“gw86102311”通过精心收集,向本站投稿了9篇高压电机变频调速改造,以下是小编为大家整理后的高压电机变频调速改造,欢迎参阅,希望可以帮助到有需要的朋友。

高压电机变频调速改造

篇1:高压电机变频调速改造

随着工业自动化水平的不断提高和电力电子技术的发展,水工程中采用高压变频调速技术越来越多,水工程公司拟在取水泵房中选用12脉冲的电压源型高压变频调速器来控制355KW功率的水泵电机,对水泵电机变频调速技术进行升级,

据悉,国内目前广泛使用的高压电机用电量占全国发电量的30%,高压电动机变频调速装置开发成功后,可节能30%,其经济价值无法估量,产品市场前景诱人。

为了达到电气节能和工艺优化的目的,高压变频器在工程设计中应注意:

一、高压电机的特性试验和技术规范的再修订

当一台普通电动机由变频提供电源时,其变频器输出端的电压和电流谐波分量会使电机的损耗增加、效率降低、温度升高。高次谐波引起损耗的增加主要表现在定子和转子的铜耗、铁损及附加损耗的增加。其中,转子铜耗最为显著,因为异步电机总是在转差接近1的状态下旋转,所以转子铜耗非常大。在普通异步电机中,为改善电机启动性能,转子的集肤效应使实际阻抗增加,从而使铜耗增大。

另一方面,由于高压电机的线圈之间存在分布电容,当高次谐波电压输入时,各线圈之间的电压是不均匀的,这种长期反复作用使定子线圈某一部分的绝缘造成损伤,从而产生线圈老化,这在普通异步电动机的绝缘结构方面是难以接受的。另外电机的电磁回路不可能做到绝对对称,所以变频器输出电源中所含有的各次谐波分量将与电磁回路中固有的空间谐波分量相互作用形成各种电磁脉动。

同时,电机因处在频率不断调节的工作状态下,很容易与电机机械部分产生机械共振,造成电机机械部位的损坏。

因此,在变频调速改造工程中,为了避免变频调速系统在运行时出现上述问题,技术设计时必须考虑和高压电动机制造厂家进行技术合作,对电动机的相关特性进行调速实验,重新修订原电动机的技术规范。

二、电力电缆选型要点和敷设要求

由于变频器输出端与电机之间的联系采用电缆附设方式,且线路各相均存在对地电容,所以运行时线路上的电容电流是不相等的,

如果电缆附设距离较长,且线路中又存在高次谐波电流,那么一旦发生单相接地时,故障电容电流所点燃的电弧熄灭时间过长,会使这端电缆发热,造成非故障绝缘。

所以,在变频调速改造工程中,针对输出电源电缆,考虑电缆结构上的三相对称和屏蔽,将电缆截面适当增加,敷设长度不超过100m限定值,如果原输出电源电缆为非屏蔽或截面的栽流量裕度小于2,应更换符合要求的电力电缆。现场敷设施工时要将电源电缆与控制电缆和信号电缆分开敷设,避免由电源电缆中高次谐波产生的磁场干扰其他信号。

三、变频器工作环境的基本要求

由于高压变频器的逆变部分采用高压IGBT等功率器件,其开、关频率大于100HZ,易形成高次谐波电流,使得变频装置在工作时将产生一定的热量。一般在变频器柜的顶部均配有排风扇,它将柜内的热量排放到室内,这使得室内的环境温度不断升高,最终还会影响柜内各器件的可靠运行。

所以,在水厂工程设计中一般变频调速装置单独设置在变频调速室内,室内必须安装备用空调设施,控制室内环境温度在变频器所要求的范围内,同时设有通风门窗,必要时采用专门风道进行强制通风和冷却。

四、高压供电系统出口断路器控制的技术完善

变频调速装置所用变压器的高压侧要与高压系统中的开关柜直接相连,但开关柜的保护范围只是供电线路与变压器低压侧的短路,而变频器的故障应靠变频器自身的检测保护系统完成。当变频器发生故障发出跳闸信号时,断路器应可靠动作跳闸。

然而,普通断路器高压开关柜内部出现跳闸回路断线或直流控制电源消失的情况,变频器恰好出现故障(要求断路器跳闸)时,跳闸线圈已失电,断路器拒绝动作,因而造成变频器内部的功率器件损坏。

所以在设计中选择了带有欠压脱扣线圈的断路器,一旦出现跳闸回路断线或控制电源消失的情况,断路器首先自动跳闸,以保护变频器的设备安全。

篇2:单相电机变频调速技术综述

单相电机变频调速技术综述

摘要:单相电机变频调速具有相当的实际意义。依据其调速的基本理论,就其常用的功率主电路部分和控制方案进行了详细的分析和综述,讨论了目前研究工作中存在的问题,并对其发展的方向进行了展望,给出了一些个人的观点。

关键词:变频调速;单相电机;拓扑;控制策略

引言

变频调速技术在异步感应电机调速系统中,以其优异的调速和启动性能、高功率因数和节电效果,而被公认为最具发展前途的调速手段。

只有两套绕组的单相交流异步电动机,结构简单,生产成本低廉,使用维护方便,在小功率电机应用方面,如电冰箱、洗衣机、电风扇、空调等家用电器,汽车附件等领域占据主导地位。但是其工作效率低,仅为60%~70%,运行性能差,启动转矩小,一般不能应用在需要调速的场合,其转速的调节主要采用调节端电压和改变电机极对数的方法,调速效果已经越来越不能满足生产和生活的需要。为了弥补单相电机调速方面的缺陷,追求更高的性能,人们把更多的目光投向了无刷直流电机、永磁同步电机和开关磁阻电机等。尽管这些电机在工作效率、稳定性和出力等方面表现出众,然而他们共同的致命缺点就是成本太高,难以普及。随着变频调速技术的日渐成熟,其在单相电机中应用的研究也逐渐开展起来。

尽管三相电机的变频调速技术已经日渐成熟,但是,单相电机的变频调速技术却还面临着以下一些问题:

1)单相电机的绕组不同于三相电机,其主副绕组多为不对称绕组,副绕组通常串联了运转电容,给合成圆形旋转磁场带来新的问题;

2)单相电机用的变频调速逆变主电路结构同样有其独特的一面,存在如何获得合理,高效的逆变电路的问题;

3)针对单相电机变频调速,存在采用什么样的控制技术,才能使得单相电机获得与三相电机,甚至与直流电机一样优良的调速效果的问题。

本文将主要依据以上3个问题,就单相电机绕组,主电路结构及其控制技术,对国内外单相电机变频调速技术的最新发展进行了较为详细的分析和综述,并在此基础上对其发展方向加以探讨。

1单相电机绕组分析

根据单相电机合成磁场的分析[1],单相电机的定子上嵌放有两相绕组,设两相绕组轴线在空间相距β电角度,两相绕组中通入相位差为θ的电流,两相合成圆形旋转磁势的条件是

式中:FM为主绕组磁势幅值;

FA为副绕组磁势幅值。

在单相电机中,定子两相绕组轴线通常相距90°,为了获得圆形旋转磁势,总希望两相电流相位差等于90°。

参考文献[2]给出了不对称绕组单相电机的等效电路,依据此等效电路,当空间电角度β和相位差θ均为90°时,电机在以下条件下满足圆形旋转磁场的要求,获得最佳性能:

式中:Imain为主绕组电流;

Iaux为副绕组电流;

a为副绕组与主绕组之间的匝数比。

继而得出Imain=αIaux。

实际上,在电机的运行过程中,时刻保持主副绕组电流比值恒定相当困难,通常以Vaux=aVmain来近似实现电流比值的恒定。

单相电机多为电容运转式电动机,副绕组中串联的电容值,在工频条件下能使电机获得较好的运行性能。当电机运行在低频时,随着电容容抗的增大,副绕组中流过的电流相位与主绕组不再成正交关系,于是电机出现过热,转矩降低,脉动转矩增大等问题[3]。所以,目前采用的变频电路均采用去掉电容,两相绕组分别控制的方案。但是,去除电容也就意味着要增大加在副绕组上的电压值。

2逆变器主电路结构拓扑

2.1半桥逆变电路

由于只需要输出两相电压,使得单相电机半桥逆变电路结构简单,仅仅需要4只功率变换器件组成两个桥臂即可,如图1所示。半桥逆变电路具有结构简单,功率开关器件数目最少,成本低廉,稳定性高等优点。

但是,对于单相电机,采用半桥逆变电路面临这样一个问题:由于电机的两相电流I1及I2在相位上相差90°,因而流向中性点N的两相电流之和I是两相电流的矢量和。

对于用两只电容串联构造中点的电源,回馈电流I会使得前级变频电源输出电压波动加大,迫使电源加大输出电容;同时,由于负载不对称带来的直流偏量还会使得中点电位向正(或负)方向持续漂移,给供电带来极大影响。所以,如何获得高质量的双极性直流电源是采用半桥逆变电路的关键所在。在参考文献[4]中,提出了一种采用Cuk和Sepic电路并联方式,来获取双极性直流电源的方式。但受到功率开关容量的限制,功率和输出电压的大小都有待提高,整个电路的实用性还有待验证。

2.2全桥逆变电路

普通全桥逆变电路每相由4只功率开关器件组成,两相绕组共需8只功率开关器件,如图2所示。同半桥逆变电路相比,功率开关器件数量比为2:1,结构上变得复杂,在稳定性和经济适用方面都不如半桥电路。但是,全桥逆变电路不再需要对称正负输出电源,而只需要单路稳压电源即可。两相绕组的电流也不再对电源形成大的干扰。同时全桥电路的直流电压利用率也比半桥电路要高。

鉴于开关器件的数目较多,在实际应用中将图2中中间两只桥臂合二为一,成为两套绕组的公共桥臂,就得到了图3所示的两相三桥臂全桥逆变电路[5]。其中的公共桥臂分别同左、右桥臂组合,构成两相全桥逆变。

两相三桥臂全桥逆变电路继承了全桥逆变电路的优点,同时有效地减少了开关器件的数目。在直流电压Ud相同的情况下,其输出电压值可达到全桥电路的70%以上。在逆变桥结构上,两相三桥臂电路同三相半桥逆变电路完全一致,因此,容易从已有的六单元功率模块移植过来使用,其输出也可在三相同两相之间灵活转换。而目前三相逆变电路用的六单元功率模块的.发展已经颇为成熟,尤其是在小功率应用场合。

3控制技术

单相电机采用半桥逆变电路时,由于主电路结构类似,诸如SPWM和SVPWM等调速技术可以方便地移植到单相电机调速中来。以下讨论控制技术时,为了分析方便,均假设电机的两相绕组对称,即两相绕组相同,空间上相互垂直。同时假定正负电源对称,幅值恒定,中性点N不因电流I的注入而浮动。

3.1半桥SPWM控制

单相电机采用SPWM控制技术时,由于要保证两相绕组中的电流相位差为90°,所以,两路调制信号的相位相应地也要设定为相差90°。SPWM控制的优点是谐波含量低,滤波器设计简单,容易实现调压、调频功能。但是,SPWM的缺点也很明显,即直流电压利用率低,适合模拟电路,不便于数字化方案的实现。半桥SPWM控制技术的研究已经相当成熟,有关的文献资料也比较多,在此不再做过多的分析。

3.2半桥SVPWM控制[6]

依据电机学的知识可知,电压空间矢量同气隙磁场之间存在如下关系:

U=dφ/dt(4)

通过控制电压空间矢量来控制电机气隙磁场的旋转,所以SVPWM控制又称为磁链轨迹控制。

开关器件S1和S2,S3和S4的开关逻辑互补,则4只开关器件只能产生4个电压矢量。依据参考文献[6]的作图方法可得到图4所示的电压矢量图。

从矢量图来看,在两相半桥逆变电路中,不会产生零电压矢量。为了合成一个幅值为Uα,相角为α的电压矢量,在矢量分解时,其X轴的分量要有E1和E2共同完成,而Y轴分量要由E3和E4共同完成。

在一个开关周期T内,E1作用的时间为t1,则E2作用的时间为T-t1。E3作用的时间为t2,而E4作用的时间为T-t2。根据矢量分解可以得到式(5)和式(6)(矢量E1,E2,E3,E4的大小均为Ud/2)

又因t1(t2)?T,所以?Ud/2。即半桥逆变电路在采用SVPWM控制时,输出相电压的最大值为Ud/2。

3.3两相三桥臂全桥逆变SPWM控制[7]

采用SPWM控制时,由N1及N2构成的公共桥臂要同时接入电机的两相绕组中,所以在调制时,公共桥臂的调制波就不同于A及B桥臂的调制波。

整个逆变电路具体调制方法为:在载波相同的情况下,A及B相调制波为正弦波,相位上A相超前B相90°(电机正转,反之,B相超前A相90°,则电机反转);公共桥臂则采用恒定占空比的方法调制,上下桥臂占空比均为50%,如图5所示。

根据图示的电路工作波形,在一个开关周期内输出电压的平均值:

在SPWM调制中,D=(1+msinωt),代入式(7)可得:(t)=mUdsinωt。当开关频率远大于输出电压频率时,输出电压的瞬时值uo(t)≈(t)。

如此在A及B绕组上得到幅值相等,相位相差90°的正弦电压。电压幅值与调制度m成正比。当m=1时,输出电压峰值达到最大,为Ud/2。依据电机的V/f曲线和输出电压与m的关系,即可实现两相电机的变压变频调速控制。

3.4两相三桥臂全桥逆变SVPWM控制[5]

逆变电路中,功率器件的每一种通电模式,都能在电机中生成一支空间电压矢量。对于两相三桥臂逆变电路,根据同一桥臂上下开关互补导通的原则,三个桥臂共产生8种开关组合模式,可以在电机绕组上得到8支空间电压矢量,它们以V(A,N,B)来表示。其中A=1时,表示A1导通,A2关断;A=0时,表示A1关断,A2导通,其余类推。8支矢量如表1所列。

表18支空间电压矢量关系组合

V

非零矢量

零矢量

无用

A

1

0

0

1

0

1

1

0

N

0

0

1

1

0

1

0

高压电机变频调速改造1

B

0

1

1

0

0

1

1

0

忽略绕组电阻压降时,非零电压矢量的幅值为

|V(1,0,0)|=|V(0,0,1)|

=|V(0,1,1)|=|V(1,1,0)|=Ud(8)

|V(1,0,1)|=|V(0,1,0)|=Ud(9)8支矢量中,两个零矢量位于坐标原点,其余6支根据绕组轴线以图6所示方式分布。电压空间矢量都可以由与之相邻的两个基本矢量和零矢量组合而成。矢量V(1,0,1)和V(0,1,0)在矢量合成时可有可无。为了计算的方便,只使用4只位于坐标轴上矢量和两只零矢量来合成电压空间矢量。(10)

t0=T-t1-t2由t1+t2?T,得?Ud/,即输出相电压最大值为Ud/。

4结语

1)单相电机逆变主电路的结构主要分为全桥和半桥两种。半桥电路结构简单,成本低廉,要求前级电源能稳定提供正负对称输出。

2)全桥逆变电路,由于两相三桥臂需要的开关器件相对较少,易于采用三相电路中六单元功率模块,比起8只开关器件组成的全桥逆变电路优势明显。

3)半桥电路采用SPWM和SVPWM控制时,输出电压最大值相同;在全桥电路中,SVPWM的直流电压利用率比SPWM要高出41%。SVPWM控制易于数字化的实现,合理安排矢量作用顺序,能有效减小开关损耗。

4)从以上控制方案来看,普遍存在的问题为直流电压利用率较低。如何提升电压利用率是单相电机变频调速要克服的问题之一。单相电机的旋转磁场中存在有3次及5次等低频谐波,所以,在选用控制方案时要注意低频谐波的削弱。单相电机两套绕组垂直分布,彼此之间的互感接近于零,在采用更复杂的控制策略,如转矩直接控制时,会起到简化复杂程度的作用;同时,还可以利用两套绕组电流之和来确定磁场的位置,为电机气隙磁场的检测提供了一个有效、简便的途径。

篇3:单相电机变频调速技术综述

单相电机变频调速技术综述

摘要:单相电机变频调速具有相当的实际意义。依据其调速的基本理论,就其常用的功率主电路部分和控制方案进行了详细的分析和综述,讨论了目前研究工作中存在的问题,并对其发展的方向进行了展望,给出了一些个人的观点。

关键词:变频调速;单相电机;拓扑;控制策略

引言

变频调速技术在异步感应电机调速系统中,以其优异的调速和启动性能、高功率因数和节电效果,而被公认为最具发展前途的调速手段。

只有两套绕组的单相交流异步电动机,结构简单,生产成本低廉,使用维护方便,在小功率电机应用方面,如电冰箱、洗衣机、电风扇、空调等家用电器,汽车附件等领域占据主导地位。但是其工作效率低,仅为60%~70%,运行性能差,启动转矩小,一般不能应用在需要调速的场合,其转速的调节主要采用调节端电压和改变电机极对数的方法,调速效果已经越来越不能满足生产和生活的需要。为了弥补单相电机调速方面的缺陷,追求更高的性能,人们把更多的目光投向了无刷直流电机、永磁同步电机和开关磁阻电机等。尽管这些电机在工作效率、稳定性和出力等方面表现出众,然而他们共同的'致命缺点就是成本太高,难以普及。随着变频调速技术的日渐成熟,其在单相电机中应用的研究也逐渐开展起来。

尽管三相电机的变频调速技术已经日渐成熟,但是,单相电机的变频调速技术却还面临着以下一些问题:

1)单相电机的绕组不同于三相电机,其主副绕组多为不对称绕组,副绕组通常串联了运转电容,给合成圆形旋转磁场带来新的问题;

2)单相电机用的变频调速逆变主电路结构同样有其独特的一面,存在如何获得合理,高效的逆变电路的问题;

3)针对单相电机变频调速,存在采用什么样的控制技术,才能使得单相电机获得与三相电机,甚至与直流电机一样优良的调速效果的问题。

本文将主要依据以上3个问题,就单相电机绕组,主电路结构及其控制技术,对国内外单相电机变频调速技术的最新发展进行了较为详细的分析和综述,并在此基础上对其发展方向加以探讨。

1 单相电机绕组分析

根据单相电机合成磁场的分析[1],单相电机的定子上嵌放有两相绕组,设两相绕组轴线在空间相距β电角度,两相绕组中通入相位差为θ的电流,两相合成圆形旋转磁势的条件是

式中:FM为主绕组磁势幅值;

FA为副绕组磁势幅值。

在单相电机中,定子两相绕组轴线通常相距90°,为了获得圆形旋转磁势,总希望两相电流相位差等于90°。

参考文献[2]给出了不对称绕组单相电机的等效电路,依据此等效电路,当空间

[1] [2] [3] [4] [5] [6]

篇4:高压变频调速装置在电厂的应用

摘要:根据山东十里泉电厂供水泵应用高压变频调速装置的实效,说明国产高压变频调速装置的技术已日趋成熟,大力推广应用它所带来的经济效益和社会效益是十分可观的。

关键词:高压变频调速;水泵流量调节;节能

引言

山东十里泉电厂是一个具有5台125MW,2台300MW及一台140MW机组的中型电厂。

十里泉发电厂目前由30km外的水源地供水,水源地共装有5台水泵,均由560kW/6kV高压电动机拖动,多数情况下启动1~2台泵就可满足发电要求,采用手动节流调节方法控制水流量。如果节流阀开度不大、并且水流量足够,则停一台水泵;如果节流阀全开仍不满足水流量要求,则再开启一台水泵,由于管道长达30km,且节流阀始终处于调节状态,如选择一台水泵进行变频调速改造,节流阀全开,实现恒水压控制,不但具有良好的节能效果,泵站的控制特性也大为改善。

篇5:高压变频调速装置在电厂的应用

对于6kV等级,目前主要有3种方式的高压变频装置:单元串联多电平型、三电平型和电流源型。由于单元串联多电平方式容易实现冗余运行,在单元故障时能进行旁路而不影响电动机连续运行,并且具有谐波小、dv/dt低、技术成熟等显著优点,因此,决定采用这种方式的高压变频器。

在对国内外各厂家的单元串联多电平高压变频装置,进行性能价格比较和运行可靠性评估后,选用了上海发电设备成套设计研究所和上海科达机电控制有限公司生产的MAXF700-6000/750型高压变频调速装置,该类型产品具有如下6个特点:

1)功率单元冗余运行、故障时自动快速旁路,确保电机正常运行;

2)可在线更换功率单元,不须停机;

3)采用无极性电力电容代替电解电容,提高了装置寿命和整体可靠性,内不须更换电容;

4)采用特制散热器,使功率单元温升低,装置体积减小(宽3800,深1200,高2200);

5)输出dv/dt低(在500V以下),电动机绝缘不受损害;

6)电网自动重合闸后继续运行。

2变频运行的其它优点

该泵站经高压变频改造后,除了节能外,水流量控制特性以及电动机和泵的'运行特性明显改善,主要有以下6项优点。

1)实现恒母管水压控制操作人员只须改变母管压力设定值,不再调整节流阀,运行自动化程度大为提高,运行和维护工作量降低。

2)管道压力降低原来节流调节时,流量变小时,管道压力反而升高,容易爆管,不利于管道安全运行,而采用变频调节后,流量变小时,管道压力亦变低。

3)电动机软启动避免水泵频繁启停经测量,变频运行时起动电流<5A,而工频直接起动电流>300A,因此,变频运行完全消除了因直接启动造成的对电动机和电网的冲击,降低了电动机故障率(电厂电动机因直接启动造成故障已屡见不鲜)。

4)功率因素提高从电网侧看,工频运行时功率因数为0.85左右,变频运行时功率因数达到0.95,因此,即使同样是满负荷运行,变频运行时,高压输入电流明显比工频运行时小,这也有利于节能和设备安全运行。

5)电机和泵运行寿命延长设备转速降低后,运行噪声降低,磨损减少,设备寿命延长。

6)控制响应速度增快改变水压设定值后,装置迅速改变运行转速,使母管水压迅速跟踪设定值。

3 现场实际操作

交流会上来自山东黄台,德州,石横,白杨河,里彦,聊城,凯赛,皱县,莱城,临沂,威海,危房,滕州,辛店,章丘,青岛等17个电厂及上海宝钢电厂等50余名代表,在现场进行了实地操作,并重点观察了以下4项试验。

1)单元切换和自动平衡试验在额定负荷时,切换1~15中任意功率单元,电动机始终保持连续运行,且单元投切后三相电压电流保持平衡。

2)自动手动切换试验在自动恒水压控制和手动恒频率控制之间切换,装置运行频率和水压波动不超过规定值。

3)自动运行时阶跃响应试验由于变频泵在运行时,要承受工频泵的开停冲击,这相当于约20%的阶跃信号,因此,试验时,在自动运行状态下对设定值施加20%阶跃变化,超调量和振荡次数不超过规定值。

4)变频泵运行时,工频泵投切试验系统自动运行时,当升高设定值到装置给出“压力过低”报警信号时,投入一台工频泵,此时变频泵自动降低转速并将母管压力调节到设定值,超调量和振荡次数不超过规定值,报警信号自动消失。当降低设定值到装置给出“压力过高”报警信号时,切除一台工频泵,此时变频泵自动降低转速并将母管压力调节到位,超调量和振荡次数不超过规定值,报警信号自动消失。

4 节能效果

高压变频调速装置投入运行后,节流阀全开,采用远方自动恒水压控制方式,平时操作值班人员只须改变压力设定值(在操作室用按钮进行升降设定),多数情况下,变频器运行在40Hz左右,功率270kW左右,高压输入电流不到30A,而50Hz定速运行时功率约530kW,高压输入电流60A左右。

运行平均负荷按0.95×560kW计算,每年运行300天,即7200h,节电1340MWh。按上网电价计算,两年不到便可收回投资,如按电的售价算,因为该装置投资不到73万元,则一年就可以收回全部投资。

5 结语

国产高压变频调速装置用于拖动发电厂大型风机和泵电动机,不仅节能,而且大大改善了控制特性和运行特性。目前,高压变频技术日趋成熟,其运行可靠性已达到发电厂要求,建议大力推广使用。

篇6:高压变频调速装置在电厂的应用

高压变频调速装置在电厂的应用

摘要:根据山东十里泉电厂供水泵应用高压变频调速装置的实效,说明国产高压变频调速装置的技术已日趋成熟,大力推广应用它所带来的经济效益和社会效益是十分可观的。

关键词:高压变频调速;水泵流量调节;节能

引言

山东十里泉电厂是一个具有5台125MW,2台300MW及一台140MW机组的中型电厂。

十里泉发电厂目前由30km外的水源地供水,水源地共装有5台水泵,均由560kW/6kV高压电动机拖动,多数情况下启动1~2台泵就可满足发电要求,采用手动节流调节方法控制水流量。如果节流阀开度不大、并且水流量足够,则停一台水泵;如果节流阀全开仍不满足水流量要求,则再开启一台水泵,由于管道长达30km,且节流阀始终处于调节状态,如选择一台水泵进行变频调速改造,节流阀全开,实现恒水压控制,不但具有良好的节能效果,泵站的控制特性也大为改善。

1 高压变频调速装置选型依据

对于6kV等级,目前主要有3种方式的高压变频装置:单元串联多电平型、三电平型和电流源型。由于单元串联多电平方式容易实现冗余运行,在单元故障时能进行旁路而不影响电动机连续运行,并且具有谐波小、dv/dt低、技术成熟等显著优点,因此,决定采用这种方式的'高压变频器。

在对国内外各厂家的单元串联多电平高压变频装置,进行性能价格比较和运行可靠性评估后,选用了上海发电设备成套设计研究所和上海科达机电控制有限公司生产的MAXF700-6000/750型高压变频调速装置,该类型产品具有如下6个特点:

1)功率单元冗余运行、故障时自动快速旁路,确保电机正常运行;

2)可在线更换功率单元,不须停机;

3)采用无极性电力电容代替电解电容,提高了装置寿命和整体可靠性,20年内不须更换电容;

4)采用特制散热器,使功率单元温升低,装置体积减小(宽3800,深1200,高2200);

5)输出dv/dt低(在500V以下),电动机绝缘不受损害;

6)电网自动重合闸后继续运行。

2变频运行的其它优点

该泵站经高压变频改造后,除了节能外,水流量控制特性以及电动机和泵的运行特性明显改善,主要有以下6项优点。

[1] [2] [3]

篇7:高压变频调速技术应用现状与发展趋势

1前言

通常,我们把用来驱动1kV以上交流电动机的中、大容量变频器称为高压变频器,按照国际惯例和我国国家标准,当供电电压大于或等于10kV时称高压,小于10kV时称中压。因此,相应额定电压1~10kV的变频器应分别称为中压变频器和高压变频器。但考虑到在这一电压范围内的变频器有着共同的特征,且我们习惯上也把额定电压为3kV或6kV的电动机称为“高压电机”,因此,为简化叙述起见,本文也称之为“高压变频器”。

截止底,我国发电装机总容量已突破5亿kW,为5.08亿kW。其中火电装机约占80%,为4亿kW左右。全国年发电量已突破2万亿kWh。而我国的能源利用率却平均比发达国家低20%左右!

全国电动机装机总容量已达4亿多kW,年耗电量达1亿kWh,占全国总用电量的60%,占工业用电量的80%;其中风机、水泵、压缩机的装机总容量已超过2亿kW,年耗电量达8000亿kWh,占全国总用电量的40%左右。70%以上的风机、水泵、压缩机应调速运行,而至今仅有约5%左右调速运行。

若按风机、水泵和压缩机总装机容量的50%进行调速节能改造,则可改造容量达1亿kW,其中40%为中高压电机,容量占60%。若按电机平均出力为 60%,年运行4000小时,平均节电率为20~30%(平均25%)计算,则年节电潜力为600亿kWh!整个电机系统的节电潜力约为1000亿 kWh,改造和更新预计需投入2000~3000亿元人民币。

根据国家节能计划,我国每年应节约和少用能源7000万吨标准煤,通过基本建设项目及技术改造措施,每年可形成约3000万吨标准煤的节能能力,而每形成一吨标准煤的节能能力需投资2000元(约为开发等量能源费用的三分之一),则每年需节能投资600亿元,“十五”期间共需3000亿元人民币, “十一五”期间将更多。

由于我国经济的高速发展,发电装机仍以高速发展。但电力运行的一些主要指标和装备指标与发达国家相比仍有很大差距:我国火电机组的平均煤耗为 400g/kWh,比发达国家高出约70~100g/kWh;发达国家发电厂的厂用电率为3.7%~6%,而我国的厂用电率为4.7%~10.5%,加之线损,我国送到用户的电能要比发达国家多耗电9.5%,相当于22000MW装机容量,即22个百万大厂的年发电量。因此,我国的节能形势十分严峻!

2变频调速技术的发展历史及现状

变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。交流变频调速技术以其卓越的调速性能、显著的节电效果以及在国民经济各领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。变频调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。

20世纪是电力电子变频技术由诞生到发展的一个全盛时代。最初的交流变频调速理论诞生于20世纪代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力去研究高效率的变频器,使变频调速技术有了很大发展并得到推广应用。80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速,

进入90年代,由于新型电力电子器件如IGBT(绝缘栅双极型晶体管InsolatedGateBipolarTransistor)、IGCT(集成门极换流型晶闸管IntegratedGateCommutatedThyristor)等的发展及性能的提高、计算机技术的发展,如由16位机发展到32位机以及DSP(数字信号处理器Digital SignalProcessor)的诞生和发展(如磁场定向矢量控制、直接转矩控制)等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频器在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其它常规交流调速方式,其性能指标亦已超过了直流调速系统,达到取代直流调速系统的地步。目前,交流变频调速以其优异的性能而深受各行业的普遍欢迎,在电力、轧钢、造纸、化工、水泥、煤炭、纺织、铁路、食品、船舶、机床等传统工业的改造中和航天航空等高新技术的发展应用中无不看到变频调速技术的踪影,变频调速技术取得了显著的经济效益。

变频调速技术的现状具有以下特点

(1)在功率器件方面,近年来高电压、大电流的SCR、GTO、IGBT、IGCT等器件的生产以及并联、串联技术的应用,使高电压、大功率变频器产品的生产及应用成为现实。

(2)在微电子技术方面,16位、32位高速微处理器以及DSP和ASIC(专用集成电路ApplicationSpecificIC)技术的快速发展,为实现变频器高精度、多功能化提供了硬件手段。

(3)在控制理论方面,矢量控制、磁通控制、转矩控制、智能控制等新的控制理论为研制高性能变频器的发展提供了相关理论基础。

(4)在产品化生产方面,基础工业和各种制造业的高速发展,促进了变频器相关配套件的社会化、专业化生产。

3国内外高压变频器的分类、比较和应用情况

目前世界上的高压变频器不象低压变频器一样具有成熟的一致性的主电路拓扑结构,而是限于功率器件的电压耐量和高压使用条件的矛盾,国内外各变频器生产厂商,采用不同的功率器件和不同的主电路拓扑结构,以适应不同的电压等级和各种拖动设备的要求,因而在各项性能指标和适用范围上也各有差异。

一般来讲,在高压供电而功率器件耐压能力有限的情况下,可采用将功率器件串联的方法来解决。但是功率器件在串联使用时,因为各器件的动态电阻和极间电容不同,而存在静态均压和动态均压问题。如果采用与器件并联R和Rc的均压措施,会使电路复杂,损耗增加;同时,器件的串联对驱动电路的要求也大大提高,要尽量做到串联器件同时导通和关断,否则由于各器件开断时间不一致,承受电压不均,会导致器件损坏甚至整个装置崩溃。

谐波问题是所有变频器的共同问题,尤其在高压大功率变频调速中更为突出。谐波会污染电网,殃及同一电网上的其它用电设备,甚至影响电力系统的正常运行;谐波也会干扰通讯和控制系统,严重时会使通讯中断、系统瘫痪;谐波电流还会使电动机损耗增加,因而发热增加,效率及功率因数下降,以至不得不“降额” 使用。

还有效率问题,变频调速装置的容量愈大,调速系统的效率问题也就愈加重要。采用不同的主电路拓扑结构,使用的功率器件的种类和数量的多少,以及变压器、滤波器等的使用,都会影响系统的效率。为了提高系统效率,必须设法尽量减少功率开关器件和变频调速装置的损耗。

可靠性和冗余设计问题:一般的高压大功率拖动系统都要求很高的系统可靠性,尤其是国民经济的重要部门如电力、能源、冶金、矿山和石化等行业,一旦设备出现故障,将会造成人民生命财产的巨大损失。因此高压变频装置设计中是否便于采用冗余设计及旁路控制功能也是至关重要的。

根据高压变频器有无直流环节,可以分为交—交变频器和交—直—交变频器;根据直流环节滤波元件的性质又可以分为电流源型变频器和电压源型变频器;电流源型变频器又可以分为负载换流式晶闸管变频器(LCI)和采用自关断器件(GTO、SGCT)的电流源型变频器;电压源型变频器则可以分为:a)功率器件串联二电平直接高压变频器,b)采用HV—IGBT、IGCT的多电平电压源变频器,c)采用LV—IGBT的单元串联多重化电压源变频器等。

篇8:高压变频调速装置在电厂的应用论文

有关高压变频调速装置在电厂的应用论文

摘要:根据山东十里泉电厂供水泵应用高压变频调速装置的实效,说明国产高压变频调速装置的技术已日趋成熟,大力推广应用它所带来的经济效益和社会效益是十分可观的。

关键词:高压变频调速;水泵流量调节;节能

引言

山东十里泉电厂是一个具有5台125MW,2台300MW及一台140MW机组的中型电厂。

十里泉发电厂目前由30km外的水源地供水,水源地共装有5台水泵,均由560kW/6kV高压电动机拖动,多数情况下启动1~2台泵就可满足发电要求,采用手动节流调节方法控制水流量。如果节流阀开度不大、并且水流量足够,则停一台水泵;如果节流阀全开仍不满足水流量要求,则再开启一台水泵,由于管道长达30km,且节流阀始终处于调节状态,如选择一台水泵进行变频调速改造,节流阀全开,实现恒水压控制,不但具有良好的节能效果,泵站的`控制特性也大为改善。

1 高压变频调速装置选型依据

对于6kV等级,目前主要有3种方式的高压变频装置:单元串联多电平型、三电平型和电流源型。由于单元串联多电平方式容易实现冗余运行,在单元故障时能进行旁路而不影响电动机连续运行,并且具有谐波小、dv/dt低、技术成熟等显著优点,因此,决定采用这种方式的高压变频器。

在对国内外各厂家的单元串联多电平高压变频装置,进行性能价格比较和运行可靠性评估后,选用了上海发电设备成套设计研究所和上海科达机电控制有限公司生产的MAXF700-6000/750型高压变频调速装置,该类型产品具有如下6个特点:

1)功率单元冗余运行、故障时自动快速旁路,确保电机正常运行;

2)可在线更换功率单元,不须停机;

3)采用无极性电力电容代替电解电容,提高了装置寿命和整体可靠性,20年内不须更换电容;

4)采用特制散热器,使功率单元温升低,装置体积减小(宽3800,深1200,高2200);

5)输出dv/dt低(在500V以下),电动机绝缘不受损害;

6)电网自动重合闸后继续运行。

2变频运行的其它优点

该泵站经高压变频改造后,除了节能外,水流量控制特性以及电动机和泵的运行特性明显改善,主要有以下6项优点。

1)实现恒母管水压控制操作人员只须改变母管压力设定值,不再调整节流阀,运行自动化程度大为提高,运行和维护工作量降低。

2)管道压力降低原来节流调节时,流量变小时,管道压力反而升高,容易爆管,不利于管道安全运行,而采用变频调节后,流量变小时,管道压力亦变低。

3)电动机软启动避免水泵频繁启停经测量,变频运行时起动电流<5a,而工频直接起动电流>300A,因此,变频运行完全消除了因直接启动造成的对电动机和电网的冲击,降低了电动机故障率(电厂电动机因直接启动造成故障已屡见不鲜)。

4)功率因素提高从电网侧看,工频运行时功率因数为0.85左右,变频运行时功率因数达到0.95,因此,即使同样是满负荷运行,变频运行时,高压输入电流明显比工频运行时小,这也有利于节能和设备安全运行。

5)电机和泵运行寿命延长设备转速降低后,运行噪声降低,磨损减少,设备寿命延长。

6)控制响应速度增快改变水压设定值后,装置迅速改变运行转速,使母管水压迅速跟踪设定值。

3 现场实际操作

交流会上来自山东黄台,德州,石横,白杨河,里彦,聊城,凯赛,皱县,莱城,临沂,威海,危房,滕州,辛店,章丘,青岛等17个电厂及上海宝钢电厂等50余名代表,在现场进行了实地操作,并重点观察了以下4项试验。

>1)单元切换和自动平衡试验在额定负荷时,切换1~15中任意功率单元,电动机始终保持连续运行,且单元投切后三相电压电流保持平衡。

2)自动手动切换试验在自动恒水压控制和手动恒频率控制之间切换,装置运行频率和水压波动不超过规定值。

3)自动运行时阶跃响应试验由于变频泵在运行时,要承受工频泵的开停冲击,这相当于约20%的阶跃信号,因此,试验时,在自动运行状态下对设定值施加20%阶跃变化,超调量和振荡次数不超过规定值。

4)变频泵运行时,工频泵投切试验系统自动运行时,当升高设定值到装置给出“压力过低”报警信号时,投入一台工频泵,此时变频泵自动降低转速并将母管压力调节到设定值,超调量和振荡次数不超过规定值,报警信号自动消失。当降低设定值到装置给出“压力过高”报警信号时,切除一台工频泵,此时变频泵自动降低转速并将母管压力调节到位,超调量和振荡次数不超过规定值,报警信号自动消失。

4 节能效果

高压变频调速装置投入运行后,节流阀全开,采用远方自动恒水压控制方式,平时操作值班人员只须改变压力设定值(在操作室用按钮进行升降设定),多数情况下,变频器运行在40Hz左右,功率270kW左右,高压输入电流不到30A,而50Hz定速运行时功率约530kW,高压输入电流60A左右。

运行平均负荷按0.95×560kW计算,每年运行300天,即7200h,节电1340MWh。按上网电价计算,两年不到便可收回投资,如按电的售价算,因为该装置投资不到73万元,则一年就可以收回全部投资。

5 结语

国产高压变频调速装置用于拖动发电厂大型风机和泵电动机,不仅节能,而且大大改善了控制特性和运行特性。目前,高压变频技术日趋成熟,其运行可靠性已达到发电厂要求,建议大力推广使用。

篇9:用MC9S12H256实现异步电机变频调速

用MC9S12H256实现异步电机变频调速

摘要:介绍目前国内应用较少的Motorola公司16位单片机MC9S12H256;详细阐述使用该型号单片机实现闭环变频调速系统的设计方法;着重讨论MC9S12H256用于变频调速时特有的优势。

关键词:SPWM MC9S12H256 变频 IGBT 光电编码器

引言

SPWM变频调速系统由于具有调速范围宽、功率因数高、对电网影响小、电机运行平稳、可有效抑制低次谐波、可实现较大容量等诸多优点,而越来越受到人们的重视,一直被视作非常有发展前途的变频方案,越来越多的科研技术人员开始讨论这一课题。由于电力电子技术的高速发展和智能控制技术的广泛应用,当前人们设计的SPWM电机变频调速系统,摒弃了过去依赖逻辑电路,如比较器、三角波发生器等陈旧的实现方式,而采用高性能MCU加上一些专门的PWM集成电路,如HEF4752、SLE4520等构成。文本介绍的系统由于MC9S12H256具有独立的PWM通道,实现起来更为容量;加之Motorola出品的MCU一向具有产品线丰富,片内资源众多等优点,所以比较使用Intel 80196实现的方案,无论是调试方式还是工作速度以及实现难易度都有一定的优势。

图1 MC9S12H256 PWM方框图

1 MC9S12H256 PWM模块介绍

MC9S12H256是Motorola公司16位单片机系列中定位于电机控制的机型,它秉承了Motorola单片机资源丰富的传统优势,最高工作频率为24MHz,内部具有256K Flash ROM、12K RAM、4K EEPROM、2个SCI、1个SPI、1个I2C总线接口、8通道16位定时器、1个6通道PWM模块、16通道10个A/D转换器、2个CAN2.0接口、1个LCD驱动器。其中专门用于电机控制的PWM模块可以很方便地生成双极式三相脉宽调制波形。下面详细介绍该芯片的PWM模块。

PWM模块含有6个PWM通道,每个通道可以独立产生左对齐或者中心对齐的波形。每个通道的波形周期和占空比以及对齐方式都可以单独编程,同时每个通道还配有一个专门的计数器来灵活选择不同的时间源,以提供更宽的变频。综合起来PWM模块具有以下性质:

*6个独立的PWM通道,其周期、占空比、对齐方式都可以单独编程;

*每个PWM通道都配有计数器,用来选择时钟源;

*每个PWM通道都可以通过编程来开启或者关断;

*每个通道的起始极性能可以编程;

*周期和占空比寄存器是双缓冲的,也就是说只有一个周期结束之后才可以转化为新的指定的周期和占空比;

*6个8位的PWM通道可以合并成更高精度的3个16位PWM通道;

*可以编程选择4个时钟源,所以可提供宽厂的变频范围;

*具有突发事故通道关断功能。

由此可见,该芯片的PWM模块是相当强大的。毫无疑问,这将有助于缩短我们设计电机变频调整系统的时间。该PWM模块框图如图1所示。

图2 主电路图

由图1可以看出,PWM波形的生成和修改,都是通过改变每一通道所包含的寄存器以及系统寄存器来实现的,所以明确这些寄存器的含义是成功实现SPWM波形的关键。但是,由于该PWM模块含有31个寄存器,数目众多,限于篇幅,这里只概略介绍一下。

在这31个寄存器中,有一部分为芯片出厂测试之用,具体功能如表1所列。其中的偏移地址指的是该寄存器相对于PWM基址的偏移量。

寄存器中PWMCLK、PWMPRCLK、PWMSCLA、PWMSCLB是与时钟源选择有关的。在PWM模块中共有四种不同的时钟源:ClockA、ClockB、ClockSA、ClockSB。其中ClockA和ClockSA用于0、1、4、5通道;ClockB和ClockSB用于2、3通道。ClockA、ClockB是由总线时钟除以一定的比例因子(最大为128)生成的,而ClockSA、ClockSB是由ClockA、ClockB除以一定的比例因子(最大为512)生成的。对应地,PWMCLK寄存器用来设置每个通道的时钟源,PWMPRCLK用来设置生成ClockA、ClockB时钟时的比例因子;而PWMSCLA、PWMSCLB则设置生成ClockSA、ClockSB的比例因子。由此我们可以看出,如果芯片的工作频率为16MHz,那么理论上,IGBT的关断频率可以达到1Hz~16MHz。这是一个非常宽的频率范围,当然实际中还需要考虑IGBT可以承受的关断频率。

表1 PWM寄存器功能描述

偏移地址寄存器名称功    能访问权限$_00PWME6通道PWM关断控制读/写$_01PWMPOL指定起始电平读/写$_02PWMCLK选择时钟源读/写$_03PWMPRCLK设置ClockA/B比例因子读/写$_04PWMCAE选择波表对齐方式读/写$_05PWMCTL控制是否合成为16位PWM通道读/写$_06~07PWMTST,PWMTRSC出厂测试用读/写$_08PWMCLA设置ClockSA比例因子读/写$_09PWMCLB设置ClockSB比例因子读/写$_0A~BPWMSCNTA,PWMSCNTB出厂测试用读/写$_0C~11PWMCNT0~PWMCNT5PWM通道0~5专用计烽器读/写$_12~17PWMPER0~PWMPER5设置PWM通道0~5脉冲周期读/写$_18~1DPWMDTY0~PWMDYT5设置PWM通道0~5“1”电平宽度读/写$_1EPWMSDN突发事故关断PWM读/写

2 硬件选型与系统框图

由前面对MC9S12H256芯片的介绍可以知道,它的内部资源非常丰富。毫无疑问,这给硬件设计带来了极大的方便,基本上们不需要再行扩展大的外围器件了;主要扩展的是IGBT的驱动装置、人机接口部分的键盘和LCD以及用于测定电机转速的光电编码器四个部分。

考虑到可购买性和价格,IGBT选用IMB150-120,其驱动器选用EVB840。它们都具有价格适中,应用成熟等特点。LCD选用东芝JR07用来显示电机转速、频率、工作状态等。至于光电编码器,以前以国外产品为主,价格一般非常昂贵;现在已有不少国内厂家可以生产,不光价格要便宜得多,性能也并不逊色,所以我们选用了长春三峰传感器技术公司的PZF系列传感器,键盘则使用市售普通型号。

SPWM电机变频调速系统由电机主电路和控制电路两部分构成。主电路采用交-直-交电压型IGBT-PWM变频电路,如图2所示。控制电路以MC9S12H256为核心,如图3所示,接受外部键盘输入的速度数据,送LCD显示的同时,通过此输入的速度和光电编码器测得的速度,根据一定的控制算法,计算出电机的频率,然后计算出SPWM波形参数,再通过内置的PWM模块使EXB840驱动IGBT产生脉宽调帛波形,来使电机按照期望的频率转动。其中6个PWM通道与IGBT的接口安排为:通道5接A+;4接A-;3接B+;2接B-;1接C+;0接C-。图2中T1~T6表示的是6只IGBT。

表2 调制度和载波比取值表

逆变器输出频率/Hz载波比N调制度M开关频率/Hz32~62180.56~0.8576~111616~31360.24~0.56576~11168~16720.16~0.24576~10804~7.51440.08~0.16576~1080

3 算法与控制策略

3.1 调制度与载波比的`选择

SPWM变频有一个原则,即在尽可能的范围内保持转子磁通不变。所以,我们在设计算法时规定了输出频率和电压的关系。为了充分利用本型号单片机强大的计算功能,我们采用分段同步调制的方法;在一定的频率范围内,采用同步调制,(本网网收集整理)保持输出波形对称;当频率下降幅度较陡时,将载波比分段一级一级增加。具体来说就是使逆变器整个变频范围划分为多个频段,在每个频段内维持载波比恒定。如表2所列,调制定M定义为正弦调制波参考信号峰值Urm与三解载波峰值Utm之比,载波比N定义为三角载波频率ft与正弦调制波频率fr之比。表2可建于Flash中,方便在程序中读取,查表时调制度要进行插值运算。

3.2 PWM波形的生成

考虑到工程上的可实现性以及输出波形的精度,采用了规则采样二法进行采样,如图4所示。

在三角载波的固定负峰值位置找到正弦调制波的采样电压值,也就是图4中E点,然后过E点作水平线,截得三角波A、B两点,从而确定脉宽时间t2。在这种采样法中,每个周期的采样时刻是固定的。根据脉冲电压对三角载波的对称性以及三相电压的特性,可知三相脉宽t和周期t2a~t2c的计算公式如下:

t2a=T[1+Msin(ω1te)]/2

t2b=T[1+Msin(ω1te+2π/3)]/2]

t2c=T[1+Msin(ω1te+4π/3)]/2

t=T[3+Msin(ω1te)]/4

其中:T―三角载波的周期;

ω1―正弦调制波的角频率;

te―三角载波的负峰值时刻。

考虑到该型号单片机的高速计算能力,我们采用以实时计算为主的波形生成方法:即先在芯片自带Flash中存储正弦函数的值,根据键盘输入的期望速度和光电编码器的反馈速度,按照一定的控制算法,计算出电机的工作频率。然后,查表2取出M和N,再查正弦表,根据上述公式计算出每一相的脉冲宽度和周期,再设置相应通道的PWM模块寄存器来产生期望的PWM波形。

3.3 控制策略和PWM通道系统参数设置

控制策略采用转差矢量变换,此外还有过电流、过电压保护等其它一些细节问题。限于篇幅,此处不详细介绍。由表2可知,为了匹配相应的开关频率,我们必须为每一个PWM通道选用恰当的时钟源。经过分析,将ClockSA作为0、1、4、5通道时钟源;将ClockSB作为2、3通道时钟源,并将PWMCLK设为$FD;将PWMPRCLK设为$55;将PWMSCLA/B设为$40,这样ClockSA=ClockSB=16M/32/128=2048Hz,所以开频率范围为(2048/512,2048)=(4,2048)Hz。显然,表2所要求的开关频率在个范围之内。

4 软件开发工具

开发工具采用Windriver公司的嵌入式C编译器。为了优化编译质量,采取汇编和C混合编程的模式,其中PWM波形等需要计算速度的任务使用汇编编写,其余LCD显示、键盘处理等使用C语言编写。实际上,由于MC9S12H256集成了绝大多数功能模块,这也给软件编程带来了方便。整个软件功能主要包括处理键盘输入、LCD显示、控制算法实现、PWM波形生成。程序分为主程序和两个定时中断服务子程序T0、T1。主程序完成转差矢量变换、LCD显示、键盘处理。T0每隔一个三角载波周期中断一次,以便将实时计算出的PWM波形数据送入相关寄存器;T1每隔一个调制波周期中断一次,以便对定时器和累加器清零,消除积累误差。

结语

由MC9S12H25构成的SPWM变频电机调速系统,充分利用了Motorola公司单片机特有片内资源异常丰富、开发工具优良等诸多优点,大大简化了变频调速系统的开发。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。