“隔壁野生老王”通过精心收集,向本站投稿了16篇指数函数教案,下面是小编给大家带来的指数函数教案,以供大家参考,我们一起来看看吧!

篇1:指数函数教案
指数函数教案
由于《指数函数图像和性质》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图像性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1.创设问题情景.让学生先画出指数函数y=2x与y=(1/2)x的图像,调动学生的动手的积极性,激发学生的探究心理,顺利引入课题,而这样的练习又恰好为研究指数函数中底数大于1和底数大于0小于1的图像做好了准备。 2.强化“指数函数的图像与性质”的'理解与应用.引导学生结合指数函数y=2x与y=(1/2)x的图像研究其性质,进而推广到研究一般指数函数图像与性质,让学生充分体验知识的产生过程,并将其应用于具体的数学问题中。 3.突出图像的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的图像与性质时,更是直接由图像观察得出性质,因此图像发挥了主要的作用。 4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活中的数学问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。篇2:高中数学指数函数教案
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象.
2. 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
篇3:高中数学指数函数教案
教材分析
(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数 在 和 时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是.
(2)对底数 的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
篇4:高中数学指数函数教案
一. 引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------.
1.6.(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
由学生回答: 与 之间的关系式,可以表示为 .
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.
由学生回答: .
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为.
一. 的概念(板书)
1.定义:形如 的函数称为.(板书)教师在给出定义之后再对定义作几点说明.
2.几点说明 (板书)
(1) 关于对 的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.
若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .
(2)关于的定义域 (板书)
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.
(3)关于是否是的判断(板书)
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是.
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象.
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质
作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.
函数
1.定义域 :
2.值域:
3.奇偶性 :既不是奇函数也不是偶函数
4.截距:在 轴上没有,在 轴上为1.
对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)
在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近轴, 越大,图象上升的越快),并连出光滑曲线.
二.图象与性质(板书)
1.图象的画法:性质指导下的列表描点法.
2.草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 .
(2) 时, 在定义域内为增函数, 时, 为减函数.
(3) 时, , 时, .
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用 (板书)
1.利用单调性比大小. (板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1. 比较下列各组数的大小
(1) 与 ; (2) 与 ;(3) 与1 .(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解: 在 上是增函数,且< .(板书)教师最后再强调过程必须写清三句话:
(1) 构造函数并指明函数的单调区间及相应的单调性.
(2) 自变量的大小比较.
(3) 函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小(1) 与 ; (2) 与 ;(3) 与 .(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1, <1, >.
解决后由教师小结比较大小的方法
(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2) 搭桥比较法: 用特殊的数1或0.
篇5:高中数学指数函数教案
探究活动
(1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?
答案:有两个交点.
(2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
答案:15天的合同可以签,而30 天的合同不能签.
篇6:高中数学指数函数教案
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析
1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
篇7:指数函数
教学目标
1. 理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.
2. 通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.
3. 通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.
教学重点和难点
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一. 引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.
1.6.指数函数(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的'问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
由学生回答: 与 之间的关系式,可以表示为 .
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系.
由学生回答: .
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为指数函数.
一. 指数函数的概念(板书)
1.定义:形如 的函数称为指数函数.(板书)
教师在给出定义之后再对定义作几点说明.
2.几点说明 (板书)
(1) 关于对 的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在.
若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定 且 .
(2)关于指数函数的定义域 (板书)
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.
(3)关于是否是指数函数的判断(板书)
刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.
(1) , (2) , (3)
(4) , (5) .
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3) 可以写成 ,也是指数图象.
最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质
作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.
函数
1.定义域 :
2.值域:
3.奇偶性 :既不是奇函数也不是偶函数
4.截距:在 轴上没有,在 轴上为1.
对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于 轴上方,且与 轴不相交.)
在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少.
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近轴, 越大,图象上升的越快),并连出光滑曲线.
二.图象与性质(板书)
1.图象的画法:性质指导下的列表描点法.
2.草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是 且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例.
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论 为何值,指数函数 都有定义域为 ,值域为 ,都过点 .
(2) 时, 在定义域内为增函数, 时, 为减函数.
(3) 时, , 时, .
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用 (板书)
1.利用指数函数单调性比大小. (板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与1 .(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解: 在 上是增函数,且
< .(板书)
教师最后再强调过程必须写清三句话:
(1) 构造函数并指明函数的单调区间及相应的单调性.
(2) 自变量的大小比较.
(3) 函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 .(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1, <1, >.
解决后由教师小结比较大小的方法
(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2) 搭桥比较法: 用特殊的数1或0.
三.巩固练习
练习:比较下列各组数的大小(板书)
(1) 与 (2) 与 ;
(3) 与 ; (4) 与 .解答过程略
四.小结
1.指数函数的概念
2.指数函数的图象和性质
3.简单应用
五 .板书设计
探究活动
(1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?
答案:有两个交点.
(2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
答案:15天的合同可以签,而30 天的合同不能签.
篇8:高一数学《指数函数》教案
人教版高一数学《指数函数》教案
教学目标
1。使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。
2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
教学建议
教材分析
(1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的.函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。
(2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
教学设计示例
课题
教学目标
1。 理解的定义,初步掌握的图象,性质及其简单应用。
2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
教学重点和难点
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
教学用具
投影仪
教学方法
启发讨论研究式
教学过程
一。 引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。
1。6。(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
由学生回答: 与 之间的关系式,可以表示为 。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。
由学生回答: 。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。
一。 的概念(板书)
1。定义:形如 的函数称为。(板书)
教师在给出定义之后再对定义作几点说明。
2。几点说明 (板书)
(1) 关于对 的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。
若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。
(2)关于的定义域 (板书)
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(1) , (2) , (3)
(4) , (5) 。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3。归纳性质
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数
1。定义域 :
2。值域:
3。奇偶性 :既不是奇函数也不是偶函数
4。截距:在 轴上没有,在 轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近轴, 越大,图象上升的越快),并连出光滑曲线。
二。图象与性质(板书)
1。图象的画法:性质指导下的列表描点法。
2。草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3。性质。
(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。
(2) 时, 在定义域内为增函数, 时, 为减函数。
(3) 时, , 时, 。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三。简单应用 (板书)
1。利用单调性比大小。 (板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1。 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与1 。(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解: 在 上是增函数,且
< 。(板书)
教师最后再强调过程必须写清三句话:
(1) 构造函数并指明函数的单调区间及相应的单调性。
(2) 自变量的大小比较。
(3) 函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 。(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1,<1,>。
解决后由教师小结比较大小的方法
(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2) 搭桥比较法: 用特殊的数1或0。
三。巩固练习
练习:比较下列各组数的大小(板书)
(1) 与 (2) 与 ;
(3) 与 ; (4) 与 。解答过程略
四。小结
1。的概念
2。的图象和性质
3。简单应用
五 。板书设计
篇9:指数函数说课教案
指数函数说课教案
教材分析
(一)本课时在教材中的地位及作用:
指数函数的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
(二)教学目标:
1.知识目标:掌握指数函数的概念,图像和性质
2.能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生
分析问题,解决问题的能力。
3.德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的
特殊性与一般性之间的'关系,培养学生善于探索的思维品质。
(三)教学重点,难点和关键:
1、重点:指数函数的定义、性质和图象
2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。
3、关键:能正确描绘指数函数的图象
(三)
(四)
教学基本思路:
在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。
一.学法指导:
1,学情分析:
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
2, 学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。
篇10:高一数学《指数函数》优选教案
一、教材的地位和作用
本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。
二、教学目标
知识目标:①掌握指数函数的概念;
②掌握指数函数的图象和性质和简单应用;使学生获得研究函数的规律和方法。
能力目标:①培养学生观察、联想、类比、猜测、归纳等思维能力;
②体会数形结合思想、分类讨论思想,增强学生识图用图的能力;
情感目标:①让学生自主探究,体验从特殊→一般→特殊的认知过程,了解指数函数的实际背景;
②通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力。
三、教学重难点
教学重点:进一步研究指数函数的图象和性质。
指数函数的图像与性质,它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此它对知识起到了承上启下的作用。
教学难点:弄清楚底数a对函数图像的影响。
对于底数a>1和1>a>0时函数图像的不同特征,学生不容易归纳认识清楚。
突破难点的关键:
通过学生间的讨论、交流及多媒体的动态演示等手段,使学生对所学知识,由具体到抽象,从感性认识上升到理性认识,由此来突破难点。
因此,在教学过程中我选择让学生自己去感受指数函数的生成过程以及从这两个特殊的指数函数入手,先描点画图,作为这一堂课的突破口。
四、学情分析及教学内容分析
1、学生知识储备
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识方面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能方面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质方面:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
2、学生的困难
本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,但学生在探究问题的能力以及合作交流等方面发展不够均衡,所以学生学习起来有一定难度。
五、教法分析
本节课我采用引导发现式的教学方法。通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
六、教学过程分析
根据新课标的理念,我把整个的教学过程分为六个阶段,
即:1.情景设置,形成概念2.发现问题,深化概念3.深入探究图像,加深理解性质4.强化训练,落实掌握5.小结归纳6.布置作业
(一)情景设置,形成概念
学情分析:1、学生初中就接触过一次函数、二次函数,在第二章再次学习一次函数、二次函数时,学生有一定的知识储备,但对于指数函数而言,学生是完全陌生的函数,无已有经验的参考,在接受上学生有困难。
2、课本给出了两个引例以及在本章章前语也给了一个例子,分别是细胞分裂、放射性物质省留量及“指数爆炸”,这三个例子比较好但离学生的认知仍存在一定距离,于是我在引课这里翻查了一些参考资料,发现这样一个例子,——折纸问题,这个引例对学生而言①便于动手操作与观察②贴近学生的生活实际。
1、引例1:折纸问题:让学生动手折纸
观察:①对折的次数x与所得的层数y之间的关系,得出结论y=x2
②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),
得出结论y=(1/2)x
引例2:《庄子。天下篇》中写到:“一尺之棰,日取其半,万世不竭”。请写出取x次后,木棰的剩留量与y与x的函数关系式。
设计意图:
(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数①a>1②0
(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接受指数函数的形式。
2、形成概念:
形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈R。
提出问题:为什么要限制a>0且a≠1?
这一点让学生分析,互相补充。
分a﹤0,且a=0,0﹤a﹤1,a=1,a>1五部分讨论。
(二)发现问题、深化概念
问题1:判断下列函数是否为指数函数。
1)y=-3x2)y=31/x3)y=31+x4)y=(-3)x5)y=3-x=(1/3)x
设计意图:1、通过这些函数的判断,进一步深化学生对指数函数概念的理解,指数函数的概念与一次、二次函数的概念一样都是形式定义,也就是说必须在形式上一模一样方行,即在指数函数的表达式中y=ax(a>0且a≠1)。
1)ax的前面系数为1,2)自变量x在指数位置,3)a>0且a≠1
2、问题1中(4)y=(-3)x的判定,引出问题1:即指数函数的概念中为什么要规定a>0且a≠1
1)a<0时,y=(-3)x对于x=1/2,1/4,……(-3)x无意义。
2)a=0时,x>0时,ax=0;x≤0时无意义。
3)a=1时,ax=1x=1是常量,没有研究的必要。
设计意图:通过问题1对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时也为后面研究函数的图像和性质埋下伏笔。
落实掌握:1)若函数y=(ax-3a+3)ax是指数函数,求a值。
2)指数函数f(x)=ax(a>0且a≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。——待定系数法求指数函数解析式(只需一个方程)。
(三)深入研究图像,加深理解性质
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了两个环节。
第一环节:分三步
(1)让学生作图(2)观察图像,发现指数函数的性质(3)归纳整理
学生课前准备:利用描点法作函数y=2x,y=3x,以及y=(1/2)x、y=(1/3)x的图像。
设计意图:(1)观察总结a>1,0
(2)观察y=2x与y=2-x,y=3x与y=3-x图像关于y轴对称。
(3)在第一象限指数函数的图像满足“底大图高。
(4)经过(0,1)点图像位置变化。
变式:去掉底数换成字母,根据图像比较底数的大小。
方法提炼:①用上面得到的规律;
②作直线x=1与指数函数图像相交的纵坐标,即为底数。
第二环节:
利用多媒体教学手段,通过几何画板演示底数a取不同的值时,让学生观察函数图像的变化特征,归纳总结:y=ax的图像与性质
以y=2x为例,让学生用单调性的定义加以证明;
设计意图:(1)让学生由初中的“看图说话”的水平,提升到高中的严格推理的层面上来。
(2)学习用做商法比较大小。
4、奇偶性:不具备
5、对称性:y=ax不具备,但底数互为倒数的两个指数函数图像关于y轴对称。从形式上可变为y=ax与y=a-x
总结:两个函数y=f(x),y=f(-x)关于y轴对称。
6、交点:(1)与y轴交于一点(0,1)(2)与x轴无交点(x轴为其渐近线)
7、当x>0时,y>1;当x<0时,0 8、y=ax(a>0且a≠1)在第一象限图像“底大图高”(直线x=1辅助) 难点突破:通过数形结合,利用几个底数特殊的指数函数的图像将本节课难点突破。 为帮助学生记忆,教师用一句精彩的口诀结束性质的探究: 左右无限上冲天,永与横轴不沾边。 大1增,小1减,图像恒过(0,1)点。 (四)强化训练落实掌握 例1:学习了指数函数的概念,探究出它的性质以后,再回应本节课开头的问题,解决引例问题。 例2:比较下列各题中两值的大小 (1)(4/3)-0.23与(4/3)-0.25;(2)(0.8)2.5与(0.8)3。 方法指导:同底指数不同,构造指数函数,利用函数单调性 (3)与;(4)与 方法指导:不同底但可化同底,也化归为第一类型利用单调性解决。 (5)(3/4)2/3与(5/6)2/3;(6)(-2.1)3/7与(-2.2)3/7 方法指导:底不同但指数相同,结合函数图像进行比较,利用底大圈高。(6)“-”是学生的易错易混点。 (7)(0.3)-3与(2.3)2/3;(8)1.70.3与0.93.1。 方法指导:底不同,指数也不同,可采用①估算(与常见数值比较如(8))②中间量如(7)(10/3)3〔(10/3)2/3或(2.3)3〕(2.3)2/3。 变式:已知下列不等式,比较的大小: (l) (2) (3)(且) (4) 设计意图:(1)、(2)对指数函数单调性的应用(逆用单调性),(3)建立学生分类讨论的思想。(4)培养学生灵活运用图像的能力。 (五)归纳总结,拓展深化 请学生从知识和方法上谈谈对这一节课的认识与收获。 1、知识上:学习了指数函数的定义、图像和性质以及应用。关键要抓住底数a>1和1>a>0时函数图像的不同特征和性质是学好本节的关键。 2、方法上:经历从特殊→一般→特殊的认知过程,从观察中获得知识,同时了解指数函数的实际背景和和研究函数的基本方法;体会分类讨论思想、数形结合思想。 (六)布置作业,延伸课堂 A类:(巩固型)面向全体同学 1、完成课本P93/习题3-1A B类:(提高型)面向优秀学生 2、完成学案P1/题型1。 教学反思: 指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考: 1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节 (1)由具体的折纸的例子引出指数函数 设计意图:贴近学生的生活实际,便于动手操作与观察。 让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。 (2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。 符合学生由特殊到一般的,由具体到抽象的学习认知规律。 (3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。 通过引入->定义->剖析->辨析->运用,这个由特殊到一般的过程揭示了概念的和外延;而后在教师的点拨下,学生作图->观察->探究->交流->概括->运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。 2、课堂练习前后呼应,各有侧重,通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。 3、教学过程设计为六个环节: 1.情景设置,形成概念->2.发现问题,深化概念->3.深入探究图像,加深理解性质->4.强化训练,落实掌握->5.小结归纳,拓展深化->6.布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。 4、通过学案教学为抓手,让学生先学,老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。 5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提,在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。 尊敬的评委老师,大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。 总结语 为了更好的呈现我的教学思路,我将以教什么、怎么教以及为什么这么教为思路,具体从教材分析、教学目标分析、学情分析、教法、学法以及教学过程等几个方面展开我的说课。 教材分析 教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。 学情分析 新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。 教学目标 教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下: 知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。 过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。 情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。 而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。 教学教法 正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。 教学过程 以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。 首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。 其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。 接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。 板书设计 当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。 高中数学《指数函数》说课稿 一、说教材分析 1、《指数函数》在教材中的地位、作用和特点 《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2、说教学目标、重点和难点 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度: 对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度: 学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。 素质维度: 由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 教学目标、教学重点和难点如下: (1)知识目标: ①掌握指数函数的概念; ②掌握指数函数的图象和性质; ③能初步利用指数函数的概念解决实际问题; (2)技能目标: ①渗透数形结合的基本数学思想方法; ②培养学生观察、联想、类比、猜测、归纳的能力; (3)情感目标: ①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题; ②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力; ③领会数学科学的应用价值。 (4)教学重点: 指数函数的图象和性质。 (5)教学难点: 指数函数的图象性质与底数a的关系。 突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、说教法设计 由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1、创设问题情景。 按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2、强化“指数函数”概念。 引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 3、突出图象的作用。 在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。 4、注意数学与生活和实践的联系。 数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的.拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。 三、教法与学法指导 1、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试: 1)再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 2、教法指导 1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法。 2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图) 四、说教学设计 在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。 1、创设情景、导入新课 教师活动: ①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。 ②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。 ③引导学生把对应关系概括到形式。 学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式; 设计意图: ①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备; ②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备; ③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2、启发诱导、探求新知 (1)指数函数概念的引出 教师活动: ①引导学生观察这两个函数,寻找他们的特征; ②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现; ③引导学生观察指数函数与幂函数在概念上的区别。 学生活动: ①学生独立思考并回忆指数的概念; ②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念; ③理清指数函数与幂函数在概念上的区别。 设计意图: ①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点; ②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 ③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。 (2)研究指数函数的图象 教师活动: ①给出两个简单的指数函数 和 ,并要求学生画它们的图象; ②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象; ③利用函数作图器和几何画板作图。 学生活动: ①思考画函数图象的方法有哪些? ②画出这两个简单的指数函数图象; ③让学生利用计算器或计算机来画。 设计意图: 让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。 五、说板书设计 考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,说明这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。 指数函数练习题 1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( ) A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2 解析:选D.y1=40.9=21.8,y2=80.48=21.44, y3=(12)-1.5=21.5, ∵y=2x在定义域内为增函数, 且1.8>1.5>1.44, ∴y1>y3>y2. 2.若函数f(x)=ax,x>14-a2x+2,x≤1是R上的增函数,则实数a的取值范围为( ) A.(1,+∞) B.(1,8) C.(4,8) D.[4,8) 解析:选D.因为f(x)在R上是增函数,故结合图象(图略)知a>14-a2>04-a2+2≤a,解得4≤a<8. 3.函数y=(12)1-x的单调增区间为( ) A.(-∞,+∞) B.(0,+∞) C.(1,+∞) D.(0,1) 解析:选A.设t=1-x,则y=12t,则函数t=1-x的递减区间为(-∞,+∞),即为y=121-x的递增区间. 4.已知函数y=f(x)的'定义域为(1,2),则函数y=f(2x)的定义域为________. 解析:由函数的定义,得1<2x<20<x<1.所以应填(0,1). 答案:(0,1) 1.设13<(13)b<(13)a<1,则( ) A.aa C.ab 解析:选C.由已知条件得0 ∴ab 2.若(12)2a+1<(12)3-2a,则实数a的取值范围是( ) A.(1,+∞) B.(12,+∞) C.(-∞,1) D.(-∞,12) 解析:选B.函数y=(12)x在R上为减函数, ∴2a+1>3-2a,∴a>12. 3.下列三个实数的大小关系正确的是( ) A.(1)2<212011<1 B.(12011)2<1<212011 C.1<(12011)2<212011 D.1<212011<(12011)2 解析:选B.∵12011<1,∴(12011)2<1,212011>20=1. 4.设函数f(x)=a-|x|(a>0且a≠1),f(2)=4,则( ) A.f(-1)>f(-2) B.f(1)>f(2) C.f(2)<f(-2) D.f(-3)>f(-2) 解析:选D.由f(2)=4得a-2=4,又a>0,∴a=12,f(x)=2|x|,∴函数f(x)为偶函数,在(-∞,0)上单调递减,在(0,+∞)上单调递增. 5.函数f(x)=12x+1在(-∞,+∞)上( ) A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值 解析:选A.u=2x+1为R上的增函数且u>0, ∴y=1u在(0,+∞)为减函数. 即f(x)=12x+1在(-∞,+∞)上为减函数,无最小值. 6.若x<0且ax>bx>1,则下列不等式成立的是( ) A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b 解析:选B.取x=-1,∴1a>1b>1,∴0<a<b<1. 7.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 解析:法一:∵f(x)的定义域为R,且f(x)为奇函数, ∴f(0)=0,即a-120+1=0. ∴a=12. 法二:∵f(x)为奇函数, ∴f(-x)=-f(x), 即a-12-x+1=12x+1-a,解得a=12. 答案:12 8.当x∈[-1,1]时,f(x)=3x-2的值域为________. 解析:x∈[-1,1],则13≤3x≤3,即-53≤3x-2≤1. 答案:-53,1 9.若函数f(x)=e-(x-u)2的最大值为m,且f(x)是偶函数,则m+u=________. 解析:∵f(-x)=f(x), ∴e-(x+u)2=e-(x-u)2, ∴(x+u)2=(x-u)2, ∴u=0,∴f(x)=e-x2. ∵x2≥0,∴-x2≤0,∴0<e-x2≤1, ∴m=1,∴m+u=1+0=1. 答案:1 10.讨论y=(13)x2-2x的单调性. 解:函数y=(13)x2-2x的定义域为R, 令u=x2-2x,则y=(13)u.列表如下: u=x2-2x =(x-1)2-1 y=(13)u y=(13)x2-2x x∈(-∞,1] x∈(1,∞) 由表可知,原函数在(-∞,1]上是增函数,在(1,+∞)上是减函数. 11.已知2x≤(14)x-3,求函数y=(12)x的值域. 解:由2x≤(14)x-3,得2x≤2-2x+6, ∴x≤-2x+6,∴x≤2.∴(12)x≥(12)2=14, 即y=(12)x的值域为[14,+∞). 12.已知f(x)=(12x-1+12)x. (1)求函数的定义域; (2)判断函数f(x)的奇偶性; (3)求证:f(x)>0. 解:(1)由2x-1≠0,得x≠0, ∴函数的定义域为{x|x≠0,x∈R}. (2)在定义域内任取x,则-x在定义域内, f(-x)=(12-x-1+12)(-x)=(2x1-2x+12)(-x) =-1+2x21-2xx=2x+122x-1x, 而f(x)=(12x-1+12)x=2x+122x-1x, ∴f(-x)=f(x), ∴函数f(x)为偶函数. (3)证明:当x<0时,由指数函数性质知, 0<2x<1,-1<2x-1<0, ∴12x-1<-1, ∴12x-1+12<-12. 又x<0,∴f(x)=(12x-1+12)x>0. 由f(x)为偶函数,当x>0时,f(x)>0. 综上,当x∈R,且x≠0时,函数f(x)>0. 指数函数课件 教学目标 1.使学生掌握指数函数的概念,图象和性质. (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域. (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质. (3) 能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象. 2. 通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法. 3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题. 教材分析 (1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究. (2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分. (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究. 教法建议 (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数. (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来. 关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象. 教学重点和难点 重点是理解指数函数的定义,把握图象和性质. 难点是认识底数对函数值影响的认识. 教学用具 投影仪 教学方法 启发讨论研究式 教学过程 一. 引入新课 我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数. 1.6.指数函数(板书) 这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗? 由学生回答:与之间的关系式,可以表示为. 问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系. 由学生回答:. 在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数. 一. 指数函数的概念(板书) 1.定义:形如的函数称为指数函数.(板书) 教师在给出定义之后再对定义作几点说明. 2.几点说明 (板书) (1) 关于对的规定: 教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在. 若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的.发生,所以规定且. (2)关于指数函数的定义域 (板书) 教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值. (3)关于是否是指数函数的判断(板书) 刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数. (1), (2), (3) (4), (5). 学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象. 最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质. 3.归纳性质 作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答. 函数 1.定义域 : 2.值域: 3.奇偶性 :既不是奇函数也不是偶函数 4.截距:在轴上没有,在轴上为1. 对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.) 在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少. 此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线. 二.图象与性质(板书) 1.图象的画法:性质指导下的列表描点法. 2.草图: 当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例. 此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象. 最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性) 由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下: 以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满. 填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质. 3.性质. (1)无论为何值,指数函数都有定义域为,值域为,都过点. (2)时,在定义域内为增函数,时,为减函数. (3)时,, 时,. 总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质. 三.简单应用 (板书) 1.利用指数函数单调性比大小. (板书) 一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题. 例1. 比较下列各组数的大小 (1)与; (2)与; (3)与1 .(板书) 首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程. 解:在上是增函数,且 <.(板书) 教师最后再强调过程必须写清三句话: (1) 构造函数并指明函数的单调区间及相应的单调性. (2) 自变量的大小比较. (3) 函数值的大小比较. 后两个题的过程略.要求学生仿照第(1)题叙述过程. 例2.比较下列各组数的大小 (1)与; (2)与 ; (3)与.(板书) 先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用) 最后由学生说出>1,<1,>. 解决后由教师小结比较大小的方法 (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的) (2) 搭桥比较法: 用特殊的数1或0. 三.巩固练习 练习:比较下列各组数的大小(板书) (1)与 (2)与; (3)与; (4)与.解答过程略 四.小结 1.指数函数的概念 2.指数函数的图象和性质 3.简单应用 一、说教材 1、《指数函数》在教材中的地位、作用和特点 今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2、教学目标、重点和难点 通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 (1)教学目标 知识目标: ①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系; ②掌握指数函数的概念; ③掌握指数函数的图象和性质; 能力目标: ①渗透数形结合的基本数学思想方法; ②培养学生观察、联想、类比、猜测、归纳的能力; 情感目标: ①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题; ②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力; (2)教学重点和难点 教学重点:指数函数的图象和性质。 教学难点:指数函数的图象性质与底数a的'关系。 (3)教学关键: 从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法与学法指导 1、学法指导 由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试: (1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。 (2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。 (3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 (4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 2、教法选择 (1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法。 (2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图) 三、教学设计 在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。 1、创设情景、导入新课 教师活动: ①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。 ②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。 ③引导学生把对应关系概括到形式。 学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式; 设计意图: ①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备; ②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备; ③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2、启发诱导、探求新知 (1)指数函数概念的引出 教师活动: ①引导学生观察这两个函数,寻找他们的特征。 ②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现。 ③引导学生观察指数函数与幂函数在概念上的区别。 学生活动: ①学生独立思考并回忆指数的概念; ②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念; ③理清指数函数与幂函数在概念上的区别。 设计意图: ①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点; ②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。 ③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。 (2)研究指数函数的图象 教师活动: ①给出两个简单的指数函数,并要求学生画它们的图象。 ②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象。 ③利用函数作图器和几何画板作图。 学生活动: ①思考画函数图象的方法有哪些? ②画出这两个简单的指数函数图象。 ③让学生利用计算器或计算机来画。 设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。 四、板书设计 考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书, 说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。 《指数函数及其性质》教案 邓城篇11:《指数函数》说课稿
篇12:《指数函数》说课稿
篇13:指数函数练习题
篇14:指数函数课件
篇15:《指数函数》说课稿
篇16:《指数函数及其性质》教案 邓城










