的提示帮助学生分析思路,学生会说先求长、宽,这个地方是个难点,在学生回答时应借助图讲解,老师顺势应把中间的线描红。再指名说说,原来长方形的宽=现在长方形的长。看来,从图上可以看到隐藏的信息。
反思,提升:
对比文字和图,用文字和图都可以表述信息,在这里你会选择谁,为什么选择图?突出两点:1、一目了然,简洁。2、可以读出隐含的信息。在这里第一次体会画图的价值。
第二次画图:
长增加了面积就会变大,那还可能有哪些变化?这个问题的提出既考查了学生的思考能力,同时为下面的教学埋下伏笔。
学生读题“试一试”,这道题和例题不同,刚才是增加学生知道在外面加一块,现在是减少,学生没有接触过,所以给学生一个半成品,已经标注了20米和减少的5米,学生独立画图。画好后结合图完整地描述图意。此时不再给孩子提示,由学生自己独立解答,解答后让学生根据图自己完整的汇报解答思路。因为有了上次的基础,学生理解此题会稍好些,所以这样里注意引导学生用两种不同思路分析,即综合法和分析法。从问题入手,从条件入手如何思考,提高学生分析解决问题的能力。
反思,提升:
第一次反思提升,是让学生体会到画图的价值,这次是突出画图的优势,感受画图的好处,再次体验。同时比较两道题,有什么不同和相同的地方?题意不同,一个是增加长,一个是减少宽,但是都用了画图的方法。进一步感受画图整理信息。
第三次画图:
想想做做1
学生读题,首先理解题目本事意思,帮助整理信息。怎么理解“长增加6米,或者宽增加4米,面积都是增加48平方米。”这句话对部分学生来讲并不能很好地理解,所以,提出来解释。只有当学生对原题理解了才能画出准确的图。在理解的基础上,学生画图。画好后,充分解释图表示的意义,特别是对“或者”这个词的理解,也可以用手势的方式学生理解或者。那这道题怎么解呢?同桌互相说一说。之前两题都是全班交流的,这次小组合作讨论,互相学习补充。指名借助图汇报。这里我们先求出两个隐藏信息。用红笔描出。这里给我们找到了两个隐藏的信息。
反思,提升:
看来画图确实给我们提供了方便,你觉得方便在哪呢?进一步体会画图策略的价值,提高应用意识。
第四次画图:
学生读题,开放让学生自己画。学生可能的情况,肯定每种情况都是正确的。而每种问题都蕴含一种方法。一边涂色一边理解方法。再呈现列表的方式。这题也给我们提示,解决问题的方法是多样的,哪个合适就用哪个,没有固定的模式。学生可以采用合适的方法。
小结:今天我们学习了画图的策略解决问题,但是之前我们就有过接触,展示教材前面的内容,通过今天的学习你觉得画图对解决问题有什么帮助?解决图形面积计算的问题,我们可以用画图的方法使题意简洁,让我们一眼看到隐藏的信息。
篇2:解决问题的策略说课稿
教学内容:
苏教版四年级下册解决问题的策略
说教材:
这是第二次将《解决问题的策略》作为单独的单元,在上学期教材已经安排了列表的策略,但是作为策略而言,学生不是第一次接触,在低年段学生已经应用到了相关的策略,如列表、画图等。今天要教学的是画图的策略,一二年级学生就已经接触了画图,三年级也学过用线段图解题,学生也学习过长方形和正方形具有画图的经验,并知道怎么求长方形的面积,这些都为今天的学习提供了基础,为今天的内容服务。今天的策略教学主要想告诉学生画图也是一种解决问题常用的方法,让学生形成策略意识,为以后解决问题提供帮助。
教学目标:
1、使学生在解决较复杂的实际问题中,学会用画示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题不断的反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图策略是解决问题的一种常用的策略。
3、使学生进一步积累解决问题的经验,增强解决问题的意识,获得解决问题的`成功体验,提高学好数学的信心。
教学重难点:
学会用示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系。
教学过程:
基于上述目标和重难点,我设计了这样几次画图,以达成目标和突破难点
第一次画图:
出示例题,学生读题,说说你知道了哪些条件,要求什么?先让学生明确条件和问题。可以根据题目的条件和问题,画出示意图。学生已经认识绘制过长方形,所以可以学生自己画图。展示学生作业,对比学生作业。
1、没有数据的。
2、画错的。
3、标了条件的。
4、长度的比例。
学生修改,结合画好的图,说说图表达的意思。指生完整地说说图意,条件和问题。
要求原来花圃的面积,先要求出什么?通过这样的提示帮助学生分析思路,学生会说先求长、宽,这个地方是个难点,在学生回答时应借助图讲解,老师顺势应把中间的线描红。再指名说说,原来长方形的宽=现在长方形的长。看来,从图上可以看到隐藏的信息。
反思,提升:
对比文字和图,用文字和图都可以表述信息,在这里你会选择谁,为什么选择图?突出两点:1、一目了然,简洁。2、可以读出隐含的信息。在这里第一次体会画图的价值。
第二次画图:
长增加了面积就会变大,那还可能有哪些变化?这个问题的提出既考查了学生的思考能力,同时为下面的教学埋下伏笔。
学生读题“试一试”,这道题和例题不同,刚才是增加学生知道在外面加一块,现在是减少,学生没有接触过,所以给学生一个半成品,已经标注了20米和减少的5米,学生独立画图。画好后结合图完整地描述图意。此时不再给孩子提示,由学生自己独立解答,解答后让学生根据图自己完整的汇报解答思路。因为有了上次的基础,学生理解此题会稍好些,所以这样里注意引导学生用两种不同思路分析,即综合法和分析法。从问题入手,从条件入手如何思考,提高学生分析解决问题的能力。
反思,提升:
第一次反思提升,是让学生体会到画图的价值,这次是突出画图的优势,感受画图的好处,再次体验。同时比较两道题,有什么不同和相同的地方?题意不同,一个是增加长,一个是减少宽,但是都用了画图的方法。进一步感受画图整理信息。
第三次画图:
想想做做1
学生读题,首先理解题目本事意思,帮助整理信息。怎么理解“长增加6米,或者宽增加4米,面积都是增加48平方米。”这句话对部分学生来讲并不能很好地理解,所以,提出来解释。只有当学生对原题理解了才能画出准确的图。在理解的基础上,学生画图。画好后,充分解释图表示的意义,特别是对“或者”这个词的理解,也可以用手势的方式学生理解或者。那这道题怎么解呢?同桌互相说一说。之前两题都是全班交流的,这次小组合作讨论,互相学习补充。指名借助图汇报。这里我们先求出两个隐藏信息。用红笔描出。这里给我们找到了两个隐藏的信息。
反思,提升:
看来画图确实给我们提供了方便,你觉得方便在哪呢?进一步体会画图策略的价值,提高应用意识。
第四次画图:
学生读题,开放让学生自己画。学生可能的情况,肯定每种情况都是正确的。而每种问题都蕴含一种方法。一边涂色一边理解方法。再呈现列表的方式。这题也给我们提示,解决问题的方法是多样的,哪个合适就用哪个,没有固定的模式。学生可以采用合适的方法。
小结:今天我们学习了画图的策略解决问题,但是之前我们就有过接触,展示教材前面的内容,通过今天的学习你觉得画图对解决问题有什么帮助?解决图形面积计算的问题,我们可以用画图的方法使题意简洁,让我们一眼看到隐藏的信息。
篇3:《解决问题的策略》的说课稿
关于《解决问题的策略》的说课稿
您现在正在阅读的《解决问题的策略》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《解决问题的策略》说课稿解决问题的策略这一单元,旨在突出提高解决问题的能力需要形成策略这个十分重要的问题。解决问题的策略是解决问题必要的一种问题解决思想方法,它是正确、合理、灵活地进行问题解决的思维素质,掌握得好与坏将直接影响学生解决问题的能力。通过本课的学习,既能使学生掌握整理信息的常用方法,又能体会整理信息的意义与作用,内化成自觉、灵活地整理信息的意识和能力。从而将学生无序思维有序化、数学化、规范化。也为以后学习用列表等方法来解答求两积之和(差)等的实际问题奠定知识、思维和思想方法的基础。为此,我根据农村学生的生活经验、认知实际情况及本课的知识特点,预设如下几个部分展开学习。
(一) 联系生活,激趣引新:
新课程标准中指出:重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值。遵循这一理念,课始我设计了根据2分钟写12个字这些信息,你能提出什么问题?这个学生熟知的信息来引导新课,让学生知晓什么是策略,然后出示如书上65页主题图,并组织学生整理信息。
【设计意图:数学源于生活,生活中处处有数学,类似归一的实际问题生活中素材很多。学生在生活中也有购物的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生交流中提取有用的信息,为下面的探究呈现素材。】
(二)合作探索,领悟内涵:
1、感知列表整理的方法
(1)我组织学生观察并交流从上述情景中得到的数学信息,引导学生自主提可以解决的问题。借助学生可能提到的小华用去多少元这个实际问题,引导学生随即整理条件及所要解决的问题,从而引导学生生成如书本65页上的表格,并合作填写。
(2)引导学生观察所填表格,小组交流表里有些什么,体会个人买的本数与用去的钱数是紧密联系的数量,寻求问题解决的思维策略,初步感知用列表的方法收集、整理信息对问题解决的作用。
【设计意图:什么都可代替,唯有思维不可代替。教师应充分让学生自主活动,合理选择相关信息列表整理,经历列表整理的全过程,一方面在现实情境中收集数学信息,另一方面找到各个数量在表格中的位置。并使学生理解表格的结构和内容,是为了积累学生用列表的方法解决问题的经验。这样有助于解决问题的过程中对数量关系的分析。体现了策略的多样化。】
2、感受列表的价值
(1)围绕小华用去多少元这个问题,我组织学生结合表格所整理的信息,独立思考解题方法,并在小组中讨论。在此基础上,组织全班反馈。在问题解决过程中学生可能从买3本用去18元这组数量,求出每本笔记本的价钱,从而求出小华买5本用去的价钱;或直接从小华买5本需要的钱中反推出要先求出每本的价钱。结合这些反馈信息,引导学生思考,列式计算出问题,并组织学生交流反馈,从而帮助学生找到解决问题的方法。
(2)引导学生对计算的结果进行检验。通过不同检验方法的交流反馈,使学生进一步认定正确的解题思路。
(3)教师提出小军用42元买笔记本,能买多少本这个问题时,逐步引导学生把条件与问题填入已设计好的表格里;在两个问题都解答以后,还让学生根据解答的结果填出括号里的数,进一步体会数量间的对应关系,感受表格清晰地整理了这些对应关系。
(4)教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。在学生充分小组交流的基础上,引导学生形成有价值的发现和体会,如:小明买3本用了18元,小华买5本用了30元,小军买7本用了42元,每本练习本的单价是相同的;求小华用去多少元和小军买了多少本,都要先算练习本的单价;买的练习本多(少),用的钱也多(少)等。这些发现有利于学生进一步清楚数量关系和解题思路,初步感受函数关系,为以后学习正比例的知识打下基础。此外,我还针对学生呈现的各种信息,组织学生及时评价,引导学生随即小结解题规律。
【设计意图:指导学生把信息有序地填入表格,学会整理条件与问题的方法,体会列表在解决问题中的作用,是本单元教学的关键。教师应为学生创设充分自主探究的空间,学生经历两次填表整理讨论思路列式解答的活动过程,初步体会了用列表的方法整理、分析、解决实际问题的价值。增强了解决问题的策略意识。】
以上只是我对本课教学过程的一点粗浅看法,在实际教学过程中也有一点不尽如意,恳请各位同仁指正。在今后的教学中,我将尽可能结合学生的生活经验,为学生创设生活和活动情景,为他们提供各种机会,让学生经历动手实践、自主探究、合作交流的活动,使学生体验探索的过程,体会做数学的乐趣。
篇4:《解决问题的策略》的说课稿
《解决问题的策略》的说课稿
《解决问题的策略》的说课稿
解决问题的策略是解决问题必要的一种思想方法,是正确、合理、灵活地进行问题解决的思维素质,掌握得好与坏不仅将直接影响学生解决问题的能力,还会在一定程度上影响学生养成运用策略解决问题的意识。对本课所要研究解决的数学问题,学生在以往的学习过程中,在生活的实践体会中,已经产生了初步的整理信息、分析信息和解决问题的思维方法,但一般处于无序状态,今天的学习,有助于将学生无序思维有序化、数学化、规范化。
学好本课知识,将为后面学习求两积之和与两积之差等问题奠定知识、思维和思想方法的基础。
教材安排的例题,主要是呈现生活情景,提供数学信息,让学生经历列表整理信息的全过程,再通过“寻求策略—解决问题—发现规律”的系列活动,使学生在解决问题的过程中感受列表整理信息这一策略的价值,并产生运用这一策略解决问题的心理需求,从而提高学生解决问题的能力。
根据学生的生活经验和知识背景以及本课的知识特点,我设定了以下三个教学目标:
1、使学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,感受列表是解决问题的一种策略。
2、使学生会用列表的方法整理简单实际问题所提供的信息,会通过列表的过程分析数量关系,寻找解决问题的有效方法。
3、充分体会有关策略在解决问题过程中的价值,乐于和同学交流自己解决问题的策略,能自觉运用策略解决问题,获得解决问题的成功经验,提高学好数学的自信心。
本节课的教学重点是使学生经历列表整理、分析信息,解决问题这一系列过程,体会列表这一策略在解决实际问题中的价值,并能运用该策略解决简单的实际问题。
教学难点是正确整理、分析数学信息,学会通过所整理的信息确定解决问题的有效方法,并内化成自己解决问题的策略。
本节课的主要设计意图,是让学生感受生活和数学中运用策略来解决问题的优越性,培养学生运用策略解决问题的意识,提高学生运用策略解决问题的能力,为学生的智慧人生奠基。
在课前交流时,教者安排了看动画片《乌鸦喝水》以及与学生交流有关策略的故事这两个环节,目的是让学生明白策略的涵义和策略在解决问题中的重要作用。
课一开始,教者就从学生已有的生活和学习经验出发,通过课程表和乘法口诀表这两张表格(课件),让学生初步感受到表格整理信息的优势,为在自由整理例题信息这一环节中,学生用表格整理信息提供了可能。在出示乘法口诀表后,教者又用去掉表格线的方法,让学生明白,有没有表格线,都是表格的形式,都具有表格的.优势,用表格整理信息,重要的是内容,而不是它的形式。
在例题教学中,教者对教材进行了整合,把小明、小华、小军三个人的信息全部呈现在情景图上(课件),让学生提出想要解决的问题,让解题真正成为学生的需要。在解决第一个问题“小华用去多少元”时,教者让学生自由选择整理信息的方法,一方面是尊重学生的已有经验,另一方面也让学生感受到解题策略的多样性,在对学生整理信息的方法进行分析和评价时,教者要把重点放在学生可能出现的表格上,要根据学生列出的表格提出列表的建议,帮助学生完善表格,(贴出表格)为下面学生自己独立制表提供方法上的保证,如果学生不能想到表格法,教者就在分析完其它方法后,引导学生用表格来整理信息;在解决第二个问题“小军买了多少本”时,教者则要求所有学生都用列表的方法来整理信息,这样就突出了本节课所要学习的内容——
“列表法”这一解题策略。(贴出表格)
在这两张表格都完成后,教者引导学生观察表格的共同之处并合并表格(合并表格),然后教师引导学生指出“求小华用去多少元,就是求5本多少元”(板书:5本?元),“求小军买了多少本,就是求42元可以买多少本”(板书:?本42元),“解决这两个问题都需要哪个条件”(板书:3本18元),从而将表格简化为箭头图,接着教者又提出以下几个问题:“大家觉得这张箭头图和这张表格整理的主要信息一样吗?但箭头图看起来更加怎样?它省略了表格中的什么?那你认为要解决这两个问题,表格线和人名重不重要?”,从而得出了“箭头图省略了表格中的次要信息,所以看起来更加简洁明了”这一结论,目的是让学生形成“重本质而不拘泥于形式”的思想。
在得到箭头图后,教师又让学生填出?号所对应的答案,然后观察并在小组内讨论,“从图中能不能发现什么规律”,从而渗透“笔记本单价不变,所付钱数随着本数的变化而变化”的函数思想。
在学生初步形成解题策略的基础上,我先让学生完成教材“想想做做”的第一题,(课件)但对教材的作业要求作了调整,通过作业纸的形式,(展台出示)让学生在“表格”和“箭头图”这两种方法中,选择一种方法来整理信息,从而提高了学生用箭头图这一简化形式整理信息的意识和能力。然后再把“想想做做”的第二题设计成让学生听录音,并从大量信息中收集有用信息,帮助学校体育室解决实际问题这种形式(展台出示),目的是让学生真正体会到:学习数学是为了解决生活中的实际问题,是生活的需要,从而形成在生活中运用策略解决问题的意识,同时也能培养学生根据问题,收集信息,解决问题的能力。
在最后的小结过程中,我通过一些图片再次让学生感受表格在生活中的广泛应用(课件),这样既增强学生在生活中应用策略解决问题的自觉性,又和课一开始出现的表格形成呼应。
本节课,我主要着力于学生解题策略的形成和策略意识的养成,而淡化列式的指导,所以例题和“想想做做”的第一题我都只要求学生口答算式。当然,
以上只是对本节课教学过程的预设,能不能达到预想的效果,还要通过课堂教学的实践进行检验。但是,在课上,我将尽可能为学生提供各种机会,让他们经历动手实践、自主探究、合作交流的探索过程,真正体会到“做数学的乐趣”。
篇5:解决问题的策略说课稿
各位专家:
大家好!
一、说教学内容
我说课的内容是苏教版课程标准实验教科书五年级上册第六单元解决问题的策略——列举。本课是在学生已经学习过用列表和画图的策略解决问题,对解决问题策略的价值已有了一些具体的体验和认识的基础上。进一步使学生加深对现实问题中基本数量关系的理解,增强分析问题的条理性和严密性,也使学生进一步体会到解决问题的策略常常是多样的,知道同一个问题可以用不同的策略,从不同的角度去分析,有利于提高学生分析,解决问题的能力。
二、说教学目标、教学重难点:
根据课程标准与教学内容并结合学生实际我认为这节课的教学要达到以下几个目标:
(1)、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。
(2)、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。
(3)、增强解决问题的策略意识,提高解决问题的实际能力。
依据课程标准和教学目标,我确定本课的教学重点是:能对信息进行用“一一列举”的策略解决实际问题。教学难点是:能有条理的一一列举,并进行分析。
三、说教法
1、通过直观、推理让学生充分感知,然后经过比较归纳,最后概括出解决问题的策略,从而使学生从形象思维逐步过渡到抽象思维,进而达到感受新知、概括新知、应用新知、巩固和深化新知的目的。
2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口、动眼以及采用小组合作交流等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。
四、说学法
本节课让学生运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
五、说教学准备
为了有效组织学生的探索和发现等学习活动,课前我准备了一套多媒体教学课件,并为学生准备了18根等长的小棍、表格。
六、说教学过程
为了实现教学目标,突出重点,突破难点,在教学过程中我主要分为四个板块来教学:
一、创设情景,体验列举;二、合作交流,探究策略;三、应用列举,积累列举技巧;四、总结延伸,发展列举。
一、创设情景,体验列举
生活化、活动化的情景最容易激发学生学习的积极性,让学生对数学学习充满兴趣。
1、课前游戏:飞镖激趣
因此,在课的开始,我设计了活动化、与生活化的情景,首先,请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?(教师顺势板书:一一列举)
2、门票引入:
再出示:珍珠泉公园儿童门票每张10元,小红口袋里有两张5元,五张2元,两张1元的纸币。小红怎样付10元门票钱?让学生列举出几种付钱的方法。
3、顺势揭示课题:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。(板书课题:解决问题的策略)
数学课程标准指出:“动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此设计了教学活动的第二个环节,
二、合作交流,探究策略。本环节共分两个步骤进行:
(一)、探究例1,感知策略
1、首先用多媒体出示例1,有一个畜牧场,在一片草地上,放牧着成群的牛羊,牧场主人王大伯想要用18根1米长的栅栏围成一个长方形羊圈。他非常纳闷,该怎样围呢?
接着通过以下几个问题引导学生独立思考并动手操作:
(1)这道题有哪些信息,需要解决什么问题?
(2)根据所给信息,你能想到什么?(围成的长方形有什么要求?)
这时学生独立思考接着要求想好的学生可以和同桌说一说。(教师参与讨论)
2、布置任务,小组合作
同学们的想法各不相同,你能想办法把所有不同的围法都找出来,用你喜欢的方式纪录下来。如果有困难,可以用小棒代替1米长的栅栏摆一摆。(写好后跟同桌交流)
然后全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)
指出:为了看得更清楚,我们还可以列举在表格中(课件展示),让学生填表后进行比较学生的方法,你认为用哪一种方法比较好?为什么?
教师小结:这样按一定的顺序一个一个写下来,我们就可以比较清晰地看出一共有4种不同的围法。(课件)
最后让学生比较:有序和无序的两种,你更喜欢哪一种?为什么?(有序,不重复、不遗漏)(板书)
通过我引导怎样解决问题和放手让学生动手操作相结合,学生初步体会要知道有多少种不同的围法,可以把各种围法找出来,这样,列举的思路就清晰了。同时,学生联系摆小棒的
过程进行了抽象思考,发展了学生的抽象思维能力。
接着让学生讨论王大伯围的是羊圈,他该围成什么样的长方形?为什么?这样让学生通过比较长、宽以及面积,看看能发现什么。
引导学生观察对比,加强数学思维,同时介绍这是大数学家欧拉的定律,培养学生的数学素养。对这一问题进行延伸思考,提高透过现象寻求本质的意识和能力。
(二)、教学例2,丰富列举策略
例题2比较复杂,先让学生理解“最少订阅1本,最多订阅3本”是什么意思,从而发现这类问题在列举之前,先要进行适宜的分类。分类以后让学生用打勾的方法填写表格,教师说明表格的填写方法,防止学生把只订阅1本的勾都打在一列里,和订阅3本的相混淆。这题里订阅2本是难点,要联系曾经学过的搭配规律。这道例题教学的重点是怎样得到所有的订法,突出思维的条理性和周密性。
三、应用列举,积累列举技巧
列表是列举的一种很好的形式,但不是唯一的形式,所以在练习时对学生说明:也可以用其他的形式来列举。在学生做完“练一练”,展示各种列举形式,体会列举形式的多样性,说明以后可以用自己认为最简单的形式来列举的出结果。然后把“投中两次”改成“投了两次”,让学生体会到要先分类再列举。这两题的练习正好比较了简单和复杂两种情况如何运用好列举法,巩固了所学知识。
四、总结延伸,发展列举
王大叔为了感谢大家的帮忙,想请大家去划船。我们班有48个同学,每条大船可以坐6人,小船可以坐4人,有多少种租船方案?这是下节课我们要解决的问题,有兴趣的同学课后可以先去思考思考。
总之,本节课的教学设计我力求结合新课程理念,根据学生已有的生活经验,利用多媒体营造出生动的学习情景,引导学生主动交流、积极动手、开动脑筋、充分体验,希望整个教学过程会成为孩子们探索数学的发展过程。
篇6:《解决问题的策略-转化》说课稿
《解决问题的策略-转化》说课稿
虽然这是苏教版数学教材五年级下册第七单元所安排的内容,但是孩子在之前的学习过程中早有接触,对于转化这一策略在孩子的认知上不是一张白纸,其实他们已经积累了丰富的用转化策略解决问题的经验,本课与其说是教策略,不如说是对过去学习中形成的认识和经验进行总结和提炼,并上升到策略的高度。为此,在教学过程中我对教材进行了重组与二度开,发促使孩子们在解决问题的过程中整理经验、提升认识,感受策略的价值,增强策略意识。
一、教学例题,感知“转化”
仔细研读教材,我们可以看出解决问题的策略的教学设计了两条线索,一是关于关于解决问题方法的线索,通过“创生方法——使用方法——用好方法——用活方法”,掌握解决问题的策略;二是关于解决问题策略的线索,通过“初步感知——再次感悟——反复体验”,逐渐形成策略。两条线索一明一暗,方法是明线,策略是暗线,两条线平行同步推进且相互交融。因此,在教学新知时我分成了这样三个版块:
第一版块:分数中的转化。我把练习十六第2题的前面两个小题前置,因为这样的题型孩子们并不陌生,他们能很快找到方法,从而解决问题,今天课上再次出现,我的意图是让孩子们认识到策略是在总结方法时提炼出来的,解题策略与解题方法同时存在。
第二版块:面积中的转化。在这个版块的教学中,我是依据例题1的思路按部就班进行活动,学生先是自主探究,找到比较方法与结果,然后再把自己的学习经验在小组中分享交流,使得学生间的思维发生碰撞,从而提升孩子们对于转化这一策略的'认识,最后在我的组织下进行交流、梳理、总结。这一过程中,他们领悟的是转化策略的精髓,获得的是勇于创新的品质。
第三版块:周长中的转化。在这个板块中,我既安排了转化后周长不变的习题,又安排了转化后周长不相等的练习,这部分内容是我对教材的二度开发,意在让学生体会到在运用策略时也要仔细观察,用心思考,需要对具体问题具体分析、灵活运用。
二、回顾举例,体验“转化”
为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系,在这里我播放微课,调动孩子们的多种感官,全面感知转化这一策略的奇妙之处。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。
三、重组练习,运用“转化”
在练习时,我除了应用教材中的常规题型外,我还设计了这样一条题:2/9×4结果会是多少呢?这条题放在这儿,大多数老师肯定会有疑问:这题放在这里教学有意思吗?后面不是会重点教学吗?其实我是这样想的,一旦我们的孩子走出校园,若干年后他会遗忘大部分的知识与习题,但是你所交给他的学习方法是不会遗忘的,而转化就是我们学习数学的重要方法之一,纵观数学教学,我们总是不停的把新知转化成旧知,帮助孩子理解,便于孩子掌握。我想,这题安排在这儿会给孩子们的认知一个比较大的冲击,会把转化这一策略深深烙在心里。其实这也是国家课程校本化实施的一次小尝试。
篇7:解决问题的策略假设说课稿
一、说教材。
首先说说我对教材的理解。这部分内容是苏教版六年级上册第四单元的《解决问题的策略》的第一课时,在此之前我们学习了一些解决问题的策略,以及列方程解决实际问题,这为我们本节课的学习奠定了知识基础,而本节课将为我们后面要学习的解决更复杂实际问题奠定基础。
二、说教学目标。
新课标要求,人人都要获得良好的数学教育,不同的人获得不同的发展。根据这一理念,联系学生实际,我制定了以下教学目标目标:
1、知识目标:让学生在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、技能目标:让学生在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
3、情感目标:进一步培养学生独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
三、说重难点。
本节课的教学重点在于:理解并运用假设的策略解决问题。
教学难点:运用假设策略要理清楚新的数量关系。
四、说教法、学法。
新课标指出:学生是学习的主体,教师是学习的'组织者,引导者,合作者。为了达到这一要求,为了实现教学目标,有效突出重点,突破难点,本节课我将运用启发式教学、复习引导教学、讲授法、探究法等多种教学方式,去引导学生积极思考、自主探究、合作交流,引导他们去感悟运用假设策略解决实际问题的妙处。
五、说教学程序
根据上述分析,结合学生的实际情况,我将本节课分为以下几个教学环节:
第一个环节:复习铺垫,引入课题
首先,我向学生展示两道关于果汁的问题,这道题目是根据教材中的例题改编过来的。读题并提问:“同学们,你会解决这两个问题?”让学生根据题意分别列出算式后,引导学生提问:“你能说说每一道题目都是根据什么数量关系式列式计算的吗?(学生积极思考后,回答问题)接着提问:“每一道题目中都有几种类型的杯子?”接着指出:只求一种杯子的容量是比较简单的。
然后,出示例1,先让学生齐读题目,体会和上面两道题目的不同。接着,比较两道题目的异同点,培养学生审题与表达的能力。根据题目的异同点引出课题,今天就来学习解决这类含有两个未知量的实际问题的策略。通过改编例题也会学生解决例题提供了一种思路,为下面的教学做了很好的铺垫。
第二个环节:合作交流,探究策略。
解决这道题目似乎有些困难,先和学生一起分析一下题意,找出两个数量关系式。
然后让学生根据数量关系式再联系以前的知识,讨论探索解决这个问题的思路。学生的思路可能有:第一种:列方程,让学生说出怎么设未知数,设小杯的容量是x毫升,则大杯的容量是3x毫升。第二种:画线段图的方法。引导指出一般我们先画单倍量。小杯共9段,大杯共3段。第三种:全部换成小杯,一个大杯就可以换成3个小杯,一共9个小杯。学生只要说出思路即可,然后事实总结三中思路的共同点,引导学生进一步思考。学生能够发现:都是把两种杯子转化成了一种杯子(小杯)。根据学生们的发现,可以指出:像这样把两个未知量转化成一个未知量的方法就是我们今天要学习的策略假设,运用假设策略可以把复杂的问题转化成简单的问题。进一步揭示课题。
接下来,让学生打开课本69页,任选其中的一个思路解决这个问题,填写在书上,并提醒学生要检验。教师巡视,观察并引导学生的解题方法。学生完成后,选择使用列方程和画线段图的学生说说解题过程。因为这两种方法是以前学过的,这节课就一带过过,目的是让学生明白解决一个问题有很多方法,起到活跃学生思维的作用。而本节课的重点是第三种思路全都换成小杯,也就是假设全是小杯,需要重点讲解。根据课件辅助教学运用假设全是小杯的解题思路和过程,提供给学生一种思考过程,因为是本节课的重点,所以请了3位学生按照该思路想一遍,然后再让全班学生想一遍。思路比较明确了,学生比较容易的根据思路列出算式,教师根据学生想法板书解题过程,以及检验过程。学生容易忽略检验的重要性,所以一定要提醒学生养成检验的好习惯。
提问:刚才假设全是小杯解决了这个问题,这道题还可以怎样假设?让学生不能只满足于解决问题,还要多加思考用不同的假设解决问题。学生比较容易想到还可以假设全是大杯。同样,根据课件讲解思考过程,这一遍主要是让学生自己说,自己想,独立完成解答。
第二环节:归纳整体,提炼策略
讲完例题后,及时回顾整个例题,总结运用假设策略解决问题的步骤,让学生进一步理解假设策略。根据刚才解题的过程,一步一步地总结出5个步骤,第一步,分析题意,找到数量关系,发现要求两个未知量,需要使用假设策略。第二步,做出假设,假设全是小杯或假设全是大杯,把两个未知量转化成只有一个未知量的问题。第三步,根据假设,调整数量关系,使数量关系变得简单。第四步,列式解答。第五步,检验反思。
第三环节:运用策略,掌握策略
出示练一练,及时巩固新知。练一练是和例题类似的题目,于是我要求学生根据刚才总结的运用假设策略解决问题的5个步骤,去思考并解决这个题目。这道题可能对一部分学生来说还是有些难度,于是我和学生一起完成了第一步分析题意,让学生找到数量关系。接下来的4步就由学生独立完成。第2步时提醒学生假设全是什么更方便解题。一些学生会模仿老师的解题步骤完整得做完这一题。这就说明他们学会了运用假设策略。通过本题提问为什么不假设全是桌子,让学生明白在做假设时要选择方便解题的那个假设。
在以前的学习过程中,学生已经在不知不觉中,使用过假设策略。让学生先回想一下,小学生的联系知识能力并不强,可能不能一下子想出来。于是,教师让学生观察老师想出来的,让他们判断一下是否运用了假设策略,进一步加深对假设策略的理解,同时也培养学生联系知识的能力,让学生有用新知联系旧知,让自己的知识成为一个体系的意识。
第四环节:运用策略,闯关练习
简单总结一下所学新知,设计三个题目,考察学生掌握情况。题目由易到难,层次分明。第一关,填空题,有一个是看图填空,题目比较简单,学生基本都能通过,这便增强了学生的信心,提高了继续闯关的欲望。第二关,稍有难度,但题目中提供了解题思路,根据解题思路,多数学生可以正确解答出来,启发学生课下运用第二种假设解决该题目。第三关,图文题目,先让学生从图中读出有用的信息。然后独立完成,教师巡视,用奖品激励大家认真完成,并找出运用不同假设策略解决问题并且书写完整和完美的学生,放到展示台上供大家学习。
第四个环节:归纳小结
提问:今天你有什么收获?通过学生自己归纳,对所学过的知识进行整理,进一步培养学生归纳概括的能力。
板书设计:
篇8:解决问题的策略假设说课稿
两个未知量 假设 一个未知量
复杂 简单
假设全是小杯 分析题意
共有:3 1+6=9(个)
小杯:720 9=80(毫升) 作出假设
大杯:80 3=240(毫升)
检验:80 6+240=720(毫升) 调整关系
80 3=240(毫升)
答:小杯的容量是80毫升,大杯的 列式解答
容量是240毫升。
检验反思
篇9:《解决问题的策略——替换》说课稿
《解决问题的策略——替换》说课稿
各位评委老师大家好!今天,我上的这节课是苏教版小学数学六年级上册第七单元《解决问题的策略》的第一课时用替换的策略解决问题。在学习本课之前,学生已经学习了用画图、列表、一一列举和倒推等策略解决简单的实际问题,并在学习和运用这些策略的过程中,感受了策略对于解决问题的价值,同时也逐步形成了一定的策略意识。这些都为本课的学习奠定了基础。通过本课的学习,让学生学会运用替换的策略解决问题,增强策略意识,体会不同策略在解决问题过程中的不同价值。
根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定了如下教学目标:
1、让学生初步学会用“替换”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、让学生在解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单的推理的能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
因此本课的教学重点是:让学生掌握用“替换”的策略解决一些简单问题的'方法。教学难点是:弄清在有差数关系的问题的中替换后总量发生的变化。
下面,为讲清重点难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈。
(1)引导发现法。充分调动学生学习的主动性和积极性。
(2)合作探究法。引导学生合作学习,逐步启发学生探究用替换的方法来解决问题,增强学生探索的信心,体验成功。
(3)练习巩固法。力求突出重点、突破难点,使学生运用知识、解决问题的能力得到进一步的提高。
(4)利用多媒体课件辅助教学,突破教学重点难点,扩大学生知识面,使每个学生稳步提高。
最后,我来具体谈一谈这一节课的教学过程:
一、创设情境,初步感知
在课的引入部分,从替换的意义入手,出示《曹冲称象》图片,再现典型的小故事,唤醒学生潜在的与替换有关的经验,一下子就扣住学生心弦,唤醒了他们头脑里已有的生活经验,为下面的探究过程做好了心理准备和认知铺垫。
二、探究新知,初步理解替换的策略
1、课件出示两道准备题与例1,让学生通过比较题型,体会到什么是用替换的策略解决的问题。
2、教学例1:解决这个问题的关键,一是能够由题意想到可以把“大杯”替换成“小杯”,或把“小杯”替换成“大杯”;二是正确把握替换后的数量关系,从而实现将复杂问题转化为简单问题的意图。
教师首先引导学生讨论:大杯和小杯的容量有着什么样的关系呢?引领学生发现替换的依据。根据这句话你能想到什么呢?让学生充分发挥想象。
结合学生已有的经验,学生可能出现以下两种情况:把大杯换成小杯B、把小杯换成大杯
学生汇报时,教师同时多媒体演示以上两种替换过程。然后让学生选择自己喜欢的替换方法,进行计算。集体评讲时,让学生说说替换的方法,重点说明算式:720÷(6+3)中 “3”的含义以及720÷(6÷3+1)中“6÷3”的含义。
本课教学任务较重,为了让学生坚信今天所学的替换策略是正确可行的,并检验例题1所求答案是否正确,因此要进行检验,这是严谨的态度与科学的精神,是教学中应该倡导的。
接着教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。
三、拓展应用,巩固策略。
1、课件出示改编题:小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量比大杯少20毫升。小杯和大杯的容量各是多少毫升?
这一环节的设计是将“练一练”进行了改编,这也是本节课的难点所在,改编的目的在于:不让学生的思维中断,继续思考大杯和小杯之间的关系以及如何替换。在两个相差关系的量之间进行替换时,学生在上面例题的思维定势下,比较难理解为什么替换以后总量变了、总量是怎样变的。通过电脑课件演示替换的过程,能引起学生关注替换后总量的变化,进而找到解决问题的关键。教学时,先让学生在纸上画一画具体的替换过程,然后说说为什么可以这样替换。再独立计算,集体评讲,千万别忘记检验。
2、讨论交流:两种替换的方法有什么不同?我们要注意什么?
带领学生归纳认识出:当两个量成倍数关系,替换时总量不变,数量会变;当两个量成相差关系,替换时总量变了,数量不变。
四、拓展应用 巩固策略
1、完成“练习十七”第一题
学生独立解决,集体评讲时,请学生说说体现两个量之间关系的条件。接着用课件帮助演示替换的过程:边演示边说替换的方法,注意检验。
3、课件出示:“练一练”
将“练一练”作为习题巩固相差关系之用。学生独立完成后,集体评讲。
五、总结反思,优化策略
今天我们学习了一种新的解决问题策略是什么?运用替换这一策略解决实际问题,你觉得需要注意些什么? (学生总结反思)
结束语:
以上就是我对《解决问题的策略-替换》这一课的设计,不足之处,由于刚接触六年级教材,很多方面都考虑不够成熟,敬请各位评委老师多多批评指正,谢谢!
篇10:《解决问题策略——倒推》的说课稿
《解决问题策略——倒推》的说课稿
在设计《倒推》课件时,本着的原则是简约。无论我的教学设计多么新颖,无论我的数学思考多么前卫,无论我的使用的媒体技术多么先进。呈现给学生的课件始终要能达到一目了然、豁然开朗的效果。
因此,我设计了如下的课件内容。
例1的动画设计力求体现真实。让学生在倒的动画演示中切身感受到两杯水中水的增减变化的真实。“将甲杯倒入乙杯40毫升,两杯水同样多。”才能在学生的数学思考中有效顿悟出“原来两杯果汁各有多少毫升?”的问题。可以说,这个问题之所以能够迅速呈现出来,是因为通过课件对现实的真实反映而激起了学生的学习欲望,同时也渗透了倒推来源于生活、数学来源于现实的思想。
从生活中我们顿悟了一些数学问题,用数学的方法怎么去解决呢?通过课件,把用画图和填表两种数学方法将倒水的结果展示在屏幕上,而且这里的“200毫升”、“从乙杯倒回甲杯40毫升”是学生通过小组合作交流探究出来的`结果。再次通过课件演示,使学生又一次顿悟出:原来甲杯中的水应该比200毫升多40毫升,原来乙杯中的水应该比200毫升少40毫升。这里课件使用的妙处就在于将学生对整个倒推问题的思考过程进行了直观播放,也真正体现了课件在整个课堂教学中的支撑作用。
追求课堂教学的高效,有一点不得不提,就是对课堂教学时间的有效掌控。课件的有效作用就能帮助你实现这一目标。解决倒推问题可能有许多方法,但我认为,总有一种更具有“数学味”的解法,更抽象一些。课件将例2中解决问题的全过程展示给学生,使学生明白:倒推问题还可以这样解。帮助学生初步建立解决倒推问题的数学模型,为列式做铺垫。
例1和例2比较的设计主要是渗透倒推的基本思想:由现在到原来。
试一试和练习的课件设计除了是教学重、难点的需要外,主要作用是:(1)节约教学时间;(2)便于教学反馈、师生交流。另外,通过对练习题的分层设计,帮助学生巩固倒推的策略。
篇11:解决问题说课稿
一、说教材。
首先说说我对教材的理解。这部分内容是苏教版六年级上册第四单元的《解决问题的策略》的第一课时,在此之前我们学习了一些解决问题的策略,以及列方程解决实际问题,这为我们本节课的学习奠定了知识基础,而本节课将为我们后面要学习的解决更复杂实际问题奠定基础。
二、说教学目标。
新课标要求,人人都要获得良好的数学教育,不同的人获得不同的发展。根据这一理念,联系学生实际,我制定了以下教学目标目标:
1、知识目标:让学生在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、技能目标:让学生在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
3、情感目标:进一步培养学生独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
三、说重难点。
本节课的教学重点在于:理解并运用假设的策略解决问题。
教学难点:运用假设策略要理清楚新的数量关系。
四、说教法、学法。
新课标指出:学生是学习的主体,教师是学习的组织者,引导者,合作者。为了达到这一要求,为了实现教学目标,有效突出重点,突破难点,本节课我将运用启发式教学、复习引导教学、讲授法、探究法等多种教学方式,去引导学生积极思考、自主探究、合作交流,引导他们去感悟运用假设策略解决实际问题的妙处。
五、说教学程序
根据上述分析,结合学生的实际情况,我将本节课分为以下几个教学环节:
第一个环节:复习铺垫,引入课题
首先,我向学生展示两道关于果汁的问题,这道题目是根据教材中的例题改编过来的。读题并提问:“同学们,你会解决这两个问题?”让学生根据题意分别列出算式后,引导学生提问:“你能说说每一道题目都是根据什么数量关系式列式计算的吗?(学生积极思考后,回答问题)接着提问:“每一道题目中都有几种类型的杯子?”接着指出:只求一种杯子的容量是比较简单的。
然后,出示例1,先让学生齐读题目,体会和上面两道题目的不同。接着,比较两道题目的异同点,培养学生审题与表达的能力。根据题目的异同点引出课题,今天就来学习解决这类含有两个未知量的实际问题的策略。通过改编例题也会学生解决例题提供了一种思路,为下面的教学做了很好的铺垫。
第二个环节:合作交流,探究策略。
解决这道题目似乎有些困难,先和学生一起分析一下题意,找出两个数量关系式。
然后让学生根据数量关系式再联系以前的知识,讨论探索解决这个问题的思路。学生的思路可能有:第一种:列方程,让学生说出怎么设未知数,设小杯的容量是x毫升,则大杯的容量是3x毫升。第二种:画线段图的方法。引导指出一般我们先画单倍量。小杯共9段,大杯共3段。第三种:全部换成小杯,一个大杯就可以换成3个小杯,一共9个小杯。学生只要说出思路即可,然后事实总结三中思路的共同点,引导学生进一步思考。学生能够发现:都是把两种杯子转化成了一种杯子(小杯)。根据学生们的发现,可以指出:像这样把两个未知量转化成一个未知量的方法就是我们今天要学习的策略假设,运用假设策略可以把复杂的问题转化成简单的问题。进一步揭示课题。
接下来,让学生打开课本69页,任选其中的一个思路解决这个问题,填写在书上,并提醒学生要检验。教师巡视,观察并引导学生的解题方法。学生完成后,选择使用列方程和画线段图的学生说说解题过程。因为这两种方法是以前学过的,这节课就一带过过,目的是让学生明白解决一个问题有很多方法,起到活跃学生思维的作用。而本节课的重点是第三种思路全都换成小杯,也就是假设全是小杯,需要重点讲解。根据课件辅助教学运用假设全是小杯的解题思路和过程,提供给学生一种思考过程,因为是本节课的重点,所以请了3位学生按照该思路想一遍,然后再让全班学生想一遍。思路比较明确了,学生比较容易的根据思路列出算式,教师根据学生想法板书解题过程,以及检验过程。学生容易忽略检验的重要性,所以一定要提醒学生养成检验的好习惯。
提问:刚才假设全是小杯解决了这个问题,这道题还可以怎样假设?让学生不能只满足于解决问题,还要多加思考用不同的假设解决问题。学生比较容易想到还可以假设全是大杯。同样,根据课件讲解思考过程,这一遍主要是让学生自己说,自己想,独立完成解答。
第二环节:归纳整体,提炼策略
讲完例题后,及时回顾整个例题,总结运用假设策略解决问题的步骤,让学生进一步理解假设策略。根据刚才解题的过程,一步一步地总结出5个步骤,第一步,分析题意,找到数量关系,发现要求两个未知量,需要使用假设策略。第二步,做出假设,假设全是小杯或假设全是大杯,把两个未知量转化成只有一个未知量的问题。第三步,根据假设,调整数量关系,使数量关系变得简单。第四步,列式解答。第五步,检验反思。
第三环节:运用策略,掌握策略
出示练一练,及时巩固新知。练一练是和例题类似的题目,于是我要求学生根据刚才总结的运用假设策略解决问题的5个步骤,去思考并解决这个题目。这道题可能对一部分学生来说还是有些难度,于是我和学生一起完成了第一步分析题意,让学生找到数量关系。接下来的4步就由学生独立完成。第2步时提醒学生假设全是什么更方便解题。一些学生会模仿老师的解题步骤完整得做完这一题。这就说明他们学会了运用假设策略。通过本题提问为什么不假设全是桌子,让学生明白在做假设时要选择方便解题的那个假设。
在以前的学习过程中,学生已经在不知不觉中,使用过假设策略。让学生先回想一下,小学生的联系知识能力并不强,可能不能一下子想出来。于是,教师让学生观察老师想出来的,让他们判断一下是否运用了假设策略,进一步加深对假设策略的理解,同时也培养学生联系知识的能力,让学生有用新知联系旧知,让自己的知识成为一个体系的意识。
第四环节:运用策略,闯关练习
简单总结一下所学新知,设计三个题目,考察学生掌握情况。题目由易到难,层次分明。第一关,填空题,有一个是看图填空,题目比较简单,学生基本都能通过,这便增强了学生的信心,提高了继续闯关的欲望。第二关,稍有难度,但题目中提供了解题思路,根据解题思路,多数学生可以正确解答出来,启发学生课下运用第二种假设解决该题目。第三关,图文题目,先让学生从图中读出有用的信息。然后独立完成,教师巡视,用奖品激励大家认真完成,并找出运用不同假设策略解决问题并且书写完整和完美的学生,放到展示台上供大家学习。
第四个环节:归纳小结
提问:今天你有什么收获?通过学生自己归纳,对所学过的知识进行整理,进一步培养学生归纳概括的能力。
板书设计:
解决问题的策略
两个未知量 假设 一个未知量
复杂 简单
假设全是小杯 分析题意
共有:3 1+6=9(个)
小杯:720 9=80(毫升)作出假设
大杯:80 3=240(毫升)
检验:80 6+240=720(毫升) 调整关系
80 3=240(毫升)
答:小杯的容量是80毫升,大杯的 列式解答
容量是240毫升。
检验反思
篇12:《解决问题》说课稿
《解决问题》说课稿
一、说教材
1、《解决问题》是本册教材第二单元的内容,在课标中明确提出要重视培养学生的数学应用意识,在解决真实问题的过程中,培养学生的数学应用意识,形成问题解决的一些基本策略。
2、教材选择了某旅游团到宾馆住宿的事情,提出了小组合作帮助导游设计几个住宿方案的问题,鼓励学生积极与同学合作。巩固除法的知识,让学生大胆发言,表达自己的想法,同时也要听取同伴得以斯,在各种方案的制定与讨论的过程中,感受数学与生活的密切联系,增强学生的数学应用意识。
3、教学目标:
(1)结合旅游团的住宿问题,经理小组合作,一起设计、交流、讨论住宿方案的`过程。
(2)能灵活运用学过得知世界决胜火种的现实问题,并能表达解决问题的方法和过程。
(3)获得与同伴合作解决问题的成功体验,感受数学的快乐。
教学重难点:能灵活运用学过得知世界决胜火种的现实问题,并能表达解决问题的方法和过程。
4、本节课在教材的处理上要注意结合学生的生活经验,选择学生熟悉的旅游话题来展开讨论。
3、在教材处理上值得注意和探讨的问题:培养学生的合作意识,引导他们会表达自己的想法和思路。
二、说教法
教学方法是教师授课的手段。教学力求体现自觉性原则、运用培养自学及目标教学的基本模式,采用自学讲练结合的方法进行。自主性教学原则有利于学生思维能力的培养,可以充分发挥学生的主观能动性,变被动听为主动自学,学生积极动脑、动口、动手;倡导教师为主导,学生为主体,思维训练和语言表达为主线。强化学生合作学习、自学思考,充分发挥学生的天赋和创造才能,保证课堂训练的密度。本节课使用多媒体教学手段,力求借助这些手段节约时间,突破难点,提高效率。
三、说学法
学法是学生学习知识的方法。如何让学生由“学会”转变“会学”,主要要突出如下三点:
1、本节课所要采用的是提出小组合作帮助导游设计几个住宿的方案,在进行小组合作之前,由学生独立思考。
2、男游客的住宿问题在老师的教扶下进行,学生的思路已经被打开了,在解决女游客的住宿问题上,已经有法可依了,仍然是在独立思考的前提下进行小组间的合作与交流,大胆表达自己的想法。
3、说明白教师怎样指导学生掌握所确定的学法。
教会学生学会通过观察、分析、归纳、从具体实例中抽象出结论的方法,逐步练就“会学”的本领,注意对学生非智力因素的培养,激发学生学习的积极性。有意识地培养学生自主探索,看书自学思考的学习能力,从而落实教法。
四、说教学过程
教学程序是教师具体施教的步骤,是教师教学设计的体现与教学思想的展示过程。
我教学全过程的总体结构设计:创设情境――提供素材――抽象概括――适时强化。
(1)导人新课。
首先从学生感兴趣的话题DD旅游开始谈起,激发学生的学习兴趣,为学习新知识创造了良好的开端。
(2)学习新课。
A观察情景,找出信息;
B提出自己的见解或者是问题(男女分开住,导游和司机的问题);
C设计13名男游客的住宿方案,归纳出解决此类问题的思路或者说是策略;
D在此基础上小组合作交流完成女游客的住宿方案的问题,进一步形成策略。
(3)巩固练习。
一个新的解决问题的策略的形成,必须反复应用中强化巩固。所以,紧扣教学内容和教学环节,设计多种形式的练习,吃饭用碗和登山统一帽子的问题,使学生的知识,能力、智力同步发展。
篇13:《解决问题》说课稿
我将从说课标、说教材、说建议三个方面进行解说。
第一个方面:说课标
说课标包括说课程目标和内容标准。首先说课程目标
(一)课程目标
根据学生的身心发展特点,《课程标准》把九年义务教育的学习时间划分为三个学段,二年级处于第一学段;根据对第一学段“数与代数”的学段目标的研读,下面我对本单元目标进行解读:
对本单元目标我分别从知识技能、数学思考、问题解决、情感态度四个方面进行阐述,
1.知识技能目标:结合具体情境,会分步解决两步计算的乘加(减)、除加(减)问题,掌握分步解决两步计算问题的解题思路。
2.数学思考目标 :让学生在分步解决两步计算的乘加(减)、除加(减)问题的过程中,感悟数学思考方法和解题策略。
3.问题解决目标:能结合生活实际,将生活中“旅游”素材引入数学知识中, 经历在实际情景中提出问题、解决问题的过程,并用所学知识解决生活中的问题。
4.情感态度目标:通过小组合作交流解决问题,感受数学在解决生活问题中 的作用,培养对数学学习的兴趣。
再说内容标准
(二)内容标准
在认真研读第一学段内容标准的基础上,确定了本单元的内容准标是:
分步解决两步计算的乘加(减)问题:通过本信息窗的学习,学会分步解决两步计算的乘加(减)问题,学会有条理地思考问题,掌握一些初步的解决问题的思考方法。
分步解决两步计算的除加(减)问题:通过本信息窗的学习,学会分步解决两步计算的除加(减)问题,学会有条理地思考问题,掌握一些初步的解决问题的思考方法。
第二个方面:说教材
教材中的内容是实现课程目标的重要资源,那么,它们是怎样来阐述课程理念的呢?我将从“知识与技能立体整合” “内容结构” “编写特点”“三个方面来进行研说,先来看看知识与技能立体整合
(一)知识与技能立体整合:
本套教材内容是由低年级到高年级不断拓展的螺旋式编排。本单元分步解决两步计算的实际问题是学生在掌握加、减、乘、除四种基本数量关系并解决一步计算的实际问题的基础上进行学习的,为后面解决稍复杂的实际问题打下基础。
(二)内容结构
本单元安排了两个信息窗:分步解决两步计算的乘加(减)问题、分步解决两步计算的除加(减)问题。第一个信息窗 呈现的是景区停车场停车的情境,通过问题“旅游团一共有多少人?”,学习分步解决两步计算的乘加问题;通过问题“小汽车比大汽车多几辆?”,学习分步解决两步计算的乘减问题。第二个信息窗 呈现的是在水上乐园售票处买票的情境,通过问题“买1张儿童票比买1张成人票少花多少钱?”学习分步解决两步计算的除减问题,通过问题“买1瓶果汁和1瓶矿泉水,一共需要多少钱?”,学习分步解决两步计算的除加问题。
(三)编写特点:
下面我们来说一下编写特点:
依据本单元内容,本单元教材编写具有以下两个特点:
1.题材选取具有现实性和趣味性
本单元以学生喜闻乐见的旅游活动为线索,选取了在景区停车场停车、来到水上乐园等情景中富有现实意义的、贴近学生生活经验的素材,以此为载体展开解决问题的研究。这些问题是发生在学生身边的,学生经历过的或能够接受的。现实的题材体现了学习数学的意义,有趣的题材能吸引学生去发现问题、提出问题与分析解决问题。学生通过自己解决问题,感悟数学思考方法,提高分析问题、解决问题的能力。
2.注重解决问题的一般思路和解题策略的渗透
两步计算实际问题历来是小学数学实际问题教学的重、难点之一。解决两步计算的实际问题的关键是先根据题中条件与问题之间的联系找到中间问题。分析与寻求中间问题的策略方法也是以后解决更复杂实际问题的重要基础。从这个意义上说,本单元教学是学生解决问题能力发展的重要转折点和关键点。在“你问我说”部分的编写中明晰了分析问题、解决问题的一般过程,如信息窗1.2中呈现了用分析法和综合法分析数量关系的过程。这样有利于学生体验和感悟两步计算问题的基本结构及解决问题的一般思路,进一步积累解决问题的经验,形成基本策略。
第三个方面:说教学建议
基于我校“先学后导、互助提升”的数学教学模式,结合我校“前置性学习单”的使用,我从以下三个方面来说说我的建议。
1.引导学生经历从情境图中发现问题、提出问题的过程。
解决问题的第一步是引导学生从比较复杂的情境中抽象出有用的数学信息,发现并提出数学问题。由于学生进行了“前置性学习”,在课堂上不要浪费太多时间,让学生直接说出数学信息,提出问题,如果不能正确的找出数学信息,提出问题,教师要注意鼓励学生把发现的数学信息用自己的`语言大胆地说出来,并指导学生怎样把信息分类整理,这样不仅方便发现问题、提出问题,也有助于学生更好地理解题意,为后面分析和解决问题奠定基础。
2. 引导学生经历解题思路的分析和探索过程。
教学过程中,教师要注意让学生在理解题意的基础上独立思考(这个环节在家进行前置性学习时完成),课堂上开展小组合作交流,互学补充,用自己的语言描述数量关系,分析数量关系,每个学生比较清晰地表述思考过程,寻找解题策略。通过学生展示汇报,生生互动,教师适时引领,学生解决问题的思路逐步变得有条理、有根据,对两步计算的数量关系就有了初步的认识和理解,同时也发现解决两步计算的实际问题关键是要找准先求什么,再求什么。既可以从条件想起,也可以从问题想起,也就是我们说的综合法和分析法,但不论哪种方法,都要认真审题,理解题意,通过分析已知条件和问题间的数量关系,找出中间问题(即关键问题)最后求得应用题的正确解答。
3.丰富体验,促进反思,帮助学生初步形成解决问题的基本思路
解题策略需要学生在有比较充分体验的基础上从内部感悟、生成,而不能依赖外界灌输。学生在探索解决问题的过程中,初步体会了解答两步计算问题通常要按“先求什么,再求什么”的思路进行,还体会到要确定“先求什么”也是有章可循的,既可以从条件想起,也可以从问题想起。也就是我们说的综合法和分析法,如信息窗1.2中呈现了用分析法和综合法分析数量关系的过程。在此基础上,要继续丰富学生的体验,运用刚刚获得的经验和方法尝试解决“自主练习”中的问题,并让学生完整地表达自己的思考过程,使学生清晰地感受到方法、策略的有效作用。教师还可以适时引导学生回顾反思用“综合法和分析法”两种方法,在解决两步计算问题的解答思路和方法上的相同点和不同点,从而使学生逐步清晰地认识到解决两步计算问题的关键有两点:一是从条件还是问题想起;二是弄清“先求什么,再求什么”,初步形成解决问题的基本思路。即不论哪种方法,最终回归到“先求什么,再求什么”的解题思路是不变的。
篇14:《解决问题》说课稿
《解决问题》说课稿
教材:六年级上册P20
各位老师,下午好!我说课的内容是人教版小学数学六年级上册20页的例2《解决稍复杂的求一个数的几分之几是多少的问题》。
我要回答的问题有:
1、新课标对问题解决有什么要求?
2、例2的编写意图是什么?
3、我是如何进行例2教学的?
先回答的第一个问题:新课标对问题解决有什么要求?
解决问题作为体现小学数学教育“过程与方法”目标,其要求贯穿于数与代数、空间与图形、统计与概率、实践与综合应用的教学过程之中,贯穿于整个数学教学的始终,主要是使学生增强发现和提出问题的能力,分析和解决问题的能力。解决问题目标的实施,按照新课程的要求,结合教学内容,努力培养和发展学生的“四个意识”。
首先,是突出问题意识,要求学生能从具体情境与社会生活中发现并提出简单的教学问题,能综合运用一些数学知识加以解决。
第二,是加强策略意识,使学生能探索和分析解决问题的有效方法,获得解决问题的一些基本策略,体验解决问题策略的多样性。
第三,是重视合作意识,要求学生从事与同学合作解决问题的活动,尝试解释自己的思考过程。
第四,是提倡评价与反思意识,使学生能初步判断结果的合理性,经历回顾、整理解决问题过程和结果的活动。
我要回答的第二个问题是:
例2的编写意图是什么?
我打算分三步来介绍:
第一步:教材的逻辑起点在哪里?
教材是在学习了例1的知识,理解和掌握了求一个数的几分之几是多少这一问题的思路与方法基础上,学习解决求比一个数多(或少)几分之几的问题,此例题既是对旧知识的延续,又是学习新知识的起点。
第二步:例2的编写思路是怎样的?
教材从绿化造林可以降低噪音这一环保问题引入,出示情境图:公路上汽车的噪音有80分贝,经绿化隔离带后,噪音降低了1/8。从而提出问题:现在听到的声音是多少分贝?
很显然,此例题反映的是整体与部分的比较关系,即知道一个部分量是总量的几分之几,求另一个部分量的问题。
教材呈现了两种基本方法:
一种是先求出一个部分量,再用总量减去这个部分量,求出另一个部分量;另一种是先求出要求的部分量占总量的几分之几,再根据分数乘法的意义求出这个部分量。
第三步:两种解法的区别在哪里?
教材中以一句“两种思路有什么不同?”提示教学中要求学生对两种思路进行比较。发现两种思路体现两种不同的思考方法,不同的解题模型。第一种可以归结为“求比一个数少几的数是多少”的解题模型,第二种可以归结为“求一个数的几分之几是多少”的解题模型。通过比较,使学生加深对两种思考方法的认识,同时培养学生比较、归纳的能力。
我要回答的`第三个问题是你是如何进行例2教学的?
根据新课标对问题解决的要求,我打算分3个步骤进行教学:
一、情境引入、提出问题,突出问题意识。
根据例2的编写意图,我将例2改为下面两道例题:
1、北京常规双飞六日游原价元,现在降低了1/5,现在的价格是多少元?
2、北京国庆专线双飞五日游原价1800元,现在提高了1/6,现在的价格是多少元?
我这样改写的目的是为了更好地体现整体与部分量之间的两层关系,即总量减去一个部分量等于另一个部分量;部分量加上部分量等于总量,从而进一步整合例题的教学目标,完善此类问题解决的基本结构,这一对教材进行创造性的处理,体现了教师应该用教材教,而不是教教材的理念。
在教学中,我先出示两条数学信息:
1、北京常规双飞六日游原价2000元,现在降低了1/5
2、北京国庆专线双飞五日游原价1800元,现在提高了1/6
然后提问:看到这些信息,你最关心的会是什么呢?学生自然就会想到现在的价格会是多少呢?通过让学生根据相关联的信息,提出问题,并将信息和问题完整地叙述出来,同时出示例题。
这一环节,让学生根据信息提出问题是为了加强了学生的问题意识;让学生能从数学的角度去尝试解决生活中的实际问题,这是基于对学生数学意识的培养。
二、尝试解决、建立模型,加强策略意识。
首先解决第一个问题,先让同学们尝试画线段图,再来解决问题。画线段是解决问题的重要策略,为了培养问题解决的策略意识,因此,这里我想利用线段图辅助理解题意,从而把握数量关系。
同时,我也请两位学生上台进行板演,画出线段图并列式计算。
对于第一个问题,学生的解法可能会出现这样两种,2000-2000*1/5=1600(元) 2000*(1-1/5)=1600(元)
先对第一种方法进行交流:我先让学生说说自己的想法,在了解了学生的想法之后,要求学生明确第一步(2000*1/5)在算什么?为什么这样算?让生说清楚 2000元是什么,1/5是什么,降低了谁的1/5?同时把“降低了原价的1/5”这句话进行板书,并让多个学生说一说。通过这样一说,使学生明确这种方法先求的是降低的价格,用原价减去降低的价格,求出现在的价格。从而建立了总量减去一个部分量等于另一个部分量的解题模型。
对第二种方法的交流:在教学中,我让该生先向大家介绍一下方法,然后抓住重点进行提问:1-1/5在算什么?希望学生说出“现价是原价的几分之几”,并让多个学生说一说“降价1/5,就表示现价是原价的1-1/5,即4/5。”通过师生间的互动交流,使学生明白,要求现在的价格,就是求原价的1-1/5是多少?所以先求“现价是原价的几分之几”,再用分数乘法的意义求出现在的价格。在充分经历解题思路复述的过程中,培养了学生交流与合作的意识。
对于第二个问题,我想重点应突出两个功能:一、巩固强化以上两种不同的解题方法,建立两种不同的解题模型;二、加强求比“1”多(少)几分之几是多少的两种分数应用题的数量关系的对比。
因此,在教学中我想可以让同学们像刚才一样,先试着画线段图来解决,然后和同桌交流想法。
在反馈交流过程中,学生也会提到以上两种方法。对于第一种方法:我会重点突出提价1/6的具体含义,使学生明确其实就是提高了原价的1/6。再用原价加上提高的价格等于现在的价格。
而第二种方法,使学生明白,要求现在的价格,就是求原价的1+1/6是多少?所以先求“现价是原价的几分之几”,再用分数乘法的意义求出现在的价格。
由于两种方法和第一个问题相类似,这里不再赘述。
三、比较分析、加深认识,增强学生的反思意识。
这里的比较包括两个方面:首先我让学生对两种解题方法进行比较,其次对两种题目类型进行比较。
对于两种方法的比较:是在以上两种解法梳理的基础上,我让学生通过讨论交流,让学生明确两种方法都是把原来价看做单位“1”,都需要求原价的几分之几。第一种方法是根据已知条件先求出原价的1/5是多少,即降价多少,再求出现在的价格。第二种方法是根据问题直接求现在的价格是原价的几分之几,再求出现在的价格。从不同的角度思考体现了两种不同的数量关系,就有了两种不同的解题方法。通过比较增强学生的反思意识,达到对两种方法的真正理解。
对于两种题目类型的比较,我刚才就有提到,这两道例题更好的反映了整体与部分的比较关系。第一题是总量减去一个部分量等于另一个部分量,第二题是部分量加上部分量等于总量。通过这样的比较,使整体与部分两者之间的关系更加的完整,在知识层面上,使解决求比“1”多(少)几分之几是多少?的问题达到了有机的融合,形成了较为完整的知识结构;在解决方法上,充分体现了两者的联系与区别。
篇15:《解决问题》说课稿
一、说教材
1、教材分析
这节课的教学内容是本册书第五单元用百分数解决问题的第三课时,具体是百分数应用题中“求比一个数多(或少)百分之几的另一个数”的两步计算应用题。本节课的教学目的就是让学生在已学过的分数三类基本应用题基础上,学习解答较难一点的百分数应用题,从而进一步提高学生分析解答应用题的能力。
2、教学目标
①、通过创设情境,独立尝试,理解“求比一个数多(或少)或百分之几另一个数”的应用题的数量关系,并能正确解答。
②、通过自主探究,合作交流,探索解决问题的有效方法,体验解决问题方法的`多样化,发展学生的思维。
③、通过解决生活中的实际问题,培养学生的应用数学意识,进一步体验数学与生活的紧密联系。
3、教学重点、难点
分析理解百分数应用题的数量关系,掌握解题方法。
二、说学法
1、为了实现教学目标,突出重点,解决难点,利用学生已学过的分数三类基本应用题探究解决问题的方法。
2、采用此种方法的目的在于通过提出问题,画出线段图分析数量关系,找出解决问题的方法,让学生亲身体验知识形成的过程,获得基本的数学知识和技能,从而激发学生的学习兴趣,增加学生学好、用好数学的信心。
3、从“一题多解”的探究过程中,主动参与知识的形成,提高学生思考问题、解决问题的能力。
三、说教法
本节课的内容是在前面第一、二单元学习分数乘法、除法一步应用题基础上进行的继续学习,是一节新旧知识联系密切的教学内容。因此,我认为教师为学生创识一种问题背景下的探索活动,使学生在一种动态的探索过程中自己提出问题,发现解决问题的方法,从而体验成功的快乐,感受数学的思想方法。基于这一点,我以让学生根据条件,提出问题,分析应用题中的数量关系,找出不同的解法为教学重点,创识一种“复习-探究-应用”教学形式,以“自主学习”贯穿课中,引导学生迁移旧知,大胆尝试,突出学生的学习过程。
四、说教学过程
1、利用旧知,导入新课
以学生身边熟悉的情境引入、出示条件,让学生根据这些条件提出可以解答什么样的问题。
设计用意,好问是学生的天性,利用这一特性可以很快抓住学生,使他们大脑迅速运转,回忆旧知,切入正题。同时也是从学生已有的经验和已有的知识背景出发,找准新知识的最佳切入点,为学生后面的学习做好准备。
2、讲授新知
①、出示例题的条件:“学校图书室原有图书1400册,今年图书册数增加了12%。”教师提出:根据你自己的理解,可以提出什么问题,这样去激发学生兴趣,调动学生的思维活动,从而得出不同需要解答的问题,此时在教师的引导下,把所提的问题归纳成本节课所要讲的内容,紧接着放手让学生独立解答,得出不同的解法,学生互相对照,探讨研究,总结方法,教师再给以指点和总结,然后再练习,及时巩固所学的知识。
设计意图,利用新旧知识的密切关系,使学生在提出问题解答问题的过程中,比较自然地在头脑中进行了比较-探究-总结的过程,学生实际能力不一,提出的问题可能不够准确,甚至是错误的,我认为这并不重要,重要的是学生利用自己已有的知识及经验进行了一次有意义地探索过程。
②、新知识的应用
a、练习的目的:练习是理解知识,掌握知识形成基本技能的基本途径,同时又是运用知识、提高能力,形成知识结构的重要步骤,让学生通过不同层次的练习,得到不同层次的收获,使学生在思维能力有所发展,增加用数学的意识。
b、因为此节课内容是在前面学习了分数乘法、除法基本应用题基础上再学习,又是学习稍复杂分数乘法应用题这一“顺向思维”的知识,所以在练习中给出了一些变化,第一题条件变化了“今年比去年减少了05%”;第二题是让学生求一个数的几分之几是多少;第三题的已知条件:海龟产下约900只海龟蛋,孵化率在40%—60%之间求这些海龟蛋可以孵化出多少只小绿海龟?这样练习的设计,既要巩固所学的基本解题方法,又要通过变化激发学生的学习兴趣,求知的欲望,培养学生的应用数学意识,提高解决实际问题的能力,同时为下一节的内容做一个铺垫。
3、结尾:
让学生说一说通过这节课的学习自己的收获与存在的问题。












