第四章股票估值习题*

计算题:

《公司理财》第二版课后* 4 股票估值

1.解答:

(1)r=d!/p+g=2/22.5+10%=18.89%

(2)57.28%

10%1721

=−=−=grdp>22.5因为该股票的价格低于投资者的预期价值,所以该投资者会购买

2.解答:

(1)r=r!+β×!−r!=12%+1.65×.6%−12%=17.94%

(2)p=8.5/(17.94%-5%)=65.69

3.解答:

p0=eps/r=5/16%=31.25

npv=-5×65%+5×65%×0.2/0.16=0.8125

pvgo=0.8125/(16%-65%×20%)=27.08

p=p0+pvgo=31.25+27.08=58.33

利用股利增长模型验证:

p=5×35%/(16%-65%×20%)=58.33

4.解答:43=(48+2.84)/(1+r),推出r=18.23%

5.解答:

(1)r=3.6/33=10.91%

(2)p=3.6/10%=36

(3)因为该优先股价值被低估了,所以投资者应该购买优先股。

6.解答:50×(1+15%)-6=51.5

7.解答:

(1)p1(公司债)=1000×0.27+130×5.216=270+678.08=948.08948.08/1100=86%

p2(优先股)=13/15%=86.67

86.67/90=96.3%

p3(普通股)=2×(1+7.18%)/(20%-7.18%)=2.1436/12.82%=16.7216.72/20=83.6%其中股利增长率:3(1+g)^10=6得到g=7.18%

(2)由于三种证券的价值均小于价格,所以均不应该购买(3)p1=10000×0.322+130×5.65=322+734.5=1056.5

1056.5/1100=96%

p2=13/14%=92.8692.86/90=103%p3=2×(1+7.18%)/(18%-7.18%)=2.1436/10.82%=19.81

19.81/20=99%此时只有第二种证券被低估,因此应该购买第二种证券

8.解答:

(1)23.5=1.32×(1+8%)/((r-8%)得到r=14%

(2)p=1.32×(1+8%)/((10.5%-8%)=57.024>23.5

(3)因为该股票价值被低估了,所以可以购买。

9.解答:

(1)p1=eps/r=6/20%=30

(2)p2=dv1/(r-g)=6×70%/(20%-18%×30%)=28.77

(3)p3=dv1/(r-g)=6×40%/(20%-18%×60%)=26.09

(4)p4=dv1/(r-g)=6×0%/(20%-18%×100%)=0

以上表明如果资本在公司内部的收益率低于股东自己投资的收益率,不如把资本还给股东,表现在股票的价格上为,留存比越高,该股票的价格越低。

10.解答:

dv1=2.5×(1+5%)=2.625

dv2=2.625×(1+5%)=2.756

dv3=2.756×(1+5%)=2.894

dv4=2.894×(1+10%)=3.183

dv5=3.183×(1+10%)=3.501

11.解答:

  r=d!/p+g=1×(1+10%)/20+10%=15.5%

一年以后公司股价p=20×(1+15.5%)-1.1=22

12.解答:r=r!+β×!−r!=6%+1.2×5%=12%

p=2×(1+10%)/(1+12%)+2×(1+10%)^2/(1+12%)^2+2×(1+10%)^2×(1+7%)/(12%-7%)(1+12%)^2=45.18

13.解答:80=4×(1+g)/(14%-g)得出g=8.57%

14.解答:r=r!+β×!−r!=5.6%+0.9×6%=11%

25=2×(1+g)/(11%-g)得出g=2.78%

p=2×(1+2.78%)^4/(11%-2.78%)=27.15

15.解答:

r1=d/p1=8/60=13.3%

r2=d/p2=8/80=10%

r3=d/p3=8/100=8%

r4=d/p4=8/120=6.67%

16.解答:p=d×(1+g)/(r-g)=5×(1-5%)/(12%+5%)=27.94

17.解答:r!=r!+β!×r!−r!=9%+0.4×(13%−9%)=10.6%

r!=r!+β!×!−r!=9%−0.5×(13%−9%)=7%

pa=d×(1+g)/(r-g)=1.5×(1+4%)/(10.6%-4%)=23.64现在a的股价被高估

电机学第四版课后*2

第一章

本*由大学生必备网dxsbb免费提供

磁路电机学

1-1磁路的磁阻如何计算?磁阻的单位是什么?

答:磁路的磁阻与磁路的几何形状(长度、面积)和材料的导磁*能有关,计算公式为

rm

l

,单位:

a

1-2铁心中的磁滞损耗和涡流损耗是怎样产生的,它们各与哪些因素有关?

答:磁滞损耗:铁磁材料置于交变磁场中,被反复交变磁化,磁畴间相互摩擦引起的损

n

耗。经验公式phchfbmv。与铁磁材料的磁滞损耗系数、磁场交变的频率、铁心的

体积及磁化强度有关;

涡流损耗:交变的磁场产生交变的电场,在铁心中形成环流(涡流),通过电阻产生的

2损耗。经验公式phcfef1.3bmg。与材料的铁心损耗系数、频率、磁通及铁心重量有

关。

1-3图示铁心线圈,已知线圈的匝数n=1000,铁心厚度为0.025m(铁心由0.35mm的dr320

硅钢片叠成),叠片系数(即截面中铁的面积与总面积之比)为0.93,不计漏磁,试计

算:(1)中间心柱的磁通为7.5104wb,不计铁心的磁位降时所需的直流励磁电流;(2)考虑铁心磁位降时,产生同样的磁通量时所需的励磁电流。解:磁路左右对称可以从中间轴线分开,只考虑右半磁路的情况:铁心、气隙截面aa0.0251.251020.93m22.9104m2

(考虑边缘效应时,通长在气隙截面边长上加一个气隙的长度;气隙截面可以不乘系数)气隙长度l25104m铁心长度l

7.5

1.25251.250.0252cm12.45102m2

7.5104

t1.29t铁心、气隙中的磁感应强度bb42a22.910

(1)不计铁心中的磁位降:气隙磁场强度h

b

0

1.29

m1.0106m7

410

磁势fifhl1.01065104a500a电流i

fi

0.5an

(2)考虑铁心中的磁位降:

铁心中b1.29t查表可知:h700m

铁心磁位降ffehl70012.45102a87.15afifffe500a87.15a587.15ai

fi

0.59an

1-4图示铁心线圈,线圈a为100匝,通入电流1.5a,线圈b为50匝,通入电流1a,铁

心截面积均匀,求pq两点间的磁位降。

解:由题意可知,材料的磁阻与长度成正比,设pq段的磁阻为rpqrm,则左边支路的磁阻为

11

rm:3f1f2



rmrm

3

fpqf1

1111

rm150100a71.43a314

1-5图示铸钢铁心,尺寸为

左边线圈通入电流产生磁动势1500a。试求下列三种情况下右边线圈应加的磁动势值:

(1)气隙磁通为1.65104wb时;(2)气隙磁通为零时;

(3)右边心柱中的磁通为零时。解:(1)af

edfe1.65104wb

1.65104

t0.66tbafbed

2.5104

查磁化曲线得hafhed500m

1.651043

m477.7110m气隙中的磁场强度h74

4102.7510

中间磁路的磁势fad477.711032.510350020102a

1294.28a

.28a205.72a左边磁路的磁势fdcba15001294

hdcba

fdcba205.72m411.44mldcba0.5

查磁化曲线得bdcba0.56t

dcba0.564104wb2.24104wbaghd2.241.65104wb0.59104wb

baghd

0.59104t0.12t4

510

查磁化曲线得haghd80m

faghd800.75a60a

右边线圈应加磁动势f2fadfaghd1294.2860a1234.28a

(2)fad0hdcba

f1

ldcba

1500

m300m0.5

查磁化曲线得bdcba1.5t

dcba1.54104wb6104wbaghddcba6104wb

baghd

6104t1.2t4510

查磁化曲线得haghd1270m

faghd12700.75a952a

右边线圈应加磁动势f2faghd12700.75a952a

(3)由题意得addcba

由(1)、(2)可知1.65104wbad2.24104wb取ad1.75104wb

1.75104

t0.7t则bafbed4

2.510

查磁化曲线得hafhed550m

1.75104

am506.7103am气隙中的磁场强度h74

4102.7510

中间磁路的磁势fad506.71032.510355020102a

1376.8a

4dcbaad1.7510wbb1.75104dcba

4104

t0.4t

查磁化曲线得hdcba310m

fdcba3100.5a155a

ffadfdcba155a1376.8a1531aff1,假设合理

右边线圈应加磁动势f2fad1376

.8a

已知f11500a

第二章变压器

2-1什么叫变压器的主磁通,什么叫漏磁通?空载和负载时,主磁通的大小取决于哪些因

素?

答:变压器工作过程中,与原、副边同时交链的磁通叫主磁通,只与原边或副边绕组交链的磁通叫漏磁通。

由感应电动势公式e14.44fn1可知,空载或负载情况下u1e1,主磁通的大小取决于外加电压u1、频率f和绕组匝数n1。

2-2一台50hz的变压器接到60hz的电源上运行时,若额定电压不变,问激磁电流、铁耗、

漏抗会怎样变化

答:(1)额定电压不变,则u1ne14.44fn14.44f'n1'

'50f'60'

又,即56磁通降低,此时可认为磁路为线*的,磁阻

60f50rm

l'

不变,励磁磁势imn1rm,im6im;s



(2)铁耗:pfebmf,铁耗稍有减小;

''

(3)x12fl1

66''x1,x22flx2255

2-3在导出变压器的等效电路时,为什么要进行归算?归算是在什么条件下进行的?答:因为变压器原、副边只有磁的联系,没有电的联系,两边电压e1e2、电流不匹配,必须通过归算,才能得到两边直接连接的等效电路;

归算原则:保持归算前后副边的磁动势不变。

2-4利用t型等效电路进行实际问题计算时,算出的一次和二次侧电压、电流和损耗、功率

是否为实际值,为什么?

答:一次侧没有经过归算,所以为实际值;

二次侧电压、电流不是实际值,因为归算前后绕组匝数不同,但损耗、功率为实际

值。

2-5变压器的激磁阻抗和等效漏阻抗如何测定?

答:激磁阻抗由空载试验测量;等效漏阻抗由短路试验测量。(具体测量方法略)

2-14有一台三相变压器,额定容量sn5000kka,额定电压u1n2n10kv6.3kv,

y,d联结,试求:(1)一次、二次侧的额定电流;(2)一次、二次侧的额定相电压和相

电流。

解:(1)i1n

sn5000

a288.68a3u1n310sn5000

a458.21a3u2n36.3

u1n10

kv5.77kvi2n

(2)原边y联结:u1n

i1ni1n288.68a副边联结:u1nu1n6.3kvi1n

i1n458.21a264.55a32-16有一台单相变压器,已知参数为:r12.19,x115.4,r20.15,

x20.964,rm1250,xm12600,n1n2260。当二次侧电压

u26000v,电流i2180a,且cos20.8(滞后)时:(1)画出归算到高压侧

的t型等效电路;(2)用t型等效电路和简化等效电路求u1和i1,并比较其结果。解:(1)归算到高压侧:

r12.19x115.4rm1250xm12600

i'

i''

876'

r2k2r20.151.70

260

x

'

2

2

'

zl

kx2

2

8760.96410.94260

2

(2)t型等效电路如图示:

0v设u2ku220215

则i2ik53.4236.88a

'

e1e2u2i2z2

'

'

'

'

'

202150v53.4236.88a1.70j10.9420642.41.15v

im

e1zm

20642.41.15v1.6383.18a1250j12600

i1imi21.6383.18a53.4236.88a54.5638.12a

''.42.70vu1e1i1z121279

简化等效电路如右图:

'

'

rkr1r3.89

'

xkx1x226.34

'

'

2

'

zl

i1i253.4236.88au1u2i1zk21254.02.80v

由于在满载的情况下imi1,励磁支路可以忽落不计,所以两种方法计算的结果相差不大,在误差允许的范围之内。

2-17在图中,各铅垂线上对应的高、低压绕组绕于同一铁心柱上。已知a、b、c为正相序,

试判断联结组a和b的组号。



ee

eby

eab

eb

ebc

eab

eb

ebc

cx

eab

ea

cy

ececa

a

ay

c

bx

eab

az

ececa

c

bz

由图可以看出两组均为y,d7

2-19有一台1000kva,10kv/6.3kv的单相变压器,额定电压下的空载损耗为4900w,空载

电流为0.05(标幺值),额定电流下75c时的短路损耗为14000w,短路电压为5.2%(百分值)。设归算后一次和二次绕组的电阻相等,漏抗亦相等,试计算:(1)归算到一次侧时t型等效电路的参数;(2)用标幺值表示时近似等效电路的参数;(3)负载功率因数为0.8(滞后)时,变压器的额定电压调整率和额定效率;(4)变压器的最大效率,发生最大效率时负载的大小(cos20.8)。解:(1)归算到一次侧等效电路的参数:

i2n0.5空载试验在低压侧进行u0u2n6300v,i0i0

1000

a7.94a6.3

p104900

折算到高压侧:rmk2019622

i06.37.94

2

zm

1063002u0

k2000

i06.37.94

2

zmrm2000219621990.4

2

2

xm

短路试验在高压侧进行ukuk%u1n5.2%10kv520viki1n

sn1000

a100au1n10

所以:rk75c

pk75cik2

14000

1.41002

zk

uk520

5.2ik100

xk即:r1r

'2

zkrk75c5.221.425.0

rk75c2

'

0.70,x1x2

2

2

xk

2.52

(2)标幺值:

u1nu12n

高压侧的电阻基准值zb100

i1ns1n

rm

xrm

1.96,xmm19.9

zbzb

rk

rkx

0.014,xkk0.05zbzb

(3)变压器额定电压调整率和额定效率:

unirkcos2xksin2100%



1(0.0140.80.050.6)100%4.12%

0kn1ppp100%97.69%

n0

pp

(4)变压器效率最大时,可变损耗等于不变损耗

i

p049000.5916pk14000

p0ipkn

197.97%

snicos2p0ipkn

最大效率:max

2-20有一台三相变压器,sn5600kka,u1n2n10kv6.3kv,y,d11联结组。变

压器的开路及短路试验数据为

(2)满载且cos20.8(滞后)时,二次侧电压u2和一次侧电流i1;(3)满载且

cos20.8(滞后)时的额定电压调整率和额定效率。

解:(1)归算到一次侧时近似等效电路的参数k

空载试验在低压侧,折算到高压侧:

u1nphu2nph

103

0.9166.3

p0

rmk

2

i0ph

0.91622

37.6800

2

104.19

zmk

2

u06300

0.91621237.26i07.42

xm

2zmrm.262104.1921232.8

短路试验在高压侧进行

所以:rk

pk318000

0.0582

ikph33232

234.575

rk0.069

234.525

rk75c

ukph553

zk0.9831

ikph323

xk

zkrk75c0.981

2

2

标幺值:高压侧的电阻基准值z1n

u1nphi1nph

u12nphs1n17.857

rm

rmx

5.84,xmm69.10z1nz1n

rk

rkx

0.00325,xkk0.0549z1nz1n

(3)电压调整率和效率:



uninrkcos2xksin2100%



1(0.003250.80.05490.6)100%0.036

0kn1scospp100%99.45%

n20

pp

(2)u2u2ph1un630010.036v6073.2v满载时i1i1n

sn5600

a323.32a3u1n10

'2

设u26073.20v,则由简化等效电路可知i1i323.3236.88v

2-23某变电所有两台组号为y,yn0的三相变压器并联运行,其数据为

第一台:sn180kka,u1n2n6.3kv0.4kv,zk0.07;第二台:sn320kka,u1n2n6.3kv.4kv,zk0.065。

试计算:(1)当总负载为400kva时,每台变压器分担多少负载;(2)在每台变压器均不过载的情况下,并联组的最大输出是多少?解:(1)当s400kka时,

设第一台变压器分配负载为sⅠ,则第二台变压器的负载sⅡ400sⅠ,满足:

*

sⅠ137kvasⅠsⅠnzk

*Ⅱ,带入数值计算可得:

sⅡsⅡnzkⅠsⅡ263kva

(2)求smax:负载增加时,zk小的变压器(第二台)先满载,此时sⅡsⅡn320kva

*

sⅠsⅠnzk又*ⅡsⅠ167.1kva

1zkⅠ

smaxsⅠsⅡn320167.1kva487.1kva

2-25一台5kva,480v/120v的普通两绕组变压器,改接成600v/480v的自耦变压器,试

求改接后一次和二次的额定电流和变压器的容量。解:i1ani2n

s

n41.67au2n

u1anu1nu2n

sanu1ani1an60041.67va25kvai2an

san25103a52.08au2an480

anu1n

第三章直流电机的稳态分析

3-9一台四极82kw、230v、970r/min的他励直流发电机,电枢上共有123个元件,每元件为一匝,支路数2a2。如果每极的合成磁通等于空载额定转速下具有额定电压时每极的磁通,试计算当电机输出额定电流时的电磁转矩。解:由题意可知,空载时:e0cennun

所以额定情况下:tectianct

unup

inctnncenncennun

pn82103

9.559.55nm807.3nm

nn970

3-12一台他励直流发电机的额定电压为230v,额定电流为10a,额定转速为1000r/min,电枢总电阻ra1.5,励磁绕组电阻rf88,已知在750r/min时的空载特*如下表所示:

空载电压为多少?(3)满载时的电磁功率为多少?解:(1)空载时u0ecen

if2.5a时:n750r/min,对应un176v当nn1000r/min,对应u0n

(2)n=900r/min时:u0

nn1000

un176v234.67vn750

900

176v211.2v750

(3)满载情况下:

eanuninra230v101.5v245vpw2.45kwemeanin24510

3-13一台四极82kw、230v、970r/min的并励直流发电机,ra(75)0.0259,励磁绕组总电阻rf(75)22.8,额定负载时并励回路中串入3.5Ω的调节电阻,电刷压降为2v,

铁耗和机械损耗共2.5kw,杂散损耗为额定功率的0.5%,试求额定负载时发电机的输入功率、电磁功率和效率。解:电磁功率:ifn

un230pn82000

,a8.745aia356.52an'

un230rfrf22.83.5

ianifnin256.52a8.745a365.267a

eanunianr2u230356.520.02592v241.46vp.267241.46w88.198kwemeanian365

输入功率:p1pempfepmecp

88.1982.5820.5%kw91.108kw

效率:

pn82

100%100%90%p91.1081

3-17一台17kw、220v的串励直流电动机,串励绕组电阻为0.12Ω,电枢总电阻为0.2Ω,

在额定电压下电动机电枢电流为65a时,转速为670r/min,试确定电枢电流增为75a时电动机的转速和电磁转矩(磁路设为线*)。解:un220v:ia65a时,转速n670rmin

eauniararf220v65(0.120.2)v199.2v

'''

uniararf220v75(0.120.2)v196via75a时:ea''

eaeace19665

nn670rmin571.3rmin

ce'eace'199.275

'

''eaia19675

60nm245.71nmt'2571.3

'

e





3-18一台96kw的并励直流电动机,额定电压为440v,额定电流为255a,额定励磁电流为5a,额定转速为500r/min,电枢总电阻为0.078Ω,不计电枢反应,试求(1)电动机的额定输出转矩;(2)额定电流时的电磁转矩;(3)电动机的空载转速。解:(1)电动机的额定输出转矩:

t2

pn9600060nm1833.46nm2500

(2)额定电流时的电磁转矩

in255a,ifn5a,所以ianinifn250a

eanunianra440v250a0.078420.5v

te

pemeanian420.5250

60nm2007.74nm2500ean

n

(3)电动机的空载转速:cen

n0

unu440

nnn500rmin523.19rmin

cenean420.5

第四章交流绕组及其电动势和磁动势

4-11计算下列三相、两极、50hz的同步发电机定子的基波绕组因数和空载相电动势、线电

动势。已知定子槽数q=48,每槽内有两根导体,支路数a=1,y1=20,绕组为双层、星形联结,基波磁通量φ1=1.11wb。解:极距

qq4824q82p2mp23

p360360

槽距角7.5

q48

q

ykp1kd1sin190

qsin2

sin

基波绕组系数kw1

sin30

sin750923

8sin3.75

每相绕组串联匝数n

空载相电动势e1

qnc48

16ma3

4.44fnkw11

44450160923111v3639v

线电动势el

e3639v6303v

7

,试求基波、5次、7次和一阶9

4-12有一三相双层绕组,q=36,2p=4,f=50hz,y1

齿谐波的绕组因数。若绕组为星形联结,每个线圈有两匝,基波磁通φ1=0.74wb,谐波磁场与基波磁场之比,b5b125,b7b149每相只有一条支路,试求基波、5次和7次谐波的相电动势。解:q

q36

32mp34

p3602360

槽距角20

q36

基波绕组系数kw1

q

y1sin30sin70kp1kd1sin900902

3sin10qsin2

sin

5次谐波绕组系数

kw5kp5kd5

qsin5ysin5190

qsin52

sin7

sin150

sin35000378

3sin50

7次谐波绕组系数

kw7kp7kd7

q

y1sin210sin790sin4900136

3sin70qsin72

qnc236

24ma3

每相绕组串联匝数n

e14.44f1nkw114.4450240.9020.74v3556v

e54.44f5nkw5b55l4.44550240.0378e7

11

0.745.96v25511

4.44f7nkw7b77l4.44750240.1360.7410.94v

497

4-19试求题4-11中的发电机通有额定电流,一相和三相绕组所产生的基波磁动势幅值。发

电机的容量为12000kw,,额定电压(线电压)为6.3kv,星形联结。

pn12000103解:iila1374.6a3

uncosn6.3100.8

相磁动势幅值f10.9三相磁动势幅值f1

nkw1

i18271ap

m1

f11.518271a27407a2

4-21试分析下列情况下是否会产生旋转磁动势,转向怎样?(1)对称两相绕组内通以对称

两相正序电流时;(2)三相绕组一相(例如c相)断线时。解:(1)设iaimcost,则ibimcos(t90)fa1f1cosxcost

fb1f1cos(x90)cos(t90)

所以合成磁势

f1fa1fb1f1cosxcostf1cos(x90)cos(t90)

1

f1[cos(tx)cos(tx)]21

f1[cos(tx)cos(tx180)]2

f1cos(tx)

即合成磁势为正向旋转的圆形磁势,且幅值等于为单相基波(2)c相断线的情况下ic0

设iaimcost,则ibimcostfa1f1cosxcost

fb1f1cos(x120)cost

所以合成磁势

f1fa1fb1f1cosxcostf1cos(x120)costf1cost[cosxcos(x120)]f1costcos(x30)

即合成磁势为脉振磁势,且幅值为单相基波幅值的倍。

4-25两个绕组a和b,其匝数和绕组因数均相同,a在空间超前于b90+α电角,若

iaimcost,问要使a和b的基波合成磁动势成为正向推移(从a到b)的恒幅

旋转磁动势时,ib的表达式应是怎样的?解:设ibimcos(t)

a相:iaimcostfa1f1cosxcostb相:ibimcos(t)所以

fb1f1cos(x90)cos(t)

f1fa1fb1f1cosxcostf1cos(x90)cos(t)1

f1[cos(tx)cos(tx)]21

f1[cos(tx90)cos(tx90)]2

逆向旋转波相互抵消,则

cos(tx)cos(tx90)cos(tx90)

90

此时ibimcos[t(90)]

f1

1

f1[cos(tx)cos(tx2)]2

补充题:解析法*三相绕组通以负序电流时将形成反向推移的旋转磁动势*:

ia2icost

fa1f1cosxcost

fc1f1cos(x240)cos(t120)

ib2icos(t240)fb1f1cos(x120)cos(t240)ic2icos(t120)

所以f1fa1fb1fc1

f1cosxcostf1cos(x120)cos(t240)f1cos(x240)cos(t120)

11

f1[cos(tx)cos(tx)]f1[cos(tx120)cos(tx360)]22

1

f1[cos(tx120)cos(tx360)]23

f1cos(tx)2

幅值点cos(tx)1即tx0

dx

即该磁动势为反向推移的圆形旋转磁动势dt

4-11计算下列三相、两极、50hz的同步发电机定子的基波绕组因数和空载相电动势、线电动势。已知定子槽数q=48,每槽内有两根导体,支路数a=1,y1=20,绕组为双层、星形联结,基波磁通量φ1=1.11wb。解:极距

qq4824q82p2mp23

p360360

槽距角7.5

q48

基波绕组系数kw1

q

ykp1kd1sin190

qsin2

sin

sin30

sin750923

8sin3.75

每相绕组串联匝数n

qnc48

16ma3

空载相电动势e14.44fnkw11

44450160923111v3639v

线电动势el

4-12有一三相双层绕组,q=36,2p=4,f=50hz,y1

e3639v6303v

7

,试求基波、5次、7次和一阶9

齿谐波的绕组因数。若绕组为星形联结,每个线圈有两匝,基波磁通φ1=0.74wb,谐波磁场与基波磁场之比b5b125,b7b149,每相只有一条支路,试求基波、5次和7次谐波的相电动势。解:q

q36

32mp34

p3602360

槽距角20

q36

q

y1sin30kp1kd1sin90sin700902

3sin10qsin2

sin

基波绕组系数kw1

5次谐波绕组系数

kw5kp5kd5

qsin5ysin5190

qsin52

sin7

sin150

sin35000378

3sin50

7次谐波绕组系数

kw7kp7kd7

q

y1sin210sin790sin4900136

3sin70qsin72

每相绕组串联匝数n

qnc236

24ma3

e14.44f1nkw114.4450240.9020.74v3556v

e54.44f5nkw5b55l4.44550240.0378e7

11

0.745.96v25511

4.44f7nkw7b77l4.44750240.1360.7410.94v

497

4-19试求题4-11中的发电机通有额定电流,一相和三相绕组所产生的基波磁动势幅值。发

电机的容量为12000kw,cosn0.8,额定电压(线电压)为6.3kv,星形联结。

pn12000103

解:iila1374.6a3

uncosn6.3100.8

相磁动势幅值f10.9三相磁动势幅值f1

nkw1

i18271ap

m1

f11.518271a27407a2

4-21试分析下列情况下是否会产生旋转磁动势,转向怎样?(1)对称两相绕组内通以对称

两相正序电流时;(2)三相绕组一相(例如c相)断线时。解:(1)设iaimcost,则ibimcos(t90)fa1f1cosxcost

fb1f1cos(x90)cos(t90)

所以合成磁势

f1fa1fb1f1cosxcostf1cos(x

1

f1[cos(tx)cos(tx)]21

f1[cos(tx)cos(tx180)]2

a

f1cos(tx)

即合成磁势为正向旋转的圆形磁势,且幅值等于为单相基波(2)c相断线的情况下ic0

设iaimcost,则ibimcost

fa1f1cosxcost

fb1f1cos(x120)cost

所以合成磁势

f1fa1fb1f1cosxcostf1cos(x120)costf1cost[cosxcos(x120)]f1costcos(x30)

即合成磁势为脉振磁势,且幅值为单相基波幅值的倍。

4-25两个绕组a和b,其匝数和绕组因数均相同,a在空间超前于b90+α电角,若

iaimcost,问要使a和b的基波合成磁动势成为正向推移(从a到b)的恒幅

旋转磁动势时,ib的表达式应是怎样的?解:设ibimcos(t)

a相:iaimcostfa1f1cosxcostb相:ibimcos(t)所以

fb1f1cos(x90)cos(t)

f1fa1fb1f1cosxcostf1cos(x90)cos(t)1

f1[cos(tx)cos(tx)]21

f1[cos(tx90)cos(tx90)]2

逆向旋转波相互抵消,则

cos(tx)cos(tx90)cos(tx90)

90

此时ibimcos[t(90)]

f1

1

f1[cos(tx)cos(tx2)]2

补充题:解析法*三相绕组通以负序电流时将形成反向推移的旋转磁动势*:

ia2icost

fa1f1cosxcost

fc1f1cos(x240)cos(t120)

ib2icos(t240)fb1f1cos(x120)cos(t240)ic2icos(t120)

所以f1fa1fb1fc1

f1cosxcostf1cos(x120)cos(t240)f1cos(x240)cos(t120)

11

f1[cos(tx)cos(tx)]f1[cos(tx120)cos(tx360)]22

1

f1[cos(tx120)cos(tx360)]23

f1cos(tx)2

幅值点cos(tx)1即tx0

dx

即该磁动势为反向推移的圆形旋转磁动势dt

第五章感应电机的稳态分析

5-3三相感应电机的转速变化时,转子所生磁动势在空间的转速是否改变?为什

么?

答:不变。设气隙磁场旋转速度为n1,转子的转速为n,转差率为s

n1n

,则转子感n1

应电动势和电流的频率为f2sf1,由此电流产生的磁动势相对于转子的速度为

n

60f260f1

ssn1,则相对于定子的转速为nnn1,与转子转速无关。pp

即转速变化时,转子产生的磁动势在空间的转速不变。

5-6感应电动机等效电路中的

1s'

r2代表什么?能否不用电阻而用一个电抗去s

代替?为什么?1s'

r2代表与转子所产生的机械功率对应的等效电阻,消耗在该电阻上的功率代表答:s

总的机械功率。它不能由电抗代替,因为电抗上损耗的是滞后的无功功率,不能代替转换成机械功率的有功功率。

5-11试写出感应电动机电磁转矩的三种表达形式:(1)用电磁功率表达;(2)用总机

械功率表达;(3)用主磁通,转子电流和转子的内功率因数表达。

答:(1)用电磁功率表达

(2)用总机械功率表达

(3)用主磁通,转子电流和转子的内功率因数表达

5-13有一台y联结,380v,50hz,额定转速为1444r/min的三相绕线型感应电

动机,其参数为=0.4,=0.4,

=

=1,

=40,

略去不

计,定,转子的电压比为4。试求:(1)额定负载时的转差率;(2)额定负载时的定,转子电流;(3)额定负载时转子的频率和每相电动势值。

解:(1)额定转差率

(2)t形等效电路图如右

,则

(3)

所以(3)

5-14有一台三相四级的笼型感应电动机,额定转差率

,电动机的容

=1.74,

=17kw,

=380v(d联结),参数为=0.715,=3.03,

=6.2,

=0.416,=75,电动机的机械损耗

=139w,额定负载时的杂散损耗=320w。试求额定负载时的定子电流,

定子功率因素,电磁转矩,输出转矩和效率。

解:等效电路如题5-13,设

所以定子电流

定子功率因数

电磁功率

电磁转矩

输出功率

输出转矩

输入功率

效率

5-25试述极对数比为2:1的双速感应电动机的变极原理。(略)5-26有一台三相四极的绕线型感应电动机额定转速

电阻

,转子每相

。设负载转矩保持为额定值不变,今欲把转速从1485r/min

下调到1050r/min,问转子每相应串入多大的调速电阻?

解:额定转差率

调速后的转差率

设串入调速电阻为

所以满足

,调速前后负载转矩不变,

补充题:三相感应电动机,

负载时

=380v(d联结),

=7.5kw,

额定

求:额定情况下的,,

解:额定转差率

,和(线值)。

转子侧频率

总机械功率所以电磁功率

转子铜耗输入功率效率

定子电流

第六章同步电机的稳态分析

6-4同步发电机电枢反应的*质取决于什么?交轴和直轴电枢反应对同步发电

机的运行有何影响?

答:同步发电机电枢反应的*质取决于电枢磁动势和主磁场在空间的相对位置,即激磁电

动势

和负载电流之间的相角差。交轴电枢反应产生交轴电枢磁动势,与产生

电磁转矩及能量转换直接相关;直轴电枢反应产生直轴电枢磁动势,起到增磁或者去磁的作用,与电机的无功功率和功率因数的超前或滞后相关。

6-6为什么分析凸极同步电机时要用双反应理论?凸极同步发电机负载运行

时,若既不等于,又不等于

,问电枢磁

场的基波与电枢磁动势的基波在空间是否同相,为什么(不计磁饱和)?

答:因为凸极电机的气隙不均匀,分析时需用双反应理论。

当负载运行时,若

既不等于,又不等于

,电枢

磁场的基波与电枢磁动势的基波在空间的相位不同,因为交、直轴的磁路不同,相同大小的磁势产生的磁通不同,如右图。

6-8有一台70000kva,60000kw,13.8kv,(星形联结)的三相水轮发电机,

交直轴同步电抗的标幺值分别为激磁电动势

(不计磁饱和与定子电阻)。

试求额定负载时发电机的

解:额定功率因数

,则

6-15有一台=0.8,

的端电压和负载为试求发电机的:(1)解:(1)设

,则

(2)

,得

取cos>0则

此时:

5的凸极同步发电机与电网并联运行,已知发电机,,

(滞后),电枢电阻略去不计。

;(2)

(保持上面的值)。

6-17一台31250kva(星形联结),

网并联运行,已知发电机的同步电抗

(滞后)的汽轮发电机与无穷大电

,额定负载时的激磁电动势

(相),不计饱和与电枢电阻,试求:(1)发电机的额定负载时,

、输出的无功功率

及过载能力各为多

端电压u、电磁功率、功率角

少?(2)维持额定励磁不变,减少汽轮机的输出,使发电机输出的有功功率减少一半,问此时的、、

将变成多少?

解:(1)额定情况下忽略电阻,则电磁功率等于输出功率

设电网相电压为u为参考向量,则

,即

得方程的解

由数学和原理上讲,两组*均可以考虑(2)if不变,所以

取第一组*

,电网电压u不变

6-24某工厂电力设备的总功率为4500kw,(滞后)。由于

生产发展,欲新添一台1000kw的同步电动机,并使工厂的总功率因数提高到0.8(滞后),问此电动机的容量和功率因数应为多少(电动机的损耗忽略不计)?

解:添加前:

(滞后)

添加后:

(滞后)

(超前)

所以新添加的电动机:

答:(1)用电磁功率表达tem

pem

1

p

(2)用总机械功率表达tem

cos2(3)用主磁通,转子电流和转子的内功率因数表达temct1i2

5-13有一台y联结,380v,50hz,额定转速为1444r/min的三相绕线型感应电

''

动机,其参数为r1=0.4,r2=0.4,x1=x2=1,xm=40,rm略

去不计,定,转子的电压比为4。试求:(1)额定负载时的转差率;(2)额定负载时的定,转子电流;(3)额定负载时转子的频率和每相电动势值。

解:(1)额定转差率

sn

nsnn15001444

0.0373ns1500

(2)t形等效电路图如右

设u1

un

0219.390v,则219.390

i1a'

r'

j40(j1)jxm(2jx2)0.4j1r1jx1'

r2'j41j(xmx2)

0.0373s

u1

20.1124.20a

i2i1

'

jxm

'

r2'

j(xmx2)s

20.1124.20

a

j41(3)

0.0373

j40

18.98170.46

所以i2kii2418.98a76a(3)f2snf10.037350hz1.865hz

'r2

e

ij204.35v

s'2

'2

'

'e2

e251.09v

ke

5-14有一台三相四级的笼型感应电动机,额定转差率sn0.02008,电动机的容

量pn=17kw,u1n=380v(d联结),参数为r1=0.715,x1=1.74,

''=0.416,x2r2=3.03,rm=6.2,xm=75,电动机的机械损耗

额定负载时的杂散损耗p=320w。试求额定负载时的定子电流,p=139w,

定子功率因素,电磁转矩,输出转矩和效率。

解:等效电路如题5-13,设u1u103800v则

i1

u1

'

r2'

(rmjxmjx2)

r1jx1r2'

(rm)j(xmx2)

s

3800

j3.03)

0.715j1.74

(6.2)j(753.03)

0.0200

(6.2j75)(

a18.5726.35a

所以定子电流i118.57a定子功率因数cos1cos(26.35)0.896

'r20.416'

jx2(j3.03)imi118.574.72a'

r2'

(6.2)j(753.03)(rmjxm)(jx2)0.0200s

'

i2i1

(rmjxm)(6.2j75)

18.5716.94a'

r'

(6.2)j(753.03)(rm2)j(xmx2)0.0200s

'2

2

'r20.4162

3i319.64w17835.19w电磁功率pe

s0.02008

电磁转矩te

pe17835.19nm113.54nms260

.19139320)17018.06w输出功率p2(1s)pepp((1s)17835

输出转矩t2

p217018.06

nm110.5nm(1s)260

'22

'r2223imrm3i1r1输入功率p13i

s

(17835.1934.7226.2318.5720.715)w18989.26w

效率

p2

100%89.6%p1

5-25试述极对数比为2:1的双速感应电动机的变极原理。(略)

5-26有一台三相四极的绕线型感应电动机额定转速nn1485rmin,转子每相

电阻r20.012。设负载转矩保持为额定值不变,今欲把转速从1485r/min下调到1050r/min,问转子每相应串入多大的调速电阻?

解:额定转差率sn

n1nn15001485

0.01n11500n1n15001050

0.3n11500

调速后的转差率s

设串入调速电阻为r,调速前后负载转矩不变

所以满足

r2r2r

,

sns

s0.31)r2(1)0.0120.348sn0.01

得r(

补充题:三相感应电动机,u1n=380v(d联结),pn=7.5kw,nn960rmin额

定负载时co,pcu1474sn0.824w,pfe231w,p45w,

p37.5w

求:额定情况下的sn,f2,pcu2,和i1(线值)。

解:额定转差率sn

n1nn1000960

0.04n11000

转子侧频率f2snf10.0450hz2hz

总机械功率p.5wpnpp(75004537.5)w7582所以电磁功率pem

11

p7582.5w7898.44w1sn10.04

转子铜耗pcu2snp.44w316wem0.047898

输入功率p.44474231)w8603.44w1pempcu1pfe(7898效率

p27500

100%100%87.2%p8603.441

定子电流i1

p8603.441

a15.86a

u1cosn33800.824

第六章同步电机的稳态分析

6-4同步发电机电枢反应的*质取决于什么?交轴和直轴电枢反应对同步发电

机的运行有何影响?

答:同步发电机电枢反应的*质取决于电枢磁动势和主磁场在空间的相对位置,即激磁电

动势e0和负载电流i之间的相角差0。交轴电枢反应产生交轴电枢磁动势,与产生电磁转矩及能量转换直接相关;直轴电枢反应产生直轴电枢磁动势,起到增磁或者去磁的作用,与电机的无功功率和功率因数的超前或滞后相关。

6-6为什么分析凸极同步电机时要用双反应理论?凸极同步发电机负载运行

时,若0既不等于0,又不等于90,问电枢磁场的基波与电枢磁动势的基波在空间是否同相,为什么(不计磁饱和)?

当负载运行时,若0既不等于0,又不等于90,电枢磁场的基波与电枢磁动势的基波在空间的相位不同,因为交、直轴的磁路不同,相同大小的磁势产生的磁通不同,如右图。

fad答:因为凸极电机的气隙不均匀,分析时需用双反应理论。badaq1aq1

6-8有一台70000kva,60000kw,13.8kv,(星形联结)的三相水轮发电机,



交直轴同步电抗的标幺值分别为xd1.0,xq0.7,试求额定负载时发电机的激磁电动势e0(不计磁饱和与定子电阻)。

解:额定功率因数cosn





pn6

,n31sn7

设u10,则i131

e

q

ujixq10j310.71.48623.8



n23.8

0nn3123.854.8

e0eqid(xdxq)eqisin0(xdxq)

1.486sin54.8(1.00.7)1.731



6-15有一台xd=0.8,xq0.5的凸极同步发电机与电网并联运行,已知发电机

的端电压和负载为u1,i1,cos0.8(滞后),电枢电阻略去不计。



试求发电机的:(1)e0,n;(2)pe(max)(e0保持上面的值)。

解:(1)设u10,则i136.87





e

q

ujixq100j36.870.51.3617.1



即n17.100n36.8717.153.97

idi*sin0sin53.970

e0eqid(xdxq)1.36sin53.9700.31.603*

e0u*u*11*

sin()sin2(2)pe***

xd2xqxd

2

1.6031111

sin()sin22.00sin0.375sin20.820.50.8

*

dpe

0,得2.00cos0.75cos20令d

1.5cos22cos0.750

取cos>0则cos

2441.50.75

0.305

21.5

此时:max72.240

*pemax2sinmax0.375sin2max2.13

6-17一台31250kva(星形联结),cosn0.8(滞后)的汽轮发电机与无穷大电

网并联运行,已知发电机的同步电抗xs7.53,额定负载时的激磁电动势(1)发电机的额定负载时,e017.2kv(相),不计饱和与电枢电阻,试求:

端电压u、电磁功率pe、功率角n、输出的无功功率q2及过载能力各为多少?(2)维持额定励磁不变,减少汽轮机的输出,使发电机输出的有功功率减少一半,问此时的pe、、cos及q2将变成多少?

解:(1)额定情况下忽略电阻,则电磁功率等于输出功率

p0.8kw22500kwepnsncosn31250q2snsinn312500.6kvar18750kvar

设电网相电压为u为参考向量,则uu0,i

sn

36.8703u

e0ujixs,即e0nu00



sn

xs(90036.87)3u

snxs47062.533

ecosu0.61.7210cosu100nn3uu



sx627503esinns0.81.72103sin100nn3uu47062.51032627501032

(1.7210)u247062.510()()

uu

32

2

3

u4201.715106u261524411090

u16.12kv

得方程的解n136.6

1kp11.677sinn1

由数学和原理上讲,两组*均可以

u212.82kv

n216.53

1kp23.515sinn2

考虑kp(1.62.0)则n(3040)取第一组*(2)if不变,所以e0不变,电网电压u不变

pe'

11

pe25000kw12500kw22

'

又pem

e0v

sin'xs

pe'xs125007.53

arcsin17.34arcsin

me0u36.1217.2

'

设u6.120则e017.217.34

e0ujixs

e0u17.217.346.120

ka1.5363.52kai

jxs7.5390



pe''

sin25087kvarcoscos63.520.446q'

cos

'

'2

6-24某工厂电力设备的总功率为4500kw,cos0.7(滞后)。由于

生产发展,欲新添一台1000kw的同步电动机,并使工厂的总功率因数提高到0.8(滞后),问此电动机的容量和功率因数应为多少(电动机的损耗忽略不计)?

解:添加前:p4500kw,cos0.7(滞后)

s

p4500

kva6429kvacos0.7

kvarqssin64290.714kvar4591

添加后:p'pp)kw5500kw,cos0.8(滞后)n(45001000

'

p'5500

skva6875kva'

cos0.8

'

q's'sin'68750.6kvar4125kvar

所以新添加的电动机:

pn1000kw,qnqq466kvar(超前)sn

222pnqn0020466kva110k3va

'

cosn

pn10000.907sn1103

西师大版二上第16课《值日生》教案3

设计理念

语文课程标准大力倡导自主、合作、探究的学习方式。结合本课的训练点,通过读读、演演、议议等多种方法让学生充分学习,自主探究,理解课文内容,感悟文中包含的意蕴,激活学生言语意识,培养学生良好的语感,提高学生的人文素养。

教学目标

1认识12个生字,会写8个字,感受汉字的形体美。

2正确读写要求学会的词语,理解“神气”等词语的意思。

3了解课文内容,知道小刚脸红的原因,初步懂得当小干部是为同学服务的道理。

4正确、流利、有感情地朗读课文。

教学重点

用自己喜欢的方式学习生字新词,联系课文理解词语。

教学难点

理解小刚脸红的原因。

教学准备

教师:生字、词卡片,课文插图,课后第2题句子的投影片。

学生:生字卡片,观察、了解身边的同学是怎样当值日生的。

教学时间

1~2课时。

教学设计

一、质疑导入,激发兴趣。

1同学们,今天我们要学习16课《值日生》,板书课题,指导书写“值”。

2读了课题,你想到了什么?引导学生围绕课题进行质疑。(课文讲了谁当值日生?是怎么当的?当得好不好?也可以说说自己当值日生的感受。)

二、初读课文,学习生字。

1同桌互相用生字卡检查预习生字的情况。

2请预习认真的同学当小老师教读生字。

3用生字卡片检查全班认读生字的情况。(齐读、分组赛读、开火车读)

4交流记字的方法。

5分析字形、指导书写。

重点指导写好“司”,整个字形不要写得太长,“口”要写扁一点。

三、合作探究,感悟体会。

1默读全文,想一想课文讲了一件什么事情。

2小刚和玲玲当值日生时有什么不一样?为什么会有这样截然不同的表现呢?请同学们分组学习课文,自己去寻找*。

3教师提供学习建议:

可以读一读课文,勾画出小刚和玲玲当值日生不同表现的句子,说说自己的体会。

可以演一演小刚和玲玲当值日生的不同表现,说说自己的感受。

可以议一议小刚和玲玲当值日生的不同表现,说说产生不同表现的原因。

4学生自由分组选择自己喜欢的方式学习课文。

5全班交流。相机理解“神气”,联系课文上下文找出体现小刚神气的句子,通过表演、换词等方式理解“神气”的意思,并指导用“神气”进行说话练习。

6出示课后第二题的句子,指导朗读,让学生通过朗读体会到这四句话表达的意思一句比一句程度更深。

小刚挺着胸,昂着头,可神气了!

小刚挺着胸,昂着头,真神气!

小刚挺着胸,昂着头,十分神气!

小刚挺着胸,昂着头,神气得很!

7讨论:小刚的脸为什么红了?你觉得谁的值日生当得好?

8到底值日生要干些什么呢?齐读第一段。

9拓展:请你夸夸玲玲。你想对小刚说点什么?小刚听了大家的话会怎么想、怎么做?

四、联系实际,升华思想。

1你们平时是怎么当值日生的?夸夸咱们班上当值日生认真负责的同学。

2如果你再次当值日生会怎么做?

五、作业超市,实现拓展。(学生根据自己的情况任选一题完成)

1抄写文中自己喜欢的词句。

2用“神气”写句子。

3把课文的故事讲给家人听。

4续编故事“过了不久,又轮到小刚当值日生了……”

附板书设计:

当值日生(为同学服务)小刚玲玲神气记名字认真扫走

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。