百分数的实际应用与解决问题

教学目标与重点

《百分数应用(一)》教学设计(专业9篇)

本节课的教学目标是帮助学生在具体情境中进一步理解和应用百分数的概念,特别是“增加百分之几”和“减少百分之几”的意义。通过实际问题的计算,学生将能够解决类似于“比一个数增加百分之几的数”或“比一个数减少百分之几的数”的数学问题,从而提高他们运用数学解决现实生活中问题的能力。

教学过程设计

一、导入

在教学的开始阶段,通过引导学生讨论与时事相关的数学信息来引起他们的兴趣。例如,介绍铁路提速的例子,让学生从中提取出相关的数学信息,如速度的增加百分比。

二、过程

1. 引导学生理解问题

教师展示相关的情境图,例如原始的列车速度和提速后的高速列车速度,然后提出一个问题:“现在的高速列车每小时行驶多少千米?”学生首先要理解“速度提高了50%”的含义,并尝试用图示来帮助理解。

2. 学生探索解决方法

学生通过讨论和自主思考,提出不同的解决方案。一些学生可能选择将速度提高的部分视为原速度的百分比,然后进行计算;而另一些学生可能会直接计算现在的速度是原速度的多少百分比。

3. 学生*解答与分享

学生被鼓励*解答类似问题,并在解答后进行交流和讨论。教师巡视并提供必要的指导与帮助,确保所有学生能够理解和应用百分数的概念。

4. 进一步练习

通过选择信息并提出问题的方式,学生进一步练习他们的技能。他们可以选择教材中提供的实际生活中的百分数问题,并与同组同学分享他们的解决方案。

结语

通过这样的教学设计,学生不仅能够理解和应用百分数的基本概念,还能够在解决实际生活中的问题时灵活运用这些概念。这种教学方法不仅提高了他们的数学解决问题的能力,还培养了他们合作与交流的技能,使他们更好地理解数学在日常生活中的重要*和实用*。


《百分数》教学设计2

教学目标:使学生掌握稍复杂的求比一个数多(少)百分之几的另一个数是多少的应用题的解题方法,并能正确地解答这类应用题。

过程与方法:教学中采用迁移类推、合作交流、自主探究的方法,使学生能正确解答稍复杂的求比一个数多(少)百分之几的另一个数是多少的应用题。

情感态度价值观:培养学生的应用意识和解决简单实际问题的能力,感受数学与生活的联系。

教学重点:掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:正确、灵活地解答这类百分数应用题的实际问题。

教学过程:

一、复习导入: 为了复习前面学过的知识,出示以下复习题:

桃树的棵数是梨树的75%。

科技书的本数是连环画的50%。

全校男生的人数是女生的98%。

桃树的棵数比梨树少25%。

科技书的本数比连环画多50%。

全校男生的人数比女生少2%。

二、新授:

教学例题4: 学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书? 请小组合作,完成以下问题: (1)增加的12%是指什么?单位“1”代表什么? (2)如何建立数量关系? (3)列式计算解决问题的几种方法: 第一种:1400 + 1400 × 12% 第二种:1400 × (1 + 12%) = 1400 × 1.12 = 1568册 答:现在图书室有1568册图书。

通过这道题,你学到了什么? (求一个数的几分之几和百分之几,都要使用乘法计算。)

巩固练习:完成“做一做”的第1、2题。

三、拓展练习: 某校六(1)班有男生20人,女生比男生少10%。六(1)班一共有多少人?

四、课堂小结:

这样的教学过程希望能够帮助学生掌握百分比应用题的解题方法,提升他们的数学应用能力和解决实际问题的能力。


《百分数》教学设计3

深入解读与优化小学数学“利息与纳税”教学设计

一、 教学内容分析

本节课选自人教版小学数学六年级上册“百分数(二)”单元,内容涵盖利息计算公式的应用、利息税的计算、国债和教育储蓄的免税政策,以及不同理财方式的比较。该内容贴近学生生活实际,旨在引导学生运用已学的百分数知识解决实际问题,培养学生的数学应用意识和理财意识。

二、 教学目标分析

原教学目标设置较为清晰,但可以进一步细化和提升:

知识与技能目标:

理解利息的含义,掌握利息计算公式及其变形公式,能正确计算利息、税后利息。

了解利息税的计算方法,理解国债和教育储蓄的免税政策。

能根据实际情况选择合适的理财方式,并进行简单的比较分析。

过程与方法目标:

通过分析生活中的实际问题,经历将实际问题抽象成数学模型的过程,提高运用数学知识解决实际问题的能力。

通过小组合作学习,培养学生的合作交流、倾听表达等能力。

通过多种解题策略的比较,培养学生的思维灵活*和批判*思维。

情感态度与价值观目标:

体验数学与生活的密切联系,增强学习数学的兴趣和自信心。

培养学生的理财意识,树立合理的消费观和投资观。

了解国家对教育和经济发展的支持政策,增强社会责任感。

三、 教学重难点分析

教学重点:

运用利息计算公式解决实际问题,正确计算利息和税后利息。

理解不同理财方式的特点,并进行简单的比较分析。

教学难点:

根据实际问题灵活运用利息计算公式及其变形公式。

分析不同理财方式的优缺点,并结合自身情况做出合理选择。

四、 教学过程设计

原教学过程设计较为传统,可以进一步优化,增强学生的参与度和体验感:

(一) 创设情境,导入新课 (5分钟)

情境创设: 播放一段与储蓄相关的新闻片段,例如“银行存款利率上调”,引发学生思考:

新闻中提到了哪些与数学有关的信息?

你知道什么是利息吗?利息是如何计算的?

揭示课题: 引导学生进入“利息与纳税”的学习。

(二) 合作探究,学习新知 (20分钟)

探究活动一: 利息计算公式的推导与应用

以小组为单位,完成教材16页例题,并进行汇报交流。

设计不同类型的练习题,巩固学生对利息计算公式的理解和应用。

引导学生思考:如果已知利息、本金和时间,如何计算利率?如果已知利息、利率和时间,如何计算本金?

引导学生推导出利息计算公式的变形公式: 利率 = 利息 ÷ 时间 ÷ 本金 × 100% , 本金 = 利息 ÷ 利率 ÷ 时间 。

探究活动二: 利息税的计算与免税政策

创设情境:小明把2000元存入银行一年,年利率为2.25%,到期后银行却少付了一些钱,这是为什么呢?

引导学生了解利息税的相关知识,并推导出利息税的计算公式: 利息税 = 利息 × 利息税率 。

介绍国债和教育储蓄的免税政策,引导学生思考:为什么国家要对国债和教育储蓄实行免税政策?

设计不同类型的练习题,巩固学生对利息税计算方法和免税政策的理解。

探究活动三: 不同理财方式的比较分析

以小组为单位,完成教材16页的“做一做”,并进行汇报交流。

引导学生分析比较普通储蓄存款、教育储蓄存款和国债的优缺点,并结合自身情况,选择合适的理财方式。

拓展延伸:介绍其他理财方式,例如银行理财产品、基金、股票等,引导学生关注社会经济生活。

(三) 巩固练习,拓展应用 (10分钟)

基础练习: 完成教材16页练习二的第6-9题,巩固学生对本节课所学知识的理解和应用。

拓展练习: 完成教材16页练习二的第10题,培养学生分析问题和解决问题的能力。

生活实践: 布置课后实践作业,例如调查银行存款利率、了解家庭理财方式等,引导学生将数学知识应用于生活实际。

鼓励学生分享学习收获和体会,谈谈对数学与生活的联系的认识。

五、 教学评价设计

采用多元化的评价方式,关注学生的学习过程和情感体验:

课堂观察评价: 观察学生参与课堂活动、合作交流、解决问题等方面的表现,及时给予肯定和鼓励。

练习反馈评价: 通过课堂练习和课后作业,了解学生对知识的掌握情况,并进行针对*的指导和反馈。

作品展示评价: 鼓励学生将学习成果以手抄报、调查报告等形式展示出来,激发学生的学习兴趣和创造力。

自我评价与互评: 引导学生进行自我评价和互相评价,帮助学生反思学习过程,发现自身优点和不足。

六、 教学反思

此外,教师还可以结合信息技术手段,设计更加生动活泼的教学环节,例如:

利用多媒体课件展示与利息相关的图片、视频等,激发学生的学习兴趣。

利用网络平台进行在线测试、互动答题等,及时了解学生的学习情况。

利用移动设备进行课后拓展学习,例如观看理财知识微课、参与理财模拟游戏等,拓展学生的视野。

总之,小学数学教学应立足于学生的生活经验,引导学生在解决实际问题的过程中学习数学、应用数学,最终实现数学素养的全面提升。


《百分数》教学设计4

复习百分数的内容和目标

百分数是数学中重要的概念之一,对我们生活和商业中的各种情况都有实际应用。通过本次复习,我们旨在加深对百分数意义和读写法的理解,同时探讨百分数与小数、分数之间的关系,以及如何应用百分数解决实际问题。

复习目标

巩固百分数的基础知识:包括读写法、意义,以及百分数与其他数学形式的转换。

应用能力的提升:能够灵活运用百分数解决生活中的各种问题,如折扣计算、税务计算等。

思维能力的培养:通过练习和拓展题目,培养学生的逻辑推理和问题解决能力。

复习重点

在本次复习中,我们将重点放在查漏补缺,确保学生能够合理应用所学知识解决问题,同时帮助他们建立和完善自己的知识体系。

复习难点

学生在建立合理的知识体系上可能遇到的困难是整合和理解不同数学概念之间的关系,我们将通过系统的复习和练习来克服这一难点。

复习过程

一、引入与激发兴趣

为了引发学生的兴趣,我们首先展示一些生活中的百分数例子,例如:

一本书看了45%。

花生的出油率为74.5%。

元旦庆典期间,服装类降价20%。

20xx年三年期存款利率为5.4%。

通过这些例子,学生可以轻松地认识到百分数在日常生活中的实际应用,并明确本节课的学习目标。

二、回顾梳理百分数的知识网络

学生在自主回顾和梳理百分数的基本知识后,通过同桌合作交流和板书整理,形成完整的知识网络。重点包括:

百分数的意义和读写法。

百分数与小数、分数的转换。

应用百分数解决问题的方法,如折扣、纳税、利息等。

这一过程不仅培养了学生的自主学习能力,还通过互动交流进一步加深了他们的理解。

三、基本练习

在确保学生理解了基本概念之后,进行一些基础练习,如:

解释各个百分数的意义及其读写法。

填表练习,加深对百分数、小数和分数之间相互转化的理解。

提出实际问题,如给定糖水中糖的百分比,让学生自行推算其他数值。

这些练习有助于学生巩固所学知识,提高他们的应用能力和解决问题的技能。

四、拓展提高

通过智力竞赛形式的拓展题目,如计算增产百分比、商品价格变化后的比较等,激发学生的思维灵活*和深刻理解能力。

五、数学乐园

利用成语中的百分数隐藏进行思维拓展,如“百发百中”、“百里挑一”等,让学生在轻松的氛围中进一步运用百分数的知识。


百分数和分数教学设计5

百分数和分数、小数的互化

教学目标

使学生理解并掌握百分数和分数、小数之间互化的方法.

教学重点

使学生掌握百分数与分数、小数互化的方法,并能熟练运用.

教学难点

1.在学生掌握百分数与小数基本转化规律的基础上,如何引导学生通过观察分析、概括,掌握它们互化的简便方法.

2.把不能化成有限小数的分数化成百分数.

教学设计

一、复习准备

(一)复习

1.读出下列的百分数.

20%120%100.5%12.3%

2.说出下列小数所表示的意义.

0.81.20.1251.75

3.把下面小数化成分数.

0.21.50.3751.25

4.把下面分数化成小数.

5.把下面各数写成百分数.

(二)引入

在生产、工业和生活中进行统计和分析时,为了便于比较和计算,有时要把小数或分数化成百分数,有时要把百分数化成分数或小数.这节课,我们就来学习百分数和分数、小数的互化.

教师板书课题:百分数和分数、小数的互化

二、新授教学

(一)百分数和小数互化.

1.教学例1

把0.25、1.4.0.123化成百分数.

(1)小组讨论转化的方法

(2)教师提问:小数化成百分数分几步进行?0.25怎样化成百分数?

教师板书:

(3)学生*将1.4、0.123化成百分数.

教师板书:

(4)做一做:把下面各小数化成百分数.

0.38、1.05、0.055、3

(5)总结把小数化成百分数的规律.

小结:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.

板书:

(6)口答:把下列各数化成百分数.

0.350.071.32.245

我们已经学会了小数化成百分数的方法,那么,百分数怎样化成小数呢?

2.教学例2

把2.7%124%0.4%化成小数.

(1)小组讨论转化的方法

(2)学生试做,老师巡视指导.

(3)集体订正.

教师板书:

(4)做一做:把15%80%3.5%化成小数

(5)总结把百分数化成小数的规律.

小结:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.

板书:小数百分数

(6)口答:把下面百分数化成分数:60%12.5%120%

(7)小结百分数与小数互化的方法.

(二)百分数和分数的互化.

1.教学例3

把、、化成百分数

(1)思考回答:

①、、能直接化成百分数吗?

②把百分数变成什么样的数就可以化成百分数?

(2)学生试做并订正.

教师说明:分子除以分母,如遇到除不尽时,通常商算到小数第四位,再用四舍五入法

取三位小数.同时要注意等号和约等号的使用.

教师强调:因为0.167是近似值,所以,而16.7%是从0.167改写成的,没有再取近似值,所以,如果把直接写成百分数,就要写成

(3)做一做:把下面分数化成百分数.

2.教学例4

把17%、40%、12.5%化成分数.

(1)学生试做

(2)集体订正

板书:

(3)做一做:把下面各百分数化成分数.

14%2.5%120%

(4)归纳总结百分数与分数互化的方法.

三、课堂练习

四、课堂小结

这节课我们学习了什么?你能说一说百分数与分数、小数互化的方法吗?

五、布置作业

(一)把下面各数化成百分数.

0.250.070.90.4151.31.0411

(二)把下面的百分数化成小数或整数.

72%17.6%106%2%0.8%7.5%100

(三)把下面的分数化成百分数.

(四)把下面的百分数化成分数.

20%25%33%180%0.6%3%

六、板书设计

百分数和分数、小数的互化

教案点评:

百分数、分数、小数这三者之间有着密切的联系,而且可以互相转化,本节教学设计正是围绕三者之间的联系进行教学的。

通过复习准备,学生明确了分数、小数互化的方法,以及分母是100的分数如何转化成百分数,为下面的教学做了铺垫。

例题的教学,重在引导,让学生利用已有的知识自己思考怎样转化,再归纳出互化的方法。

练习的设计,层次清楚,有坡度。

探究活动

百分数是不是分数

活动目的

1.加深对百分数和分数的理解.

2.培养学生的分析、概括能力.

活动题目

百分数是不是分数?

活动过程

1.教师出示讨论题目.

2.学生分小组讨论.

3.学生分组汇报.

4.教师总结.

活动说明

这个活动也可以采用辩论的形式.


百分数的应用数学教案教学设计6

教学目标

1.使学生了解本金、利息、利率、利息税的含义.

2.理解算理,使学生学会计算定期存款的利息.

3.初步掌握去银行存钱的本领.

教学重点

1.储蓄知识相关概念的建立.

2.一年以上定期存款利息的计算.

教学难点

年利率概念的理解.

教学过程

一、谈话导入

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

二、新授教学

(一)建立相关储蓄知识概念.

1.建立本金、利息、利率、利息税的概念.

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

(2)教师板书:

存入银行的钱叫做本金.

取款时银行多支付的钱叫做利息.

利息与本金的比值叫做利率.

2.出示一年期存单.

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)

教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

4.出示国家最新公布的定期存款年利率表.

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.

(3)那什么是年利率呢?

(二)相关计算

张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

1.帮助张华填写存单.

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结

请你说一说如何计算利息?

三、课堂练习

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给希望工程多少元钱?

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)80011.7%

(2)80011.7%2

(3)800(1+11.7%)

(4)800+80011.7%2(1-20%)

3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

四、巩固提高

(一)填写一张存款单.

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?

五、课堂总结

通过今天的学习,你有什么收获?

六、布置作业

1.小华2001年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给希望工程,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给希望工程多少元钱?

2.六年级一班2002年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?


《百分数的应用》教学教案7

教学内容:

第十一册,百分数的应用。

教学目标:

1.通过对比,使学生沟通分数应用题和百分数应用题的联系和区别,使学生理解和掌握“求一个数是另一个数的百分之几”的应用题的解题思路和方法。

2.让学生在自主探索、合作交流的过程中理解百分率的意义,探求百分率的计算方法并学会计算。

教学重点:

掌握简单的百分数应用题的计算方法。

教学难点:

探索百分率的意义和计算方法。

教学过程:

一、开展活动,产生问题。

1.师:同学们,上课前老师想问大家一个问题。土豆能浮在水上吗?

(边说边做)老师这里有一杯凉开水,另一杯凉开水中有一些盐,如果教师把同一只土豆分别放入杯中,观察发现了什么?

2.师:你能根据老师刚才的实验,提出相关的数学问题吗?

生提,师随机板书,如:盐占盐水的几分之几?这个问题同学们会解答吗?

(板书提供数据:盐80克,水170克)

现在能解答吗?指名口答。80÷(170+80)=80÷250=8/25

3.小结:这是我们以前学过的求一个数是另一个数的几分之几的应用题,这类题的解答方法是──一个数÷另一个数。

二、探索新知

(一)如果求“盐占盐水的百分之几”该怎样解答呢?(生尝试)

1.与前面的算法比较一下,你想说什么?(引导学生比较异同)

3.师小结:它们的解法是相同的,都是用一个数÷另一个数,只是这类百分数应用题的结果要用百分数表示。

(二)百分率

1.师:通过刚才的计算,我们知道盐占盐水的32%。生活中,盐占盐水的百分之几一般叫含盐率。(板书:含盐率)揭题,今天这节课我们就来学习百分率的应用。(板书课题)

反问:什么叫含盐率?怎样求含盐率?

师:计算百分率的公式通常这样写:含盐率=盐的重量/盐水的重量×100%(板书)

同学们,对这个公式有什么不清楚的地方吗?(解释:为什么×100%)

2、出示例题

一号杯中:倒入200克清水中放入10克糖。

二号杯中:倒入200克清水中放入20克糖。

师:你会求这两杯糖水的含糖率吗?含糖率=糖的重量/糖水的重量×100%(板书)

3、想想这两杯糖水的口味会怎样?谁愿意尝一尝。为什么?

因为含糖率9.5%比0.5%大,说明了什么?含糖率越高,糖水就越甜。

三、知识迁移、完善揭题。

1、师:百分率在我们生活中是无处不在的,除了含糖率、含盐率外,你还能举出一些吗?老师这里也收集了一些。

读一读

实行科学种田,播种前需要进行种子发芽实验,计算发芽率;

用花生仁、油菜籽等榨油,可计算出油率;

每次考试后,老师要了解本班的及格率、优秀率;

护林工人了解小树苗的成活情况,可计算成活率;

工厂检验所生产零件的质量情况,需计算合格率;

根据学生每天的出勤情况,可计算出勤率;

调查学生作业的完成质量,可计算正确率;……

2.小组活动:请大家组成四人小组,每人挑一个你感兴趣的百分率说说它表示什么意思,并尝试着像老师一样编一道求百分率的应用题,并算出结果。学生讨论后交流。

四、比赛、调查、应用延伸

(一)只列式,不计算

1、加工400件产品,经检验,合格的有390件,求这批产品的合格率。

2、六(1)班今天有48人到校,2人事假,求六(1)班今天的出勤率。

3、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率。

(二)判断

(1)我校五年级共有100名学生,今天缺勤2人,今天五年级学生的出勤率为98%。

(2)林场种了杨树100棵,成活了98棵,杨树的成活率是98%棵。

(3)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。

(4)工厂加工了105个零件,合格率达100%,则这批零件有100个合格。

(5)小麦的出粉率达到100%。

(三)六(2)班学生近视情况统计表,计算每组近视率。


百分数应用的教学设计8

百分数应用的教学设计应该写一些什么内容呢?本文是小编精心编辑的百分数应用的教学设计范文,希望能帮助到你!

一、教学内容:

求一个数比另一个数多百分之几的应用题。

二、教学目的:

使学生掌握较复杂的求一个数是另一个数的百分之几的应用题的数量关系和解题规律,能正确地解答求一个数比另一个数多百分之几的应用题。

三、教学重点和难点:

掌握较复杂的求一个数是另一个数的百分之几的应用题的数量关系和解题规律。

四、教学过程:

(一)、复习。

1.说出下面各题以谁作单位1的量。

(1)三好学生占全班同学的百分之几?

(2)*岛面积是全国面积的百分之几?

(3)已生产的水泥产量相当于计划产量的百分之几?

2.求一个数是另一个数的百分之几用什么方法?

(二)、新授。

1、出示题目:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?

(1)读题。

(2)怎样理解今年图书册数增加了这句话?

(3)画出线段图。

(4)写出数量关系式,并列式解答。

(5)、将题目中的改成12%该怎样解答呢?

(6)、百分数应用题与分数应用题解题思路是一致的。

(7)、学生列式计算,集体订正。

a:140012%=168(册)168+1400=1568(册)

b:1400(1+12%)=1400112%=1568(册)

2、练习。

练习二十二,第1题

(三)、小结。

今天我们学的是求一个数比另一个数多百分之几的应用题。


百分数的应用利息教学设计9

教学目标

1.使学生了解本金、利息、利率、利息税的含义.

2.理解算理,使学生学会计算定期存款的利息.

3.初步掌握去银行存钱的本领.

教学重点

1.储蓄知识相关概念的建立.

2.一年以上定期存款利息的计算.

教学难点

“年利率”概念的理解.

教学过程

一、谈话导入

教师:过年开心吗?过年时最开心的事是什么?你们是如何处理压岁钱的呢?

教师:压岁钱除了一部分消费外,剩下的存入银行,这样做利国利民.

二、新授教学

(一)建立相关储蓄知识概念.

1.建立本金、利息、利率、利息税的概念.

(1)教师提问:哪位同学能向大家介绍一下有关储蓄的知识.

(2)教师板书:

存入银行的钱叫做本金.

取款时银行多支付的钱叫做利息.

利息与本金的比值叫做利率.

2.出示一年期存单.

(1)仔细观察,从这张存单上你可以知道些什么?

(2)我想知道到期后银行应付我多少利息?应如何计算?

3.出示二年期存单.

(1)这张存单和第一张有什么不同之处?

(2)你有什么疑问?(利率为什么不一样?)

教师总结:存期越长,国家就可以利用它进行更长期的投资,从而获得更高的利益,所以利息就高.

4.出示国家最新公布的定期存款年利率表.

(1)你发现表头写的是什么?

怎么理解什么是年利率呢?

你能结合表里的数据给同学们解释一下吗?

(2)小组汇报.

(3)那什么是年利率呢?

(二)相关计算

张华把400元钱存入银行,存整存整取3年,年利率是2.88%.到期时张华可得税后利息多少元?本金和税后利息一共是多少元?

1.帮助张华填写存单.

2.到期后,取钱时能都拿到吗?为什么?

教师介绍:自1999年11月1日起,为了平衡收入,帮助低收入者和下岗职工,国家开始征收利息税,利率为20%.(进行税收教育)

3.算一算应缴多少税?

4.实际,到期后可以取回多少钱?

(三)总结

请你说一说如何计算“利息”?

三、课堂练习

1.小华今年1月1日把积攒的零用钱500元存入银行,定期一年.准备到期后把利息

捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按10.98%计算,到明年1月1日小华可以捐赠给“希望工程”多少元钱?

2.赵华前年10月1日把800元存入银行,定期2年.如果年利率按11.7%计算,到今年10月1日取出时,他可以取出本金和税后利息共多少元钱?下列列式正确的是:

(1)800×11.7%

(2)800×11.7%×2

(3)800×(1+11.7%)

(4)800+800×11.7%×2×(1-20%)

3.王老师两年前把800元钱存入银行,到期后共取出987.2元.问两年期定期存款的利率是多少?

四、巩固提高

(一)填写一张存款单.

1.预测你今年将得到多少压岁钱?你将如何处理?

2.以小组为单位,填写一张存单,并算一算到期后能取回多少钱?

(二)都存1000元,甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了二年定期.到期后,甲、乙两人各说自己取回的本息多.你认为谁取回的本息多?为什么?

五、课堂总结

通过今天的学习,你有什么收获?

六、布置作业

1.小华2001年1月1日把积攒的200元钱存入银行,存整存整取一年.准备到期后把税后利息捐赠给“希望工程”,支援贫困地区的失学儿童.如果年利率按2.25%计算,到期时小华可以捐赠给“希望工程”多少元钱?

2.六年级一班2002年1月1日在银行存了活期储蓄280元,如果年利率是0.99%,存满半年时,本金和税后利息一共多少元?

3.王洪买了1500元的国家建设债券,定期3年,如果年利率是2.89%到期时他可以获得本金和利息一共多少元?

七、板书设计

百分数的应用

本金利息利息税利国利民

利率:利息与本金的比值叫利率.

利息=本金×利率×时间

探究活动

购物方案

活动目的

1.使学生理解生活中打折等常见的优惠措施,并能根据实际情况选择最佳的方案与策略.

2.通过小组合作,培养学生的合作意识及运用所学知识解决实际问题的能力.

3.培养学生创新精神,渗透事物是对立统一的辩证唯物主义思想,使学生能够辩证、发展、全面地对待实际生活中的问题.

活动过程

1.教师出示价格表

a套餐原价:16.90元现价:10.00元

b套餐原价:15.40元现价:10.00元

c套餐原价:15.00元现价:10.00元

d套餐原价:15.00元现价:10.00元

e套餐原价:18.00元现价:10.00元

f套餐原价:14.40元现价:10.00元

学生讨论:如果你买,你选哪一套?

2.教师出示价格表

a套餐原价:16.90元现价:12.00元

b套餐原价:15.40元现价:10.78元

c套餐原价:15.00元现价:12.00元

d套餐原价:15.00元现价:12.00元

e套餐原价:18.00元现价:13.50元

f套餐原价:14.40元现价:12.24元

学生讨论:现在买哪一套最合算呢?

3.教师出示价格表

每套18.00元,*淇淋7.00元.

第一周:每套16.20元;买一个*淇淋回赠2元券.

第二周:降价20%;买一个*淇淋回赠2元券.

第三周:买5套以上打七折;买一个*淇淋回赠2元券.

学生讨论:

(1)你准备在哪一周买

(2)你打算怎么买?

(3)你设计方案的优点是什么?


阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。