教学目标

本课旨在帮助学生理解分数乘以整数的概念及其计算方法。

分数乘整数教学设计(2篇)(热门9篇)

教学重点

理解分数乘以整数的意义。

掌握分数乘以整数的计算法则。

教学难点

教学过程

一、激发兴趣

(一)问题引入

让学生思考以下问题:如何列式解决以下问题?

5个12是多少?

10个23是多少?

25个70是多少?

这些问题可以简化为整数乘法,即求几个相同加数的和。

考虑以下两道题的计算方法:

++=++=

++==3××3=

请学生交流他们的想法。第二小题是否有更简便的方法?为什么可以这样计算?教师应引导学生理解,如何将加法问题简化为乘法问题,例如++=×3=。

二、自主探索

(一)示例引导

举例:小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

学生理解“块”的概念。

根据已有知识和经验,自行列式计算。

三、交流和质疑

(一)学生分享方法

学生汇报不同的计算方法,例如:

方法1:使用加法逐个累加。

方法2:直接使用乘法计算总量。

比较这两种方法的联系和区别,引导学生理解加法和乘法在这些问题中的应用和效果。

(二)深入探讨

四、归纳和概括

详细讨论分数乘以整数的计算步骤,强调分子相乘,分母不变的规则。

五、巩固和拓展

(一)巩固基本概念

强化计算规则:为什么先约分再相乘比较简便?

(二)应用题练习

解决实际问题,例如:

计算礼品盒包装所需的纸张面积。

美术馆画框所需的木条长度。

六、课后作业

计算题:如“的3倍是多少?”

几何题:计算正方形的周长。

七、板书设计

分数乘以整数:

分子和整数相乘的积作分子,分母保持不变。

示例:“小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃了多少块?”


六年级数学教案设计 分数乘整数2

教学内容:教科书第89页的例1、例2,完成做一做及相应的练习。

教学目标:

1、利用类推法引导学生理解分数乘整数的意义与整数乘法的意义相同;在此基础上通过自主探索、小组合作归纳并掌握分数乘整数的计算法则,且能正确地进行计算。

2、培养学生合作探究的意识及良好的逻辑思维能力。

3、让学生在课堂学习中交流学习数学的感受,获得学习成功的体验。

教学重点:掌握分数乘整数的计算法则。

教学难点:计算法则的推导

教学方法:类推法、猜想验证法、归纳法、小组合作法

教学过程:

一、复习引入

1、师口述:

①5个12是多少?怎样列式?(125)

②6个0.5呢?(0.56)

③3个是多少?你会列式吗?(3)

师:这是个新内容,大家也会列式,真了不起。知道我们刚才用的是什么数学方法吗?(类推法,类推法就是由原来的旧知根据它们之间的相似处类推出和它实质一样的新知识。这是我们学习数学时常用的一种方法)

2、引入:这就是今天我们要一起研究的分数乘法中的第一个问题:分数乘整数(板书课题)

二、合作探究、归纳法则

1、师:看到这个课题,你都想知道关于它哪些方面的知识?

生1:分数乘整数该怎样计算?

生2:在计算时有什么要求或要注意的地方?

师:同学们的想法可真好。那就请带着这些问题进入我们今天的时空隧道吧。

2、师:大家知道吗?出示:

人跑一步的距离相当于袋鼠跳一下的,人跑3步的距离是袋鼠跳一下的几分之几?

你们有办法解决这个问题吗?好,大家先*思考,有想法后可以和周围的同学交流一下。

3、师:谁愿意先来发表一下你的看法?

生1:我列的是加法算式:++

同分母分数相加减,分母不变,只把分子相加减。

即:++==

生2:我列的是乘法算式:3

我想:要求人跑3步的距离是袋鼠跳一下的几分之几,就是求3个是多少?3个就是。

即:3=

生3:老师,我列的也是乘法算式:3

但我是这样计算的:用分子2和整数3相乘得6,写在分子的位置上,分母不变。和他们结果一样,也得。即:3=

师:同学们的做法和想法都不错,哪怕有的是猜想也很了不起!如果大家把乘法和加法联系起来思考,大家的思路会更明朗的。

3,大家说就是求3个是多少,我们就可以写成3个相加的形式,即:3=++===。现在大家再来看3的计算过程,清楚了吧。其实在今后计算时,可以把借助加法思考的这些过程省略,写成:3==

4、师:观察分数乘整数的计算过程,同桌说一说我们是怎样计算分数乘整数的?

生:分数和整数相乘,用分子和整数相乘的积作分子,分母不变。

师:谁来再说一说?(多找几个学生说说,加深理解和记忆)

三、运用新知、巩固练习

1、师:现在你会计算分数乘整数了吗?我们先闯第一关:

⑴计算:6(学生*计算)

⑵成果展示:生1:6==

生2:6===

生3:6==

师:还有不同的做法吗?好,谁愿意来评价一下这几位同学的做法?

生1:这几位同学的计算方法掌握得都不错,但是第一位同学到最后也没有约分,我觉得这是不对的。

生2:我最欣赏第三位同学的做法,因为他在计算过程中进行了约分,这样计算起来比较简便。

生3:第二位同学也约分了,我和他的做法一样,我们是严格按照计算法则进行计算的。

生4:我也认为第三位同学方法是值得借鉴的,虽然第二位同学也进行了约分,但他是到最后才进行约分的,数比较大,约分时我们不容易看出来,而第三位同学在计算过程中约分,数比较小,我认为不容易出错。

师:大家怎样认为?

师:大家的确很有眼力,在计算分数乘整数时,能约分的可以先约分,再计算。看来,我们在计算分数乘法时还不能提笔就做,先观察有没有要需要约分的,谁把这些技术*的问题处理好了,谁的技能真的就提高了。

师:大家会计算6了,那6又该怎样计算?

生1:这道题不用计算了,结果和6一样。

生2:计算方法也和前面一样,用整数和分子相乘的积作分子,分母不变。

师:就请同学们写出它的计算过程吧,写好后,同桌相互检查一下。

3、现在来闯第二关:看谁计算得又快又好。(三位同学板演)

我们来看这几位同学做得怎样?(不错,方法掌握了,还能在计算过程中做到先约分,再计算,真棒!)

4、下面是最后一关,看谁能顺利通过,注意把握机会哟!

根据提供的信息来解决问题:

(1)一袋面包重kg,3袋重多少千克?

(2)1只树袋熊一天大约吃kg的桉树叶,10只树袋熊一星期大约能吃多少千克桉树叶?

①*完成。

②交流:你对哪道题有兴趣,就向大家介绍哪道。

师:谁顺利通过了这三关,祝贺你,在你的本子上批上优秀,又错的同学改正后,也可以批优秀。

四、全课总结

通过这节课的学习,相信你的收获一定不小,那就请你用不同的方式来展示一下吧!


《分数乘整数》经典教学设计3

分数和整数的运算是小学基础的内容,下面是由百分网小编为大家准备的《分数乘整数》经典教学设计,喜欢的可以收藏一下!了解更多详情资讯,请关注应届毕业生考试网!

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法:++==33=

3这个算式表示什么?为什么可以这样计算?

教师板书:++=3=

二、自主探索(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)

方法2:3=++====(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书:++=3

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.

(四)3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.

(五)提示:为计算方便,能约分的要先约分,然后再乘.

四、归纳、概括:

(一)结合=3=和++=3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+++=()()

+++++++=()()

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1.计算(说一说怎样算)

462148

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)

用乘法算:3=++====(块)

答:3人一共吃了块.

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.


数学教案之分数乘整数4

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程()

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法:++==3××3=

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=

二、自主探索

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)

方法2:×3=++====(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书:++=×3

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.

(五)提示:为计算方便,能约分的要先约分,然后再乘.

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+++=()×()

+++++++=()×()

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1.计算(说一说怎样算)

×4×6×21×4×8

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至

少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画

配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)

用乘法算:×3=++====(块)

答:3人一共吃了块.

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

教学设计点评

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。


冀教版分数乘整数优秀教学设计5

教学目标:

结合具体事例,经历自主解决问题、学习分数乘整数的计算方法的过程。

理解分数乘整数的计算方法,会计算分数乘整数的乘法。

体验用乘法解决连加问题的价值,激发学习新知识的愿望。

教学重点:

分数乘以整数的计算方法。

教学难点:

正确运用先约分,再相乘的方法进行计算。

教学过程:

一、复习铺垫

1、让我们先来做几道口算题,你能直接口算出结果吗?

出示:

3/8+1/8=1/3+1/5=7+9=

1/4+1/4+1/4=2/9+2/9=3+3+3+3+3+3=

2、学生口答。

3、最后一题你是怎么口算的?还可以怎样口算?——引导学生说出用乘法3×5或5×3来计算。

4、师小结:是啊,求几个相同加数的和的简便运算可以用乘法。

质量问题

教师口述问题,让学生用自己喜欢的方法解决。

交流学生计算的方法和结果。

2/5+2/5+2/52/5×3

=2+2+2/5=2*3/5

=6/5(千克)=6/5(千克)

5、比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的。

区别:一种方法是加法,另一种方法是乘法。

教师板书:2/5+2/5+2/5=2/5×3

为什么可以用乘法计算?

加法表示3个2/5相加,因为加数相同,写成乘法更简便.

2/5×3表示什么?怎样计算?

表示3个2/5的和是多少?

2/5+2/5+2/5=2+2+2/5=2*3/5=6/5用分子2乘3的积做分子,分母不变.

6、提示:为计算方便,能约分的要先约分,然后再乘.

二、归纳、概括:

分数乘整数,用分子和分母相乘的积做分子,分母不变

试一试

让学生*观察图并列式计算。交流时,说一说是怎样列式的,怎样算的。

练一练

教学后记:

这节课的教学任务主要有两点,就是掌握分数乘整数的意义,以及掌握分数乘整数的计算法则,在整数乘法上,分数乘整数的意义学生比较易于掌握,我利用它的意义改写成,进而从,这一环节,我特别注重引导学生,观察板书,并及时给予提示,所以学生的分数乘整数的计算方法掌握得不错。但是不足的是,学生在约分时,有部分学生没有约分完,以后要不断训练学生约分的方法。


分数乘以整数教学方案6

教学目的:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的计算法则,并能正确运用先约分再相乘的方法进行计算。

教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。

教学难点:学生对算理掌握。

教学过程:

一、复习。

1、5个12是多少?

用加法算:12+12+12+12+12

用乘法算:125

问:125算式的意义是什么?被乘数和乘数各表示什么?

2、计算:

问:有什么特点?应该怎样计算?

3、小结:

(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。

(2)同分母分数加法计算法则是分子相加作分子,分母不变。

二、新授

教学例1。

出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:(块)

用乘法算:(块)

问:这里为什么用乘法?乘数表示什么意思?

得出:分数乘以整数的意义与整数乘法的意义相同,

都是求几个相同的和的简便运算。学生齐读一遍。

练习:说一说下面式子各表示什么意思?(做一做第3题。)

问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)

三、巩固练习。

1.第2页做一做。

2.练习一

板书设计

分数乘整数

用加法算:(块)

用乘法算:(块)

教学反馈:


分数乘整数的数学教案7

一、教学内容:

课程标准实验教材第8~9页的分数乘整数,例1、例2及“做一做”。

二、学习目标:

1、使学生理解分数乘整数的意义与整数乘法相同,掌握分数乘整数的计算法则。

2、使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算.

3、培养学生的合作探究意识及良好的逻辑思维能力。

三、教学重、难点:

教学重点:使学生在掌握分数乘整数的计算法则的基础上,能够较熟练、正确地进行计算.

教学难点:使学生弄清分数乘整数的算理。

四、教学准备:

教具准备:实物投影仪,多媒体课件,给每个小组准备一套大小完全一样的图形学具板,学生自己准备水彩笔。

教学过程:关键词:

设计意图教学过程二次备课

一、复习导入

1、5个12是多少?怎样列式?

2、++=

做第一题时,让学生说一说整数乘法的意义。做第二题时,让学生说一说这两道题有什么特点。

3、问题:两组意义相同,那第二组还可以怎样计算?

探究新知

1.出示例1主题图:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?

2.学生读题列式

(1)++

(2)×3

3.可以这样列式吗?为什么?

学生发表自己的想法,集体交流。

总结:求人跑3步的距离是袋鼠跳一下的几分之几,实际上是求3个是多少,所以用乘法计算。(教师结合线段图解释)

4.尝试:那×3该怎样计算呢?这就是我们今天要研究的分数乘整数.请同学们自己试着做做,有问题可以与同位商量一下。(揭示课题)

学生汇报:

(1)是2个,乘3后就得到6个,因此×3=×6=

(2)利用加法算乘法。

×3=++===

说明:中间的加法算式部分,可以省略不写。

5.通过这道题,你觉得分数乘整数该怎样计算?

学生总结:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)

6.出示练习:

×4×3×6

学生*练习板演黑板,集体订正,并说说自己是怎样做的?

出示最后一题的两种做法:

(1)×6===

(2)×6==

乘得的积要化成最简分数,哪一种约分方法比较简单呢?

总结:在计算过程中能约分的先约分,使计算比较简单。

二练习:

1.计算

×8×3×2

学生*练习,集体订正。

2.解决问题

出示第9页做一做的第2、3题:

先说说为什么用乘法,再列式计算。

3.课堂作业

练习二1、2题。

板书设计:分数乘整数

×3=×6=

×3=++===

总人数全对人数对题率分析


分数乘整数教案8

分数乘整数教案

教学目标

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学重点

使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

教学难点

引导学生总结分数乘整数的计算法则.

教学过程()

一、设疑激趣

(一)下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

(二)计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

同学之间交流想法:++==3× ×3=

×3这个算式表示什么?为什么可以这样计算?

教师板书:++=×3=

二、自主探索

(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

1.读题,说说块是什么意思?

2.根据已有的知识经验,自己列式计算

三、交流、质疑

(一)学生汇报,并说一说你是怎样想的?

方法1:++===(块)

方法2:×3=++====(块)

(二)比较这两种方法,有什么联系和区别?

联系:两种方法的结果是一样的.

区别:一种方法是加法,另一种方法是乘法.

教师板书:++=×3

(三)为什么可以用乘法计算?

加法表示3个相加,因为加数相同,写成乘法更简便.

(四)×3表示什么?怎样计算?

表示3个的和是多少?

++====,用分子2乘3的积做分子,分母不变.

(五)提示:为计算方便,能约分的要先约分,然后再乘.

四、归纳、概括:

(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

求几个相同加数的和的简便运算.

(二)分数乘整数怎样计算?

用分子和分母相乘的积做分子,分母不变

五、巩固、发展

(一)巩固意义

1.改写算式

+++=()×()

+++++++=()×()

2.只列式不计算:3个是多少?5个是多少?

(二)巩固法则

1.计算(说一说怎样算)

×4×6×21×4×8

思考:为什么先约分再相乘比较简便?

2.应用题

(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至

少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画

配上镜框,需要木条多少米?

(三)对比练习

1.一条路,每天修千米,4天修多少千米?

2.一条路,每天修全路的,4天修全路的几分之几?

六、课后作业

(一)的3倍是多少?的10倍是多少?

(二)一个正方形的边长是米,它的周长是多少米?

(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

七、板书设计

分数乘整数

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

用加法算:++===(块)

用乘法算:×3=++====(块)

答:3人一共吃了块.

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

教学设计点评

1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。


分数与整数相乘的教学设计9

课前谈话:

课前活动:帮助学生回顾整数的意义。

逢年过节的时候,我们有燃放烟花的习俗,有一种烟花,它每次两响,请同学们听:(点放两响)如果这重烟花响两次(响两次),一共多少响?

师:你是怎么知道的?你会列式吗?

板书:2+222

师:如果响五次呢?多少响呢?怎么算的?

你说呢;好,你也想说。

板书:2+2+2+2+2(几个啦?)25

好接着看,小明统计了一下有100次。

多少响呢?

生:200响。

师:200响。你是怎么算的呢?

生:2100。

师:可以用加法吗?

生:可以。

生:不可以。

师:奥,是可以的,知识太麻烦了。

好,请同学们看黑板:

二年级的时候,我们就知道:求几个相同加数的和可以用乘法,比较简便。

一、创设情景,教学例1。

师:课前老师和同学们聊到*节,*节快到了,我们市一小也举行了一系列有意义的活动。

出示图片:瞧!手工组的同学在制作小红花,用来装饰礼品。

大家看漂亮吗?

生:漂亮!

师:想知道他们是怎么做的吗?这些漂亮的红花都是用绸带做的!

他们手里的材料都是1米长的绸带。

而做一朵绸花只需要用米绸带。

请同学们思考:这是1米的绸带,那么米有多长、该如何表示呢?

谁来说说看?

慢慢

(出示条件,图画)

生:把一米平均分成10份,这样的3份就是米。

(两个生说)

师:大家同意吗?说的真好!

请同学们看:

1米长的绸带平均分成10份,做一朵绸花需要这样的3份,就是米。

你看明白了吗?

师:小芳计划做3朵这样的绸花。

请同学们先估计一下这根1米长的够不够?

生:够。

师:你是怎么想的?

生:方法1。

生:方法2。

好,你说!有道理!

师:估的方法有很多种。

同学们的估算能力真不错!

师:刚才同学们说:做一朵绸花要这样的3份,那么3朵在图上该如何表示呢?

(课件同时出示)

师:小芳做3朵绸花到底要多少米绸带?

看了刚才大屏幕上的演示,你会列出算式吗?

还可以怎样列式?

3还可以怎么列?

学生列式:

3(3)

++

师:同学们一下列了3个算式计算这道题,都行吗?

生:行。

师:说说你的想法。

生:

生:

师:奥,当加数都相同的时候,加法可以写成乘法。也就是这里的3,表示3个相加的和。

师:这三个式子,你会计算哪一个?

师:奥,你说的是乘法,你已经预习过了。

恩,加法,不错!

(生会乘法,表扬其已预习,点下一个)

(生会加法,细说)

师:

好的,你来说说看,你是怎么做的?

(生说同时板书、教师口复)

老师想,你能把过程说详细些吗?

板书:++==(米)

同分母分数相加,分母不变,分子相加。

师:同学们同分母分数加法学得真好!

师:我们一起来观察一下它们的分子部分,9、你是怎么得来的呢?

生:9=3+3+3;

师:是啊!3个3相加,也可以写成

(33)

师:(米)。

师:这里的分母10表示把1米平均分成10分,每朵3份,3朵共33、9份,就是(米)。

师:刚才我们计算了加法。那这两个乘法又该如何计算呢?

现在请同学们打开课本到38页,自学这一部分内容;

师:好,看明白了吗?

生:明白了。

师:谁来说说3是怎么计算的呢?

生:3=++===(米)

师:为什么可以相等呢?

生:3就表示3个相加。

师:很好,刚学的知识就会运用了。

3就表示3个相加的和。

师:请同学们一起看大屏幕,

(课件出示:3=++===(米))

刚才我们是借助分数连加的过程解决的3。我们以后在计算的时候中间的连加过程可以省略不写,直接用乘法来做。

(将黑板上的过程部分用黄粉笔虚线框出)

(课件出示:3==(米))

师:(指大屏幕)写成3==。

师:这里的分母10表示什么?

33呢?

生:

师:那么3怎么计算呢?大家一起算一算?

生:

师:谁来说一说你是怎么算的?

生说老师板演。

师:你们是这样做的吗?

生:是的。

您现在正在阅读的苏教版数学《分数与整数相乘》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版数学《分数与整数相乘》教学设计师:同学们学的真快!

(二)尝试解决,优化方法、总结

师:刚才小芳做了3朵,现在小华做5朵这样的绸花,一共用几分之几米绸带?怎样列式?自己试一试。

生:5。

师:你能说说你这样列式的理由吗?

生:做一朵绸花要米,5朵就是5个米相加,可以用乘法5表示。

师:是啊!5个相加也就是5

师:5还可以写成5;

师:你会计算吗?大家一起来算算看;

生做练习题;

师:(夸)这位同学写的很工整;

你真仔细;

这个小组的同学都很认真;

师找两例学生板演;

1

2

展示两种不同的写法:5==和5===;

书写规范;

师:(甲)我想请你做回小老师,给大家讲一讲,你是怎么计算的?

师:(乙)这位同学请你先等一下;

生:()

师:()

这里的分母不变,10就是把1平均分成了10分。

5乘3呢?

一朵是3份,5朵就是5乘3,15份;

最后要化成最简分数。

你还有没有要特别提醒大家的?

生:()

师:(先约分;)

这位同学是先约分,再乘,而且书写认真,谢谢你做了个好好的示范。

师:你们都做对了吗?

师:好请同学们看一下电脑的演示:

书写规范,约分。

计算结果要写成最简分数;

约分时请同学们注意:写的工整一些,约下来的结果要写在原来数字的上面、或下面。

师:我们也可以这样算:

先约分再计算;

使的过程很简洁,不容易出错。

师:好,这两到应用题都解答完了,还有一个答。

师:今天我们学习的乘法跟以前的有什么不一样?

生:有分数。

师:这就是我们今天学习的分数与整数相乘。

出示课题:分数与整数相乘

请仔细观察,屏幕上的分数乘整数,他们到底是怎么乘的?

请同学们分组讨论一下。

(讨论)

(巡查)

师:谁来汇报你们小组的结果?

(老师帮忙总结)

师:(学生说,看例子;)

师:听了同学们的汇报,李老师把分数乘整数的方法概括了一下,来看大屏幕:

(计算法则)

齐读;

二、运用方法,巩固练习。

师:学习了新知识,我们来练一练。

读题,理解题意。

师:请同学们在自己的作业纸上做一做。

(生做,师巡查)

师:都完成了吗?我们请几个同学上来展示一下。

师:就是几格?

生:3格。

师:4个,你是怎样涂的呢?

师:说说你是怎么算的?

生:,也就是;

师:你列的算式也很规范。好样的!

(提示能约分的要先约分。)

师:下面我们来一个小小的比赛,看谁计算规范,正确率高;

神算手;

出示题目;

师:我们一起来看一看正确的过程和结果,完全正确的请举手。

师:大部分同学达到了神算手水平,刚才老师收集了一些不准确或不规范的例子。

刚才老师收了几个同学的练习纸,他们有这样的几道题出了问题,我们一起来帮帮他们。

(附件)

师生发现问题、解决问题;

师:在学习中我们要善于发现问题、并积极思考去解决他们,我们班同学在这一点上表现,老师很满意!

三、联系生活,提升认识。

师:再过十来天就是*节了,在这个假期里还有一个重要的传统佳节。大家知道是什么节日吗?

生:中秋节。

师:对的。在这举国欢庆、合家团员的美好日子里。

我们市一小的同学计划到福利院去看望那里的老人,给那些爷爷、奶奶带去喜庆与欢乐。

你想一起去吗?

生:想!

师:先看看他们都做了哪些准备:

我们小组负责环境布置,需要准备一些小彩旗,长方形彩旗长2分米,宽分米。

我们小组准备的是月饼,与爷爷奶奶一起欢度节日,月饼礼盒12个,平均每盒重千克。包装这些月饼礼盒,平均每盒用装饰彩带米。

师:根据这些资料:你能提出那些问题。

伟大的科学家爱因斯坦曾经说过,提出问题比解决问题更重要!

请同学们发挥自己的聪明才智;

生:1、一个彩旗的面积是多少平方分米?(你的这个问题有价值)

2、这些礼品盒共用装饰彩带多少米?(你观察的很仔细)

3、这些礼品盒共重多少千克?(这个问题比较实在)

师:同学们按小组交流一下,我们一起来解决这些问题!

逐个解决;

师:同学们,这一节课我们学习了新知识、运用新知识,非常了不起的是同学们能自己提出问题,并积极思考解决了他们。你们是真正的学习的小主人,是值得大家学习的好榜样!


阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。