“雾江冰花”通过精心收集,向本站投稿了14篇高中数学中渗透数形结合的思想论文,下面小编给大家整理后的高中数学中渗透数形结合的思想论文,欢迎阅读!

篇1:高中数学中渗透数形结合的思想论文
高中数学中渗透数形结合的思想论文
摘要:在高中数学教学中,教师要引导学生运用数形结合思想分析问题、解决问题.本文对在高中数学教学中渗透数形结合思想进行研究.
关键词:数形结合思想;高中数学教学
在传统的高中数学教学中,教师往往注重学生对基础知识的掌握,忽视了对学生渗透数学思想,影响了学生思维能力的提高.数形结合思想是重要的数学思想之一,是一种运用数学数量和图形的关系,将数学问题简单化、形象性与具体化的方法.在高中数学教学中渗透数形结合思想,能培养学生思维的逻辑性与条理性,提高学生的数学综合素养,从而提高学生解决数学问题的能力.
一、帮助学生理解所学知识
高中数学概念、公式非常多.这些概念与公式是学生理解数学知识的基础.只有掌握了这些概念与公式,学生才能分析问题与解决问题,提高数学能力.有些教师在高中数学教学中只是一味地让学生机械记忆数学概念与公式,占用了学生大量的学习时间,使学生在枯燥乏味的记忆中逐渐对数学产生厌学情绪,阻碍了数学能力的提高.数学公式是数学概念与规律的符号表现形式.数学概念可以由相应的符号来体现.在高中数学教学中,利用图形,能直观地表现数学概念与公式,加深学生对数学规律的理解.在数学概念、公式的教学中,教师应该渗透数形结合思想,利用数形结合的记忆方法,促进学生对数学概念、公式等基础知识的准确、深入、牢固地记忆与理解,使学生意识到数形结合思想在数学学习中的重要作用,并自觉地利用数形结合思想进行数学知识的学习与理解.例如,在讲“三角函数”时,有些学生对函数的变化规律记忆不准不牢,往往混淆不同角度下三角函数值的正负.为了帮助学生理解与记忆,教师可以采取数形结合的方法进行三角函数教学,要求在记忆三角函数值前先画出三角函数的图象,然后根据图象确定函数数值的正负.这样,能使学生准确记忆三角函数的特殊值,提高了学生的学习效果.
二、培养学生的学习兴趣
兴趣是学生学习的内在动力.在高中数学教学中渗透数形结合思想时,教师要注意让学生感受到数形结合的数学美,培养学生学习数学的兴趣.例如,在讲“轴对称图形”时,教师可以引导学生运用数形结合思想进行观察与分析.函数图象大多是对称的,造型有一定的规律性.图形与数学知识相结合,不仅能使学生领略图形的美感,也能使学生对数学产生学习兴趣.
三、提高学生的应用能力
在初次接触数学思想之后,学生可能在解决数学问题时还不能熟练运用,甚至是无处下手.因此,教师在教学中要引导学生使用数形结合思想,强化学生的记忆与理解,促使学生运用数形结合思想解决数学问题.同时,教师要给学生示范数形结合的过程,让学生明确运用数形结合思想的方法与步骤.例如,在讲“函数图象及性质”时,教师可以画出有关的.函数图象,让学生对图象进行观察与总结,了解单调性,理解“y随x的增大而增大或减小”的含义.教师也可以利用多媒体向学生展示大量的图象,并给每个图象配以函数公式,让学生观察分析,由图象与函数的关系判断表达式中系数的功能,即系数对函数单调性所起的作用,系数为正函数递增,系数为负函数递减.教师要鼓励学生利用数形结合思想解决问题,让学生将数量与图形结合起来分析问题、解决问题,提高学生运用数形结合思想解决问题的能力.
四、提高学生的解题能力
数形结合思想是学习数学知识、理解数学知识、内化数学知识的重要方法,数形结合思想几乎贯穿于数学学习的全过程.在高中数学解题教学中,教师要引导学生认识与理解数形结合思想,并运用数形结合思想解决数学问题,从而提高学生的解题能力.例如,在讲“一次方程与不等式”时,教师可以引导学生运用数形结合思想解决问题,使学生感受到数形结合思想在分析数学问题、解决数学问题方面的优势,并养成运用数形结合思想解决数学问题的习惯,从而提高学生的解题能力.总之,在高中数学教学中渗透数形结合思想,能使数学知识更加直观形象,有助于学生在直观的状态下去分析与解决数学问题,激发学生的学习兴趣.在具体教学中,教师要结合高中学生的特点与实际教学内容,利用数形结合思想引领学生解决数学问题,引发学生对数形结合思想的兴趣,加深学生对数形结合思想的理解与内化,提高学生运用数形结合思想解决问题的能力.
参考文献
1.杨艳丽.数形结合思想在高中数学教学中的渗透探究[J].教育实践与研究(B),(05).
2.沈凌云.高中数学教学中数形结合思想的培养[J].数学教学通讯,(31).
篇2:数学教学中数形结合思想的渗透论文
数学教学中数形结合思想的渗透论文
摘要:初中数学教学不仅可以培养学生的数学思维,更能全方位提高学生的个人能力,让学生在生活中灵活运用数学知识。数形结合思想是数学教学中一种重要的教学思想,教师可以通过数形结合的授课形式培养学生的创新能力及自主学习能力。本文将对数形结合思想作简要概述,并探讨其在初中数学教学中的渗透应用。
关键词:初中数学;数形结合;思想;渗透;应用
随着教育环境的不断变化及新课程标准的实施应用,素质教育理念正在不断受到关注。初中数学教学在素质教育推行下逐渐暴露出相应的问题,给教学带来了严重阻碍。教师应当在初中数学教学中将传统模式的应试教育逐步转变为素质教育,并合理应用数形结合的教学思想,以此提高学生的数学学习能力。
1数形结合思想的概述
数学教学缺少图形的辅助,直观性会严重缺失,而图形与数学知识无法很好地结合,则会导致数学知识很难得到细致入微地体现,这是对数形结合最充分的概述。数形结合思想,主要就是教师将比较抽象的数学知识、数学语言等与较为清晰、直观的图形相结合,本质上是实现数学中的几何知识与代数知识互相转化。数形结合思想,是直观形象与抽象思维的紧密融合,可以将数学知识变得更加生动、形象、具体,有利于学生在学习中把握数学知识的内涵。初中数学教师应用数形结合思想,不仅可以提高学生的数学成绩,更主要的是培养学生的数学思维,让学生学会分析问题、解决问题、应用数学知识。这样,教师才会通过数学教学培养学生的探究能力及自主学习能力。
2数形结合思想在初中数学教学中的渗透应用
一般来说,初中数学教师若想将数形结合思想与数学教学相结合,可从以下几点入手,实现其渗透应用:2.1分析概念:初中数学教师在应用数形结合思想的时候,首先可从分析概念入手,让学生先了解数学概念。数学概念主要反映的是某一类数学知识的本质属性,是数学知识点的浓缩部分,也是数学知识中最为基本的元素之一。教师通过分析数学概念,可以引导学生进行后续的推理与判断,也可以在数学概念的基础上探讨数学定理、数学公式等,进而形成完善的数学思想。数学概念还能有效反映出数学知识中的'数量关系、空间关系等。教师在分析数学概念的过程中,可以根据概念的内容、本质来配合相应的图形,让学生利用图形找出数学概念中的重点之处,以此理解数学概念,为后续教学环节奠定基础。2.2开展实践教学:初中数学教学的实践性是较为重要的一个方面,教师如果可以合理开展实践教学,将数形结合思想与之相结合,可以让学生通过实践教学提高应用数学知识的能力。教师应当认识到,数学教学所应用的观察法、归纳法、类比法等都需要通过学生的实践操作才能得以应用。某教师在开展实践教学的过程中,给学生出了这样一道题目:“有A与B两艘快艇,l1与l2分别为B、A两艘快艇相对于海岸的距离,可用S表示,其中,A快艇先出发。当时间t为几分钟时,B快艇可以追赶上A快艇。”如上图1所示,该教师在讲解这道题目的时候,先运用题目中的相关信息,将l1与l2的函数表达式确定好。在此基础上,学生可以利用函数表达式,将其换算为方程组,再通过解方程组得到如上图1所示的交点坐标。这个交点坐标的具体坐标值,就是本题目的最终答案。也就是说,当时间t为15分钟,B快艇可以追上A快艇。正是由于该教师在实践教学的过程中将其与数形结合思想融合在一起,学生才通过数、形之间的配合成功求出题目答案,以此提高了个人的实践能力及数学知识的合理应用能力。2.3分析例题:除了上述两个方面之外,教师还可以将数形结合思想与例题分析相结合。数学教学中的例题,可以很好地展示数学教学中的新知识,教师通过分析、讲解例题就可以很好地帮助学生掌握数学知识及数学方法,学生通过例题还可以学会如何运用数学方法。某教师在讲解下道例题的时候,就将数形结合思想渗透其中,该题为“根据图形求出第n个图形应对应几个正方形”。教师在讲解该例题时,让学生仔细观察上图2,通过这三个图形找出相应的变化规律。学生发现,第二个图形中的正方形要比第一个图形多2个,第三个图形中的正方形要比第二个图形多3个,以此类推,第n个图形应当有1+2+3+4+5+6……+n=n(n+1)2个正方形。正是由于该教师在讲解例题的时候应用了数形结合的思想,因此学生才顺利通过图形求出相应的答案,不仅学会了分析数学问题,更培养了个人应用数学知识的具体能力。因此,教师在例题分析中应用数形结合思想,有助于学生理解例题并合理应用例题。
3结语
初中数学教师应在教学中推行素质教育理念,并不断提高学生的探究能力、自主学习能力、数学知识的应用能力等。若想达到这一目标,教师就需要将数形结合思想与数学教学紧密结合,加强数学概念分析、例题分析等。这样,学生在学习数学时通过数形结合的形式,可以更为直观、清晰地认识数学知识,以此提高个人的数学应用能力。
参考文献
[1]朱家宏.初中数学教学中数形结合思想的应用[J].科技视界,2015(09).
[2]鲁彦坤.浅谈数形结合的思想在初中数学教学中的渗透[J].黑龙江科技信息,2011(08).
[3]杨艳丽.数形结合思想在初中数学教学中的渗透探究[J].教育实践与研究(B),2011(05).
篇3:数形结合思想在初中数学教学中的渗透研究论文
数形结合思想在初中数学教学中的渗透研究论文
初中阶段的数学教学除了要将数学知识传授给学生外,更为主要的是要引导学生掌握一定的数学思想方法,这样才能够逐步改变学生学习吃力的问题,也能够促进学生数学思维的完善和发展。数形结合思想对于学生解题能力的发展和数学素质的提高具有重要意义,促进数形结合思想在数学教学中的渗透要求教师优化教学方法,更好地满足学生数学学习需求
1 加强思想引导,激发学习兴趣
初中数学教师在实际教学中要注重有意识的将数形结合思想渗透其中,加强对学生的思想引导,激发学生学习兴趣,奠定数学知识学习的基础。首先,在学生刚刚接触有理数、无理数的初衷数学入门知识开始教师就要逐步引导学生更多的接触、吸纳以及运用数形结合思想方法,强化教学初期的解题和学习方法指导,先让学生熟悉对数形结合思想的运用,掌握数形结合思想运用的步骤、适用问题等,引导学生将数形结合思想的运用变成一种主动自觉地意识,让学生对这一方法的应用产生兴趣。其次,教师要善于挖掘初中数学教学中有助于培养学生学习兴趣的因素,因为数学学科本身就是一门趣味性极强的课程,与现实生活紧密相关,大量的数学趣味游戏、伟大数学家的探索故事、理财、银行业务处理等都和数学有不可分割的关系,当学生感受到数学学习的乐趣之后,会更加积极主动的参与各项数学学习活动,教师在教学数形结合思想的应用时也会更加顺利。最后,初中数学教学中大量知识都具有其自身规律,如函数图像往往对称分布,在利用数形结合方法学习时能够更好的呈现数学美感,对于培养学生学习兴趣也是大大有益的。例如,在讲解不等式组的解题一课时,教师可以有意识的引导学生采用数形结合思想用画图的方式绘制出解集和数轴之间的关联,分要求学生分别计算不等式并得出各自的结果,最后通过在数轴上画图表示的方式找到不等式的共同解集。
2 运用记忆概念,推动方法形成
初中数学中有大量需要理解和记忆的公式定理,在学习这些知识时还需要在记忆基础上发现、分析和解决问题,这就需要教师运用记忆概念,引导学生根据学习需求找到恰当的记忆方法,让学生在记忆和理解中自己总结数形结合数学思想方法,帮助学生养成良好的学习习惯,促使学生将数学知识内化成自己的能力。数学概念、公式定理的推导证明等知识会占用大量的数学教学时间,如果学生不能抓住关键的学习时期提高学习效率很容易形成知识缺口或者基础知识掌握不牢固的问题,逐渐丧失数学学习兴趣,甚至产生厌学心理。数学知识主要是由数学符号和图形组成的,那么为了帮助学生记忆知识和促进抽象知识形象化就可以采用数形结合记忆的方法,同时提高记忆的准确度。除此以外,教师也可以鼓励学生有效运用联想法、情境法、讨论法等提高记忆有效性,确保学习效率。例如,在讲解《三角函数》这个章节时,函数变化规律是其中的`概念学习难点,对此可以运用数形结合思想方法画出函数图像,轻松准确的判断函数正负,提高学生对三角函数特殊性的认识。
3 优化教学案例,重视数形结合
数学教师仅仅依靠通过日常教学就让学生有效掌握数形结合思想的含义和运用知识是远远不够的,只有通过反复训练和强化才能真正应用这一数学思想方法解题。因此,教师要重视典型案例的选择,并着重对教学案例进行分析讲解,根据教学重点、学生的学习需求、数学教学目标等综合设计教学方案,优化和创新教学设计,在其中适时渗透数形结合思想,可以让学生亲自动手演算、画图、讨论、探究等,鼓励学生在解题中发现和解决问题,还可以根据教学主题和数学思想方法渗透的实际需要收集趣味数学游戏、故事等,激发学生求知欲和学习动机。例如,在讲解二次函数的应用题时,教师要先引导学生对教学案例进行深入分析和探究,并掌握判断问题真实意图和问题考查知识点的技巧与方法,接下来要求学生画出响应图像,按照题目给定要求确定几个重点坐标点,最后再准确判断函数图像的定点、开口等。如学校要举办歌唱比赛,需要搭造一个面积是256平方米的舞台,舞台必须是正方形,那么舞台边长长度应该是多少?具体的解题过程中,首先需要让学生明确这道题目需要运用哪个方程和解题方法,如果必要的话还可以让学生自主探究或者合作学习来找到多种解题方法,最终通过数形结合思想的运用和搭建空间结构的方法算出舞台长度是16米。
4 综合归纳应用,鼓励探究学习
初中数学题目的规律性、开放性、发散性的特征十分显著,数学教师需要从解题的基本思维着手,首先让学生了解解题方法及技巧增强学生对数学知识点的掌握和应用方法,数形结合思想的渗透也同样如此。教师要根据教学内容的实际要求创设相应的教学情境,并在学习中不断提出和发现问题,引导学生进行自主探究学习和合作学习,帮助学生归纳总结规律和方法,让学生逐步掌握数形结合思想的运用情境,提高学生的综合归纳能力和应用能力,同时促进学生探究能力的发展。例如,在讲解《多边形》时,教师可以首先让学生发散思维举例说出日常生活以及学习当中看到的由线段组成的图形,如路标、广告牌、房屋结构等,从思想上让学生认识到多边形无处不在,接下来可以仿照对三角形定义的阐述方法描述多边形,引导学生先画出多种不同的多边形,然后观察它们的共同特征和差异,通过数形结合思想的应用归纳总结出多边形的概念、性质等深层次知识。
初中数学教学涉及到大量的数学学习方法和数学思想,其中数形结合思想是提高学生解题能力和效率的关键所在,只有灵活有效地运用数形结合思想才能完善和发展学生的数学思维,促进学生综合素质的发展。初中数学教师在具体教学环节,要注重革新自己的教学理念,推进数形结合思想在教学各个环节中的渗透,提高学生对数形结合思想方法的有效利用。
篇4:浅谈数学教学中的数形结合思想论文
浅谈数学教学中的数形结合思想论文
随着教学改革的不断深入,针对数学中如何渗透数学思想方法,在教学界掀起了一个讨论、研究的热潮。数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理解认识,掌握这些思想可以为进一步学习高等数学打下良好的基础。关于数学思想归纳起来大致有如下几种:方程思想、分类思想、数形结合思想、整体思想、函数思想、化归思想等。在数学教学中数形结合思想是应用十分广泛的一种数学思想,在教学中注重数形结合思想的培养,是提高学生数学素质的一个重要途径。
数形结合是运用形和数的相互关系来解决数学问题的思想方法。“形”与“数”是数学中最基本的2个概念,是直观与抽象在数学中的体现,二者的有机结合,是数学魅力之所在。通过形数结合,可将抽象的数学语言与直观的图形相结合,把数量关系转化为图形的性质来研究,思路与方法便在图形中直观地显示出来。以形助教,可显现直观,简化解答,往往起到事半功倍的效果。数形结合的思想方法在中学数学中应用十分广泛。在数学中如何将数式的准确刻划同几何图形的直观描述有机地结合起来显得尤为重要,它对发展学生的创造性思维、完善学生的思维品质起着重要作用。
1数形结合思想的内涵及地位
由于数形结合思想通常是使复杂问题简单化,一般问题特殊化,抽象问题具体化,化复杂为简单,化新知为旧知,化未知为己知,最终使问题得以解决。而任何一个数学问题的提出都是待解决的,在解决的过程当中,经常要用到上述处理方法,这显示数形结合思想在众多数学思想中占据着十分重要的地位。数形结合作为一种常见的数学方法,沟通了代数、三角与几何的内在联系,借助图形直观地研究数学问题,不仅可以加深对数量关系的理解,而且还可以简化运算过程;借助数式关系,还可以简明地抽象出一些几何问题的证明思路。因此,数形结合,常常能为合理解决有关问题提供一条便于接受的思路,它有助于探求问题途径、避繁就简、巧妙地得出结论,是提高解决问题能力的一种重要手段。
在数学教学中,数形结合思想的确立,对培养学生的分析综合能力、空间观察能力、解决实际问题的能力都起着很重要的作用;数形结合思想的形成也是培养学生辩证唯物主义观点中“相互转化观点”的重要途径。因此,数形结合思想是在数学教学中要求学生确立的最基本的数学思想之一。
2数形结合思想在数学教学中的具体表现
2.1利用图形进行数形结合教学
在数学中有些不等式在求解时方法甚繁,而且有可能在转化时考虑不周反而会与题意不符,造成多解或失根。这就要求老师在教学时要注意树立数形结合的思想,要按照把复杂问题化简单的原则培养学生的视图观察能力,以培养其空间概念。
2.2结合几何解题进行数形结合教学
有些较难的几何证明题,学生看到后往往眼花缭乱,无从下手,此时若借助于代数的方法,可较快地寻求到解题途径。
2.3把握好数形结合的尺度
“数”与“形”是数学研究的两类基本对象,也是矛盾的双方,两者相互依存,既对立又统一。在运用数形结合的思想和方法时,如果片面夸大或抑制“数”或“形”中的一方,常常会使我们的'解题陷入困境或导致错误。
总之,正确理解“数”与“形”的相对性,使之有机地结合起来,掌握好度,对顺利解题很有好处。经验告诉我们,当寻找解题思路发生困难时,不妨用数形结合的观点去探索;当解题过程中的复杂运算使人望而生畏时,不妨用数形结合的观点去开辟新径。当然,要灵活运用数形结合的思想方法,就要熟悉某些问题的图形背景,熟悉有关数学式中各参数的几何意义,建立结合图形思考问题的习惯,在学习中不断摸索,积累经验,加深和加强对数形结合思想方法的理解和运用。
3数形结合思想的培养和发展
通过一些例题的讲解使学生首先对数形结合这一重要数学思想方法有一个初步认识,让学生们体会到其实质是将抽象的数学语言与直观图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观。通过一些刻意准备和具有代表意义的练习使学生们深刻认识到数形结合的妙处。使之看到有的代数问题,通过把数量关系转化为图形性质问题讨论,或者有的几何问题把图形的性质问题转化为数量关系问题来研究,相应问题就会化抽象为直观,化难为易,一些原来看似很难的问题就会迎刃而解,使问题简捷地得以解决。这样学生学习兴趣上来了,积极性也提高了,这时老师可再准备一些习题让学生们有意识地训练,并在日后的教学当中教师要尽量发掘数与形的本质联系,促使学生善于运用数形结合的思想方法去分析问题,解决问题,并要及时地启发学生注意数形结合与转换,让其对数形结合思想达到能够自觉运用的程度,从而提高学生的数学能力。
通过以上几个方面的探讨,我们己领略到数形结合在解题中的美妙所在了。数形结合思想在数学解题中运用很广泛,它蕴含在课本的字里行间之中,渗透在学习新知识和运用知识解决问题的过程之中。这就要求教师平常应加强数形结合的教学,强化化数为形,以形表数的意识,这样不但在解题时,可化难为易,简捷地得出结论,还可以发挥学生的想象力,将原有认识结构进一步提高,是深化思维的一种有效训练,使学生既学到了知识,又提高了能力,同时也増添了学习兴趣,使学习变得轻松愉快。
篇5:数形结合思想在教学中的应用论文
数形结合思想在教学中的应用论文
《新课标》明确规定“初中数学的基础知识主要指代数、几何中的概念、法则性质、公理、定理以及由此内容反映出来的数学思想和方法”。可以看出,把数学思想作为基础知识的范畴是过去大纲所没有的,它既是我国数学教育多年研究的成果,也充分反映了数学思想的重要性。数学是一门思维的科学,培养学生的思维能力是数学科学的核心,而数学思想方法是对数学内容及其所使用方法本质的认识,在培养能力方面起着不可替代的作用,可以说是提高学生思维品质和能力最重要的途径。若学生在学习中能将抽象的数学语言与直观的图形符号结合起来,把抽象思维与形象思维结合起来,能用代数的方法去研究几何问题,会根据图形的性质及几何知识去处理代数问题,对培养学生数学思想和方法,对解决数学问题有很重要的作用。
1 对“数形结合”概念的理解
初中北师大版教材中数形结合的内容,不完全统计达到214处,可以看出数形结合思想在初中数学教学中占据的地位,对于学生来说,到高中将是不自觉的'应用过程,数学中大量数的问题后面隐含着形的信息,图形的特征也体现着数的关系,我们将抽象复杂的数量关系通过形的形象直接揭示出来,以达到“形帮数”的目的,同时我们又要运用数的规律,数值的计算来寻找处理性的方法,达到“数促形”的目的。
在数学思维过程中,逻辑思维是核心,形象思维是先导,但具体的数学思维过程往往是两者交叉运用,浓缩升华的过程。这就要求我们在教学中重视数形结合的数学思想渗透的目的,让学生逻辑思维和形象都得到提高。
2 利用“形解数”的数形结合
2.1 数形结合在解不等式中的应用。在七年级教材(北师大版)第二章讲有理数及其运算时,引入数轴,这是点和数的一种对应,就是数形结合思想的体现,“数轴上的点”和“点所表示的数”是两个不同的概念,前者是图,后者是数,不等式解集可在数轴上表示出来,用数形结合比较形象直观,尤其是在解不等式组时,可将几个不等式解集表示在同一数轴上,这样就容易求出解集的公共部分,即不等式组的解集,举例如下:
例1:解不等式组
解:由(1)得x>1/3,解(2)得x<6,在同一数轴上表示(1)、(2)的解集 ∴原不等式组的解集为:1/3
2.2 数形结合在方程中的应用。二元一次方程图像解中也渗透了有关数形结合的思想,利用它可以使我们解题时直观明了。
例2:解方程组x-y=5 (1)y=3-x (2)

分析与解:由(1)得y=x-5在同一坐标系中作直线y1=x-5及直线y2=3-x的图像,有图像很直观,可得直线y1与直线y2交点P(4,-1)的横坐标、纵坐标分别为x、y的值,所以方程的解为x=4y=-1,当然这种做法的准确性依赖于作图的准确性,一般情况不太用。一元二次方程中有关根的问题同样与图像有密切关系。
例3:如果方程x2+2ax+a2-a+5=0两实根的大小在方程x2+2ax+a2+a-7=0两实根之间,试求a的取值范围。
分析:如果联想到一元二次方程与二次函数之间的关系,有函数y1=x2+2ax+a2-a+5与y2=x2+2ax+a2+a-7的图像开口向上,且形状相同,又有公共对称轴的两条抛物线。做草图如下:
这样把问题归结为两条抛物线顶点的纵坐标间关系问题,图像已清楚反映出来。同时要考虑顶点与x轴的位置关系,满足题设条件是抛物线y1的顶点纵坐标不小于等于零且大于抛物线y2的顶点坐标。即-a+5≤0-a+5>a-7解得5a<6
3 数形结合在函数问题中的应用
函数与平面图形的对应,建立一次函数y=kx+b(k≠0)中k、b的值与图像的相互对应关系,即k>0、b>0或k>0、b<0或k<0、b>0或k<0、b<0分别与图像的对应关系,二次函数y=ax2+bx+c(a≠0),a、b、c与图像的相互对应关系,即a、b、c的正负分别与图像的对应关系,都是数形结合的具体化。 例4:已知抛物线y=12x2+px+q(p≠0)与直线y=x交于两点A、B,与y轴交于点C且OA=OB,BC//x轴,求p、q的值。
分析:我们可依已知条件作草图,由直线的解析式y=x得出A、B两点的横、纵坐标相等,由此可以先设:点A坐标(t、t),点A与点B是否在一个象限呢?它们之间又有什么关系呢?再看条件“OA=OB”说明是两条线段的长度相等。但我们结合图形转化成几何语言,就是“点A、B关于原点对称”,那么刚才的一个小问题解决了,可以得点B的坐标为(-t、-t),但现在C点坐标还没有用t表示出来,能否找到相互的关系,“BC//x轴”迫使我们去结合图形来观察“B点、C点纵坐标相等”,那么点C坐标为(0、-t),有了A点、B点、C点的坐标,必然可以求出p、q的值。
已知条件尽管较多,却无从下手,这就迫使我们去观察所作的图形,可图形中又只有抛物线、直线一些线段等,令人感到山穷水尽,现在如果我们把已知条件和图形结合起来挖掘了一些隐藏在已知条件背后的图形特征,必然是柳暗花明又一村。
4 利用“数解形”的数形结合
数形结合中的数,除了指实数外,还泛指代数式、等式、不等式、方程、函数及运算等,借助运算也可把复杂几何问题代数化,轻易解决它。
例5:如过等腰三角形一个顶点做一条直线,将它分成两个小的等腰三角形,求这个等腰三角形的各内角。
分析:在这里没有明确这个等腰三角形是锐角、钝角还是直角,所以我们要把各种情况都考虑进去,这样又用到了分类讨论的数学思想,但每一步总是以图形为依托用代数求解几何问题。
如图(1)分别为90°、45°、45°
如图(2)AB=BD、AD=CD,设∠A=a、∠B=∠C=β∴∠BDA=2β∴a+2β=180°∴a=180°、β=36°
如图(3)AD=CD=BC、∠A=a、∠B=∠C=β、a+2β=180°、2a=β∴a=36°、β=72°
例6:如图,过正方形ABCD的顶点C任做一条直线与AB、AD的延长线分别交于E、F。求证:AE+AF≥4AB
分析:这是“形”的问题,但要直接从形入手较难,引导学生将结论变为:(AE+AF)2-4AB(AE+AF)≥0从形式上看,联想一元二次方程的判别式,从而把“形”转化为“数”的问题来解决就容易了。
证明:设AB=a,AE=m,AF=n,连接AC
则S△AEF=S△AFC+S△AEC即1/2mn=1/2am+1/2an∴mn=a(m+n),设m+n=p则mn=ap这时又可以联想一元二次方程根与系数关系,可以把m、n看作是方程x2-px+ap=0的两根,而m、n为两线断的长,应为实数,故此一元二次方程有实数根。即△=p2-4ap≥0,又∵p>0(m、n为线段长度)∴p>4a∴m+n>4a即AE+AF≥4AB。这道题完全体现了“数帮形”的作用,给学生有耳目一新的作用。
总之,揭示问题的本质,用“数”准确澄清“形”的模糊,用“形”直观启迪“数”的运算,解题过程使形和数各展其长,相辅相成,达到完美的统一。
篇6:浅谈初中数学教学中的数形结合思想论文
数形结合是运用数与形的相互关系来解决问题的思想方法。其中“数”在初中阶段,主要包括实数和代数对象及其关系,它们是比较抽象的。而其中的“形”主要是指几何图形,它们是比较形象的。通过数形结合,利用数和形的各自优点,将抽象的数学语言与直观的图形相结合,使问题简单化、特殊化、具体化,从而使问题轻松得到解决。
一、数形结合思想的渗透过程
(一)有效导入数形结合思维
在初中数学课程教学的过程中,如何充分运用数形结合思维,将数形结合的作用有效发挥出来,最主要的就是在教学过程中巧妙导入数形结合思维。许多学生对数形结合的概念不够了解,因此教师在教学时,要自然巧妙导入数形结合思维.如在对正负数加以讲解时,教师可以先画出数轴,举出相应的数字让学生在数轴上进行寻找,从而使学生对数轴上正负数以及零有一个清晰的认知。另外,教师还可以利用数轴,让学生对正负数变化、象限以及绝对值有具体的了解,从而使学生拥有较为扎实的数学基础。
(二)有效展开数形结合思维
一般统计的数学概念是初中数学学习中的重点和难点,学生在学习的过程中往往会存在一些问题。因此教师在对此进行讲解时,可以有效引入数形结合思维,从而来简化求解过程.如在讲解统计的相关知识时,教师可以先画出相应的坐标,一般坐标上的数字即是离散的点,为了有效算出这些离散点的中位数、平均数以及众数,对数据波动的大小产生的方差以及标准差,教师可以充分利用数形结合,让学生对相关知识有一个清楚的认知。
(三)有效升华数形结合思维
一般初中数学教学过程中,函数是教学难点,教师在对函数课程进行讲解时,可以巧妙运用数形结合思维,从而提高教学效率。一般函数与函数图像联系较为紧密,两者相辅相成,因此教师在对函数的相关题型进行讲解时,可以让学生有效分离数与形,对函数图像进行直观观察,使学生有效掌握函数的特点以及主要参数,从而对变量与变量之间的'关系加以把握,从而学会知识的融会贯通。如教师在对三角函数进行讲解时,教师可以引申到解析三角形的应用上面来,从而有效体现出数形结合的优势。同时在对直角三角形进行求解时,教师可以借助多媒体设备来展现出三角函数的图像,从而将三角形函数的求解方法展示给学生,引导学生解决直角三角形的问题。
二、数学结合思想在初中数学知识中的具体展示
(一)有理数中的数学结合思想
数轴的引入是有理数内容体现数形结合思想的力量源泉。对于每一个有理数,数轴上都有唯一确定的点与它对应。因此,两个有理数大小的比较,是通过这两个有理数在数轴上的对应点的位置关系进行的(实数的大小比较也是如此)。相反数、绝对值概念则是通过数轴上的点与原点的位置关系来刻画的。尽管我们学习的是有理数,但要时刻牢记它的形(数轴上的点),通过数形结合的思想方法的运用,帮助初一学生正确理解有理数的性质及其运算法则,相关内容的中考试题,应用数形结合的思想也可顺利得以解决。
例如:有理数的加法与减法教学时,安排下列数学活动:
1.把笔尖放在数轴的原点处,先向正方向移動3个单位长度,在向负方向移动2个单位长度,这时笔尖停在表示“1”的位置上。用数轴和算式可以将以上过程及结果表示。
2.把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式表示以上过程及结果。
这样设计教学让学生从“形”上感受有理数的加法运算法则,采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解。在学生充分自由活动的基础上,用“数形结合”的观点审视在数轴上的连续两次运动,探寻有理数加法的几何解释。由表示两次连续运动结果的点与原点的位置关系,确定两数和的符号;由表示两次连续运动结果的点到原点的距离,确定两数和的绝对值。
(二)方程中隐含的数形结合思想
列方程解应用题的难点是如何根据题意寻找等量关系列出方程,要突破这一难点,往往就要根据题意画出相应的示意图。这里隐含着数形结合的思想方法,例如:行程问题教学中,老师应渗透数形结合的思想方法,依据题意画出相应的示意图,才能帮助学生迅速找出等量关系列出方程,从而突破难点。
(三)不等式中蕴藏着数形结合思想
教材在安排“解一元一次不等式组”的内容时,创设了这样的问题情境“杜鹃花种植问题”,意图是想让学生理解解一元一次不等式与二元一次方程组一样,需同时满足两个约束条件,让学生经历从问题到不等式组的建模过程。为了加深学生对不等式解集的理解,老师要适时地把不等式的解集在数轴上直观地表示出来,使学生形象地看到,不等式有无数多个解,这里蕴藏着数形结合的思想方法。在数轴上表示数是数形结合思想的具体体现,而在数轴上表示数集,则比在数轴上表示数又前进了一步,确定一元一次不等式组的解集时,利用数轴更为有效。
(四)函数及其图像内容凸显了数形结合思想
因为在直角坐标系中,有序实数对(x,y)与点P的一对应,使函数与其图像的数形结合成为必然。一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助。
总之,数形结合的思想逐渐深入初中数学教学中去,并且作为一种有效的数学教学方法,可以将抽象问题具体化,将复杂问题简单化,从而在具体数学教学过程中,解决了许多很难理解的、抽象的、复杂的问题,从而激发了学生对数学的学习兴趣,降低了数学学习的难度,提高了学生的分析和解决问题的能力,同时,也提高了初中数学的教学质量,增强了初中数学课堂的教学效果。
参考文献
[1]石丽娟.谈新课标下的初中数学“数形结合”思想[J].试题与研究:教学论坛,(34)
[2]王自英.试析初中数学数形结合思想的运用[J].新课程学习:下旬,2013(09)
篇7:高中数学教学中数形结合方法的有效应用论文
高中数学教学中数形结合方法的有效应用论文
摘要:“数形结合”这一贯彻在高中数学教学始终的解题思想方法,其本质是“数”与“形”之间的相互转换。在高中数学教学中,通过有效的“数形结合”思想方法的运用可以使学生在学习过程中绕过障碍。同时,有效的“数形结合”使代数问题得以用几何来诠释,体现出神奇的数学之美以及思维的灵活之美,在一定程度上使许多复杂问题简单化、明了化。其中,在高中数学里,数形结合思想方法的运用很普遍最具典型的是平面解析几何。
关键字:高中数学;数形结合;应用
一、数形结合的概念
数学中的两个最基本也最古老的研究对象就是“数”与“形”,它们在一定条件下可以相互转化。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”我国著名数学家华罗庚也曾说过:“数形结合百般好,隔裂分家万事非。”可见,“数”与“形”反映了事物两个方面的属性。因此,我们可以这样理解,“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时揭示其几何的直观意义的解决数学问题的方法。从而使数量间的空间形式的`直观形象和代数数据的精确和谐并巧妙的相结合。同时,充分利用这种结合寻找解题思路,化繁为简、化难为易,从而解决数学中所存在的需要解决的相关问题。
众所周知,“数形结合”主要指的是数与形之间的一一对应关系。简而言之,数形结合就是指将直观的几何位置、图形关系抽象的数量关系、数学语言相结合,同时通过“以数解形”、“以形助数”的方式使抽象问题具体化,复杂问题简单化,从而油滑解题方法。即通过形象思维和抽象思维的结合优化解题途径。所以说,究其本质,数形结合是一个包含“以数辅形”、“以形助数”数学思想方法。数形结合的思想,关键是图形与代数问题之间的相互转化,其实质是将直观的图像与抽象的数学语言相结合。此种方法在很大程度上,可以使几何问题代数化或者代数问题几何化。但是,当我们要采用数形结合思想分析问题、解决问题的时候必须注意以下几点:其一,设恰当参数,在合理用参的基础上建立关系,同时由“形”想“数”或者以“数”思“形”,做好数形转化;其二,确定参数的正确的取值范围;其三,要明确某些曲线的代数特征以及相关代数概念、运算的几何意义,并在此基础上对数学题目中的条件和结论进行代数意义和几何意义的分析证明。
二、高中数学教学中数形结合方法的有效应用作用
“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时揭示其几何的直观意义的解决数学问题的方法。因此,“数形结合”这一数学方法的有效运用在高中数学教学中发挥着非常奇妙的巨大作用。
首先,合理有效的应用“数形结合”有利于引导学生进行初、高中阶段数学知识掌握的过渡和衔接。众所周知初中数学内容相对而言较为简单具体,其解答过程模仿性较强。而高中数学内容具有很强的抽象性,其掌握的重点则是在对数学概念理解的基础上进行运用。同时,在对数学语言的运用以及学生的空间想象能力、思维能力、运算能力等要求相对较高。因此,在进入高中阶段数学内容的学习时,学生需要一个相对适应的学习过程。相应的就高一所学数学内容来看,“数形结合”——这一从具体到抽象的思维方式恰好符合学生的认知规律。所以说,合理有效的应用“数形结合”有利于引导学生进行初、高中阶段数学知识掌握的过渡和衔接。
其次,合理有效的“数形结合”方法的运用,在有利于培养学生形象思维的同时有利于培养学生浓厚的数学兴趣,增强其学习信心。数学,以其独特的符号化、形式化和抽象性给人以“生冷冰硬”的感觉,因此而“难得人心”,是以造成了学生认知上的特殊难度,使得学生怕它不愿学,甚至产生枯燥、厌恶的情绪。然而,高中数学教材中的许多问题可以通过“数形结合”的方法得以体现思想。例如可以通过“数形结合”给代数提供几何模型,这样就可以形象、直观地揭示问题的本质。这种方法在一定程度上减轻学生学习的负担,从而引发学生学习数学的兴趣。所以说,合理有效的“数形结合”方法的运用,在有利于培养学生形象思维的同时有利于培养学生浓厚的数学兴趣,增强其学习信心。
再次,数形结合思想能帮助学生树立现代思维意识。具体而言包含以下几点意义:其一,有效的“数形结合”数学方法的运用,在很大程度上可以有的放矢地帮助学生从多层次、多角度出发思考问题,使之养成放射性思维的好习惯;其二,有效的“数形结合”方法的运用,可以在一定程度上引导学生进行动态思维与静态思维相结合运用的良好习惯,即以运动、变化、联系的观点考虑问题,更好地把握事情的本质;其三,有效的“数形结合”方法的运用,即先形象后抽象,尽可能地将抽象思维和形象思维有机结合,在一定程度上可以为学生形成辩证思维能力创造条件。
最后,合理有效的“数形结合”方法的运用,有利于数学思想方法的相互渗透;有利于数学各部分内容相互联系。
三、总结
“数形结合”就是以数学问题的条件和结论之间的内在联系为依据,在分析其代数意义的同时揭示其几何的直观意义的解决数学问题的方法。数形结合包括“以数辅形”、“以形助数”两个方面。同时有效的“数形结合”方法的运用,往往会使复杂问题简单化、抽象问题直观化,从而达到优化解题途径的目的。
篇8:小学数学数形结合思想研究论文
摘要:数学是小学时期的一门主要课程,是一种以抽象思维为主的学科。小学生还处于形象思维的年龄段,要想培养他们的抽象思维,需要教师采取一定的教学策略与教学方法。数形结合是一种比较好的教学方法,通过将抽象的数学知识与形象的图形结合起来,可以让学生更好地理解抽象的数学概念,从而提升学生的数学思维能力,让学生逐步具备抽象思维能力,能够用数学思维来分析与解决问题。本文从数形结合的涵义入手,结合笔者多年的数学教学经验,分析了在小学数学教学中渗透数学结合思想的一些具体策略,以其为广大一线数学教师提供一些实践参考。
篇9:小学数学数形结合思想研究论文
数形结合是重要数学思想,所谓数形结合即“数”与“形”的相互转化,从而达到有效解决数学问题。简单来说就是将抽象的数学问题与直观的图形相互结合起来,通过深入分析数与形的内在关系来达到解决数学问题的目的,同时培养和发展学生的数学思维,提高学生分析问题,理解问题,解决数学问题的能力。本文就小学生在数学课程的学习中如何实现数形结合思想的渗透,提出了几点思考。
1数学中的基本概念,数形结合思想渗透,促进学生理解
小学生的思维能力处在发展时期,他们以形象思维为主,抽象思维不及形象思维,对于“数”这样一个抽象的概念可能理解起来较为困难。因此,数学教师要学会在“数”中渗透数形结合的.思想,用直观的图形加深学生对抽象概念的理解和把握,从而实现抽象认识到感性认识———感性认识到理性认识的理解,提高教学的有效性。例如,在初次接触分数的概念时,学生一时半会难以理解,此时如果教师通过直观形象的图形或者是符号来展开教学,教学效果就会明显改善。数学教师可以用与1/2启发学生,这个图形十分直观明了,中间的分割线代表了分号的涵义,学生对分数的认识也就更加清晰和准确了。当然,除了这种做法之外,教师还可以引用古人的智慧,将阿拉伯人、中国古人的分数表达方式展示给学生,学生会对分数表示方式的发展历史有一个大致的了解,通过“形”对“分数”这一概念的认识更加深刻。小学阶段有许多关于数的学习,教师要积极挖掘概念中“形”的内容,找准数学概念与图形的联结点,推进课堂教学的顺利展开。事物的规律和内在联系往往比较抽象,采用数形结合的方法,将复杂抽象的问题直观化能够获得较好的教学效果。在苏教版数学教材《乘法的初步认识》这一节的执教过程中,最初,学生对“乘法”的概念不是很理解,笔者首先用多媒体技术向学生展示了一张图片:有一条小木船,船上坐着三个人,接着后面又“划”来了第二条船、第三条船一直到第五条船,这时候再让学生用数学式子来表示,学生采取了同数相加的形式写出了式子。接着,向学生提出了一个问题:“同学们,如果现在的船增加到100条呢,你们还这样一个一个加起来吗?”学生一听到之后若有所思,都在试图找到一种简单的办法,笔者不失时机地提出了“乘法”的概念,帮助学生轻松的掌握了这一抽象的知识。在这个案例中我们充分看到了数形结合思想对学生概念形成的重要作用。
2数学运算过程中,数形结合思想渗透,提升学生运算技能
数学计算在小学数学中占了较大的比例,更是学生数学学习的重要基础,将数形结合的思想渗透在运算的过程中可以提高学生的计算能力。很多时候学生在进行两位数加两位数的计算时只是机械的计算,还未形成“以形促思”的学习习惯,无法实现算理到算法的过渡。小学数学教师必须有意识地培养学生数形结合的思想,例如,在17+16的运算中,教师先让学生拿出数棒在桌上摆一摆,接着教师再结合数棒摆出来的图形向学生解释“满十进一”,建立图与数的关联,揭示数学计算的本质。
3数学深度学习中,渗透数形结合思想,发展学生的数感
数感对于学生数学学习十分重要,在数形结合中发展学生的数感是每一个小学数学教师的职责。单纯的数字在小学生的眼里没有实际意义,因此学生容易缺乏数感,培养学生的数感对于学生后期数学的深入学习意义重大。教师可以将各种有形的实物引入课堂教学,将数字形象化,帮助学生把握数的本质,培养学生良好的数感。例如,学生最初接触数字1、2、3……教师就相应的展示与数字对应的实物如一支笔、两朵花、三张纸等,学生的数感就在这个过程中得以培养。总之,教师要吃透数学教材,仔细分析教材的内容,结合学生的实际学习情况有步骤的展开教学,渗透数形结合思想。
4数学几何图形学习中,数形结合思想渗透,拓展空间观念
在学习几何知识时,数学教师也应当渗透数形结合的思想,帮助学生准确把握几何概念,帮助学生拓展空间观念。例如,为了让学生把握三角形的特征,数学教师可以用多媒体播放现实生活中的“三角形”图片,给学生直观的视觉刺激,使学生的脑海里存储大量与三角形有关的直观图形。接下来,教师再提供大量反例图形,引起学生的认知冲突,让学生经过不断的认知冲突来加深对三角形的理解和认识,拓展学生的空间观念,强化学生的空间想象力。整个教学过程中,教师巧妙的将数形结合的思想渗透到了教学中,教师并没有不断的向学生灌输“三角形是由三条线段围成的”这一数学思想,而是引入了大量直观、形象的图形,促进学生深入的思考。
5结语
数学学习十分看重学生的数学思维,小学生的数学思维能力是小学数学课程的重要培养目标,在素质教育时代,数学教师必须摒弃过去的教学方式,让学生形成数形结合的思维能力,培养学生借助形来解决数的问题。当学生掌握了数形结合的思维方式,遇到数学问题,学生则更容易看到抽象数学问题反映的本质,而不至于被迷惑,陷入了数学的困境。总之,数学教师要以学生为本,循序渐进的将数形结合的思想渗透到教学中来,让学生在数学学习中获得成就感和满足感。
参考文献:
[1]李文玲.“数形结合”思想在小学数学教学中的应用分析[J].西部素质教育,(1):173.
[2]邝美兰.数形结合思想方法在小学数学教学中的应用策略初探[J].学周刊,(15):39-40.
篇10:小学数学数形结合教学思想探析论文
小学数学数形结合教学思想探析论文
摘要:小学是我国教育系统的重要组成部分,同时也是我国教育系统的基础,小学教育的质量将会影响到学生学习能力的培养,进而影响到学生以后的学习。数学是一门比较重要的学科。在小学阶段,大部分的学生都是刚开始正式接触数学学科,而数学知识的逻辑性又比较强,比较抽象,从而会使得一部分学生感觉到比较吃力。鉴于此,在小学数学教学过程中应结合小学生的生理特点和心理特点采用数形结合的教学思想,提高学生数学学习的效果。
关键词:小学;数学教学;数形结合
数形结合思想是数学思想的一种,在教学过程中采用数形结合的教学思想不仅可以降低知识点的难度,同时还可以提高学生学习的兴趣。因此,应将数形结合的教学思想应用于小学数学教学中。本文将结合小学数学教学的实际情况,分析和研究数形结合思想在小学数学教学中应用的方法,并提出在小学数学教学中运用数形结合思想应注意的问题,希望可以为以后的小学数学教学工作提供一些借鉴。
1数形结合思想在小学数学教学中的具体应用
数形结合思想就是指在数学学习过程中,可以通过数和形之间的变换来解决一些数学问题,采用这样的方式可以大大降低数学问题的难度。下文将具体介绍一下数形结合思想应用的方法。首先,在小学数学教学过程中应采用数形结合的思想可以将一些抽象的概念直观化,从而使得学生可以更好地理解概念。概念是数学学习的重要内容之一,但在数学中有一些概念是比较抽象的,对于小学生来说理解这样的概念是存在一定难度的。以往,教师为了让学生理解这些概念往往会采用死记硬背的方式,按照教师的观点,先记住概念,随着使用次数的增多自然就会理解了。但是,对于学生而言,光记住概念却不理解概念是难以将其应用于解题过程中的。因此,在教学过程中,教师可以采用数形结合的思想,通过“数”、“形”变换将这些抽象的概念以较为直观的方式表达出来,这样学生才能更好地理解概念,并将其应用于解题过程中。其次,在小学数学教学过程中教师应采用数形结合的思想将一些隐性的数学规律以形象化的方式表达出来,从而培养学生找规律的能力。数学知识的逻辑性比较强,同时也存在很大的规律性。有一些数学规律已经被视为公式,出现在数学教材中。但有一些数学规律则因各种因素的影响没有出现在教材中,而这些隐性的规律是学生难以发现的,但对于理解数学知识和解题来说是比较有用的。
因此,教师应将这些隐性的`数学规律告知学生。但在告知学生的过程中应掌握一定的方法技巧,培养学生独立寻找数学规律的能力。采用数形结合的思想,一方面可以更加清晰地展示数学规律,另一方面也更加容易让学生掌握这种寻找数学规律的方法。最后,在小学数学教学过程中教师应采用数形结合的思想来简化问题,从而降低问题的难度。在数学学习过程中,有很多数学问题都存在比较复杂的数量关系,对于处于小学阶段的学生来说他们难以理解这样复杂的数量关系,进而也就不知道该如何解题。在这种情况下,教师应教授学生利用数形结合思想解决问题的方法。采用数形结合思想一方面可以将一些复杂的问题简单化,另一方面也可以使得问题中的数量关系清晰化,更加有利于学生理解题目的含义。在小学数学教学中运用数形结合思想不仅可以提高学生数学学习的效果,同时还可以让学生养成用数形结合思想解决问题的习惯,从而使得学生的空间思维能力得到提升,这对学生以后的数学学习也会有很大的帮助。
2小学数学教学中运用数形结合思想应注意的问题
在小学数学教学中运用数形结合思想对于培养学生的数学思维能力具有重要的作用,但为了充分发挥数形结合教学思想的作用,在运用数形结合教学思想的过程中还应注意下述几方面的问题。首先,教师在小学数学教学的过程中不仅要采用数形结合思想,同时还应让学生养成用数形结合思想解决问题的习惯。准确地说,数形结合是一种数学思想,而不是教学思想。因此,为了提高学生的数学学习能力,在数学教学的过程中教师应有意识地培养学生运用数形结合思想解决数学问题的习惯,这样就会让学生养成一种思维习惯,遇到数学问题时就会想到这种解决问题的方法,这对学生以后的学习和生活都是具有积极作用的。其次,教师在运用数形结合教学思想的过程中应充分利用多媒体技术。正如上文所述,数形结合思想简单来说就是“数”、“形”变换的一种思想。利用多媒体技术可以更好地向学生展示“形”,还可以利用视频、动画、图片等多种方式来展示“数”“形”变换的具体过程,这样更加有助于学生理解数学知识。最后,在小学数学教学中运用数形结合的教学思想时应加强数学知识和现实生活之间的联系,最好用一些学生平时比较熟悉的事物来表现数形变换的过程,这样不仅可以加深学生对相关知识点的印象,同时还可以提高学生数学学习的兴趣。
3总结
总之,相比于传统的教学思想来说,数形结合的教学思想更加符合数学教学的实际情况。在小学数学教学的过程中采用数形结合的教学思想不仅可以将一些抽象的知识具象化,使得学生可以更好地理解数学知识,同时还可以提高学生的数学思维能力,使其更好地掌握数学知识。
参考文献
[1]袁婷.小学数学教学中数形结合思想的渗透研究[J].学周刊,2015,06:60-61.
[2]曹红涛.数形结合思想在小学数学教学中的渗透研究[J].中国校外教育,2015,28:129.
[3]张晓明.浅谈数形结合思想在小学数学中的应用[J].学周刊,2014,33:208.
篇11:八年级数学渗透数形结合思想的教学反思(胡小强)
一、关于“数形结合”
华罗庚教授曾精彩地诠释:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”由此可见,数形结合的巧与妙,数形结合的思想方法能扬数之长,取形之优,使得数量关系与空间形式珠联壁合,相映生辉。因此在数学教学中,注意渗透这方面的思想,引导学生要善于将两者巧妙地结合起来分析问题,让学生在不断感悟中开阔和发展思维,为达到快速、有效地解决问题奠定良好的基础。
使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。在初中阶段训练学生利用“数形结合”的方法观察、分析问题,有助于学生学习抽象的知识,对锻炼相应的数学思维也有极大的帮助。数形结合思想主要应用于:
(1)建立适当的代数模型(主要是方程、不等式或函数模型)。
(2)建立几何模型(或函数图象)解决有关方程和函数的问题。
(3)与函数有关的代数、几何综合性问题。
(4)以图象形式呈现信息的应用性问题。
数形结合的思想贯穿初中数学教学的始终。
采用数形结合思想解决问题的关键是找准数与形的结合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对数形结合思想的的主动应用。
二、教学中渗透数形结合的途径
1、通过深入分析数学概念,渗透数形结合思想方法。
深入分析数学概念中渗透的数学思想方法是理解掌握数学思想方法的一个重要手段。我们通过引导学生,找出事物之间的共同本质属性并用词语把它表示出来,使学生获得概念、体会数学思想和方法。经过分析、综合、比较、抽象、概括等思维的逻辑加工,去呈现概念。如在刻画一次函数图像时就把数巧妙的画在了平面直角坐标系中。
2、通过例题分析,展示数形结合思想方法
例题是展示数学新知识的.一个重要组成部分,而例题教学是让学生掌握数学知识、数学思想方法的一个重要途径。例题学习是学生学习、体会、运用数学思想方法的重要手段。通过例题分析,能展示数学思想方法,让学生从中体会、熟练运用数学思想和数学方法。其实,数学课本中的好多例题,都蕴含了丰富的数形结合解题方法,需要我们在教学中用心挖掘。
3、结合实际,充分利用数形结合的方法解决问题。
采用数形结合思想解决问题的关键是找准数与形的结合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对数形结合思想的的主动应用。
4、通过实践活动,体数学学习过程是‘做数学’的过程,这一特点决定了学生对数学思想方法的认识和理解要在学生亲自参与数学活动的过程中进行。观察、试验、归纳、类比等数学方法离不开学生的实践活动。很多数学思想,也只能让学生在实践中去体会、掌握。
篇12:在高中数学教学中渗透数学思想
在高中数学教学中渗透数学思想
在高中数学教学中渗透数学思想龙逸东
摘 要:数学思想是对数学事实与理论经过概括后产生的本质认识,基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。所以,在数学教学中,我们要让学生明确数学思想是非常重要的。
关键词:高中数学;数学思想;函数思想
数学思想,是指现实世界的'空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。然而,在实际教学过程中,我们经常发现这种情况,同一类型的试题,同一学生上次可以完整、正确地完成,这次就出现了各种各样的错误。这是为什么呢?仔细想一想,不难发现学生当时只是记住了教师讲授的解题技巧甚至可以说是解题过程,根本没有掌握实质的解题思想。从而,时间一长,学生就容易忘记,容易找不到解题的方向。然而,真正地掌握数学思想之后,学生就会灵活地进行解题,也将会大大提高解题速度。本文以函数思想为例进行简单介绍。
所谓的函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。函数一直都是数学教学过程中的重要组成部分,始终贯穿于整个数学的过程中。所以,在教学过程中,教师要重视函数思想的渗透,使学生能够在熟练掌握基本的数学思想的过程中,提高学生的解题能力。
如,解答有关三角函数的试题时,已知游艇的航速为每时34千米,它从灯塔S的正南方向A处向正东方向航行到B处需1.5时,且在B处测得灯塔S在北偏西65°方向,求B到灯塔S的距离(精确到0.1千米)。这是一道与实际有关的试题,教师要引导学生找到等量关系,让学生画出相对应的图,借助图中所示的各个量之间的关系,列出函数方程。解题过程简单如下:设B到灯塔S的距离为xcos(90°-65°)=1.5×34/x,解得:x=56.3,所以,B到灯塔S的距离为56.3千米。
因此,在教学过程中,教师要有意识地给学生渗透函数思想,使学生能够在解答试题的过程中能够明确该类型试题的解题思路,进而使学生的解题能力得到大幅度提高。
总之,在数学教学中,教师要转变以往单纯的知识传授,要采用多种教学模式,调动学生的学习积极性,使学生在熟练掌握基本数学思想的过程中,得到更大空间的发展。
参考文献:
饶品炉。新课标下如何在高中数学教学中渗透数学思想方法[J]。新课程学习:中,(9)。
(作者单位 贵州省松桃苗族自治县松桃民族中学)
篇13:谈谈数形结合思想在数学教学中的重要性
谈谈数形结合思想在数学教学中的重要性
谈谈数形结合思想在数学教学中的重要性贵州省福泉市桂花中心小学 兰仕琴
小学生学习数学由于理解能力有限,一些抽象的问题对于他们来说比较困难,再加上小学生的接受能力也较差,学习起来就比较困难,而数形结合的思想可以帮助他们学好数学,通过数量与图形的关系,有利于提高学生的记忆力、思维能力,有利于培养良好的情操,有利于解决实际问题等等,因此,在小学数学教学中,我们要充分利用数形结合的思想来提高教学质量。
一、小学数学教学特点
1.学生接受能力差 。小学生的接受力差是因为他们发育还不完善,身体、心理都还不健全,所积累的知识还比较少,各种道理也还不太明白,数学中一些抽象的东西,或者复杂难懂的问题,就不会解决;再加上小孩子上课本来就容易分心,精力很难集中,经常老师讲的知识也不认真听,即使听了,一些比较难懂的,也不一定懂,小学生普遍的接受知识的能力比较差。数学本身就是一门比较难懂的学科,小学生的接受力差就会更加难学,因此,面对这一问题,我们必须采取办法解决。
2. 缺乏抽象思维能力。数学是一门逻辑性比较强的学科,强调分析与综合、比较与分类、抽象与概括、判断推理各种能力,而小学生往往缺乏这些综合性能力,他们形象思维能力高于抽象思维,学习数学还需要运用自己的想象,比如说一些立体图形,这种仅仅光靠老师讲是不行的,还需要自己在脑海中想象,把这样一种图形在脑中浮现出来,再对知识进行分析与综合,才能够准确的掌握,准确的答题。但是,小学生缺乏抽象思维的能力,他们往往不会把各种知识结合起来,进行比较与分类,笼统的学习,更不会判断推理,对数学知识的掌握度不够,因而在解决各种数学问题时手足无措,胡乱答题,数学成绩提不高,丧失了对数学的信心,没有了对数学的热情,针对小学生学习数学的这些特点,我们要运用数形结合的思想来帮助他们提高抽象思维能力与接受力,让他们对数学产生兴趣,进而为进一步学好数学奠定了基础。
二、数形结合在小学数学教学中的运用
1.数字刺激 。(数学教学论文 )小学生往往觉得数学课太没有活力了,课堂上只有数字,老师对公式进行推理,然后就是学生做题,永远有做不完的题目,学生对这样的课堂缺乏兴趣,太沉闷、太枯燥无味。然而通过图形来激起同学对数字的兴趣,让课堂变得有活力。
枯燥无味的数学课堂,但是通过老师对图形的变化,让一些死板的数字变得有活力,突出了数学灵活、多变的特点。学生通过自己的讨论得出结论,比老师传授知识有用得多,学生对数字产生了兴趣,因而也会对数学充满激情,这样的学习方法,提高了学生的学习效率,这样的方法学习效果将会是事半功倍。
2.形状比划 。所谓的.形状比划就是指数学中的难题我们可以借助画图的方式来解决,把复杂的问题、抽象的问题简单化、具体化。小学生做题经常会碰到很多应用题,题目一大串,但是通过画图把问题简单化了,更加清楚、明了的摆在眼前,从而有利于小学生解决问题,图形结合的办法大大提高了学生在生活中解决实际问题的能力。
3.数字形状相结合 。数形结合可以解决学生在实际生活中遇到的各种问题,“解决实际问题的学习是学生发展教学思维能力的重要途径,数形结合是重要的解决问题的策略之一。借助直观图形题中数量关系变得更加明晰明了,问题往往引刃而解,既提高了学生的思考能力,又能得到新颖、巧妙的解法。”把数字与图形结合起来,提高了学生的抽象思维能力,不仅仅是比较直观的思维,从而提高了他们解决数学中的一些比较复杂问题的能力。
三、数形结合教学的意义
1.提高学生的记忆力 。利用数形结合的办法,有助于学生提高对数学有关知识的记忆。只有对数学有关的知识准确的记忆,对数学的一些原理及公式有印象,我们才会有思路去解决问题,才不会在问题面前找不到解题思路,只有对知识进行温习,我们面对问题就会非常的熟练,有可能还会发现其中新的思路,新的规律。
2.提高解决实际问题的能力 。学生在学习数学时只是机械的记忆,运用公式,他们并不是运用数形结合的办法,比什么多多少就是加法,比什么少多少就是减法,这种方法是错误的,但是通过数形结合的办法,把问题直观明了的反应出来,更容易解题,同时也提高了准确率。学生从小养成数形结合的办法,有利于他们学好数学,找到一种更加简单的、有效的办法。
总之,教师要利用数形结合的思想,有目的,有计划地进行教学,让学生对数学产生兴趣,激发他们的求知欲,提高他们解决问题的能力,让他们形成这种意识,为他们学好数学奠定基础。
篇14:初中数学教学中数形结合的应用论文
初中数学教学中数形结合的应用论文
数形结合是数学学习和研究过程中一种重要思想,其优势就是能把抽象思维转化为形象思维,便于学生认知和理解数学知识,进而提升学习效率.本文以初中数学为研究对象,重点分析数形结合在初中数学教学中的应用.
一、数形结合在初中数学教学中的作用
简单来说,数形结合就是通过把抽象难懂的数字与简明易懂的几何图形相结合,实现抽象数学问题向直观几何问题的转化,从而达到降低问题难度的目的,帮助学生更好地理解数学知识内容.数形结合思想一般表现在:一是建构恰当的代数模型;二是建立几何模型解决函数和方程问题;三是与函数相关的几何、代数问题;四是利用图象形式呈现相应信息的应用问题.在数学教学中,教师要善于发现题目中数与形的恰当契合点,从而将数与形进行有机结合,达到互补的目的.数形结合在初中数学教学中的作用,主要表现在:一是有助于形成完整的数学概念,便于学生理解记忆概念和优化数学认知结构;二是有助于提高学生的解题能力,简缩思维链;三是有助于培养学生的数学思维能力,强化形象思维、直觉思维和发散思维;四是有助于激发学生的学习兴趣,进而提高其学习成绩.
二、数形结合在初中数学教学中的应用
1.推动“数”向“形”的转变
面对一些数量关系过于抽象复杂的题目时,学生常常很难把握其本质要领,此时教师若能巧妙地利用数形结合思想,推动“数”向“形”的转变,那么学生就能直观、形象地理解抽象复杂的数量关系.这就要求教师在讲解某些知识内容时,在“数”向“形”转变的过程中找出与数相对应的形,在问题中提炼出数量模型,通过分析图形解决数量问题,从而简化数学计算.例如,在讲“一元一次不等式(组)”时,教师可以提出问题:判断哪些数是不等式3x>225的解,73、74.6、78、75、80、64、75.1?这个不等式是否有解,如果有,这个不等式有多少个解?这个题目相对来说十分简单,主要考查学生对“不等式解集的无限性”的理解,然后根据无限性引出不等式的解集概念.此题目进行简单除法,即可得到答案为x>75,但为了将解集的无限性表示的更加鲜明,教师可以利用数轴进行表示,在数轴上标明“75”所表示的点,然后向正数方向无线延伸,学生只需将以上数字与75进行比较,找出大于75的数,即可找出满足不等式的答案.这样的做法,不仅能够让学生直观地看清不等式的解集有多少个,而且能够推动“数”向“形”的转变.
2.描述“形”向“数”的转化
图形比数字的直观性更强,可以很好地将抽象思维具体化,但这并不代表数学解题不需要代数计算,因此初中数学教师还要重视“数”的计算,尤其要重视表面看起来无规律、无逻辑性的几何图形,然后根据需要将图形转化为与之相对应的“数”,从而挖掘出数学题目深处隐含的意义.在“形”向“数”转化的描述过程中,教师要将图形尽可能地数字化,将数字尽可能地明晰化,在“形”转化为“数”的过程中融入数值计算,进而发现深藏在几何图形内部的规律.例如,在讲“锐角三角函数”时,教师可利用学生对特殊“直角三角形”和“相似三角形”等相关知识已有的认知,结合具体几何图形给出锐角三角函数概念.这种将数与形结合起来的.方法,描述出了“形”向“数”的转化,便于学生掌握锐角三角函数的本质,从而加深学生对数学知识的理解.
3.增强“数”与“形”的互化
有的数学题目很难通过单一的“形”转“数”或“数”转“形”就得以理解实现,而是需要“数”与“形”的互化.通过融合“数”与“形”的互化解决问题,此种方法适用于平面直角坐标系及函数、勾股定理及其逆定理等知识点.例如,在讲“勾股定理及其逆定理”时,它是一种典型的数与形结合,通过把三边长度与直角三角形结合的方略,使其在直角三角形问题中得到广泛应用.勾股定理的具体定理为:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.也就是说,两直角边与斜边的关系就是勾股定理.当然,这一定理可以通过代数计算或者实际构图得以验证.勾股定理及其逆定理是“数”与“形”互化的一种典型表现,它对于学生理解知识点、加深知识印象大有裨益,实现了几何图形与代数关系之间的描述转化.总之,在初中数学教学中应用数形结合思想是一种明智的做法,不仅能够有效培养学生的思维能力和多角度看问题的能力,而且能够拓展和延伸学生的数学思维.因此,初中数学教师务必要推动“数”向“形”的转变、描述“形”向“数”的转化、增强“数”与“形”的互化,提升初中生学习数学的能力,强化数形结合思想的运用.









