奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。下面是由小编为你精心编辑的小学奥数题解题技巧,欢迎阅读!

1、对照法

小学数学奥数题的解题技巧(热门9篇)

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、*质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的*质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密*,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例4:填空:0.75的最高位是(),这个数小数部分的最高位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例6:自然数按约数的个数来分,可分成几类?

答:可分为三类:(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

6、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

例8:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?

和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?

这就是综合法的思路。

7、方程法

用字母表示未知数,并根据等量关系列出含有字母的表达式(等式)。列方程是一个抽象概括的过程,解方程是一个演绎推导的过程。方程法最大的特点是把未知数等同于已知数看待,参与列式、运算,克服了算术法必须避开求知数来列式的不足。有利于由已知向未知的转化,从而提高了解题的效率和正确率。

例9:一个数扩大3倍后再增加100,然后缩小2倍后再减去36,得50。求这个数。

例10:一桶油,第一次用去40%,第二次比第一次多用10千克,还剩余6千克。这桶油重多少千克?

这两题用方程解就比较容易。

8、参数法

用只参与列式、运算而不需要解出的字母或数表示有关数量,并根据题意列出算式的一种方法叫做参数法。参数又叫辅助未知数,也称中间变量。参数法是方程法延伸、拓展的产物。

例11:汽车爬山,上山时平均每小时行15千米,下山时平均每小时行驶10千米,问汽车的平均速度是每小时多少千米?

上下山的平均速度不能用上下山的速度和除以2。而应该用上下山的路程÷2。

例12:一项工作,甲单独做要4天完成,乙单独做要5天完成。两人合做要多少天完成?

其实,把总工作量看作“1”,这个“1”就是参数,如果把总工作量看作“2、3、4……”都可以,只不过看作“1”运算最方便。

9、排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

例13:为什么说除2外,所有质数都是奇数?

这就要用反证法:比2大的所有自然数不是质数就是合数。假设:比2大的质数有偶数,那么,这个偶数一定能被2整除,也就是说它一定有约数2。一个数的约数除了1和它本身外,还有别的约数(约数2),这个数一定是合数而不是质数。这和原来假定是质数对立(矛盾)。所以,原来假设错误。

例14:判断题:(1)同一平面上两条直线不平行,就一定相交。(错)

(2)分数的分子和分母同乘以或同除以一个相同的数,分数大小不变。(错)

10、特例法

对于涉及一般*结论的题目,通过取特殊值或画特殊图或定特殊位置等特例来解题的方法叫做特例法。特例法的逻辑原理是:事物的一般*存在于特殊*之中。

例15:大圆半径是小圆半径的2倍,大圆周长是小圆周长的()倍,大圆面积是小圆面积的()倍。

可以取小圆半径为1,那么大圆半径就是2。计算一下,就能得出正确结果。

例16:正方形的面积和边长成正比例吗?

如果正方形的边长为a,面积为s。那么,s:a=a(比值不定)

所以,正方形的面积和边长不成正比例。

11、化归法

通过某种转化过程,把问题归结到一类典型问题来解题的方法叫做化归法

化归是知识迁移的重要途径,也是扩展、深化认知的首要步骤。化归法的逻辑原理是,事物之间是普遍联系的。化归法是一种常用的辩证思维方法。

例17:某制*厂生产一批防“*”*,原计划25人14天完成,由于急需,要提前4天完成,需要增加多少人?

这就需要在考虑问题时,把“总工作日”化归为“总工作量”。

例18:超市运来马铃薯、西红柿、豇豆三种蔬菜,马铃薯占25%,西红柿和豇豆的重量比是4:5,已知豇豆比马铃薯多36千克,超市运来西红柿多少千克?

需要把“西红柿和豇豆的重量比4:5”化归为“各占总重量的百分之几”,也就是把比例应用题化归为分数应用题。


小学奥数解题技巧2

奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。以下是为大家分享的小学奥数解题技巧,供大家参考借鉴,欢迎浏览!

①观察法

在解答数学题时,第一步是观察。观察是基础,是发现问题、解决问题的首要步骤。小学数学教材,特别重视培养观察力,把培养观察力作为开发与培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

看每一行的前三个数,想一想接下去应该填什么数。(适于二年级程度)6、16、26、____、____、____、____。9、18、27、____、____、____、____。80、73、66、____、____、____、____。

解:观察6、16、26这三个数可发现,6、16、26的排列规律是:16比6大10,26比16大10,即后面的每一个数都比它前面的那个数大10。

观察9、18、27这三个数可发现,9、18、27的排列规律是:18比9大9,27比*9,即后面的每一个数都比它前面的那个数大9。

观察80、73、66这三个数可发现,80、73、66的排列规律是:73比80小7,66比73小7,即后面的每一个数都比它前面的那个数小7。

这样可得到本题的*是:6、16、26、36、46、56、66。9、18、27、36、45、54、63。80、73、66、59、52、45、38。

②尝试法

解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。

一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。

在9只规格相同的手镯中混有1只较重的假手镯。在一架没有砝码的天平上,最多只能称两次,你能把假手镯找出来吗?(适于三年级程度)

解:先把9只手镯分成A、B、C三组,每组3只。

①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组里;若不平衡,则哪组较重,假的就在哪组里。

②再把有假手镯的那组中的两只分别放在天平的左右秤盘上。如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。

③列举法

解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。

用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)解:把个位是6和十位是6的数一个一个地列举出来,数一数。

个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。

10+10=20(个)

答:在排页码时要用20个数字是6的铅字。

④综合法

从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法叫做综合法。

某装配车间,甲班有20人,平均每人每天可做72个零件;乙班有24人,平均每人每天可做68个零件。如果装一台机器需要12个零件,那么甲、乙两班每天生产的零件可以装多少台机器?

解:根据“甲班有20人,平均每人每天可做72个零件”这两个条件可求出甲班一天生产多少个零件

根据“乙班有24人,平均每天每人可做68个零件”这两个条件可求出乙班一天生产多少个零件

根据甲、乙两个班每天分别生产1440个、1632个零件,可以求出甲、乙两个班一天共生产多少个零件

再根据两个班一天共做零件3072个和装一台机器需要12个零件这两条件,可求出两个班一天生产的零件可以装多少台机器。

综合算式:

(72×20+68×24)÷12=(1440+1632)÷12=3072÷12=256(台)


小学数学奥数题的解题技巧3

【编者按】数学网小升初为大家收集整理了小学数学奥数题解题技巧分析供大家参考,希望对大家有所帮助!

小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。因此,我们在复习小学数学奥数时,对这些重要方法一定要认真进行了解。一起来看看吧。

1、直观画图法:解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通已知与未知的联系,抓住问题的本质,迅速解题。

2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的*。

4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,只见森林,不见树木,来求得问题的解决。

以上就是小学数学奥数解题方法介绍,这些方法很多,也很有效。了解小学数学奥数考试中的这些重要方法,对我们小学生当然是有好处的。在不断提高我们成绩的同时,我们还可以选择适合自己的初中,这是最为关键的。


小学数学奥数题解题技巧4

小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。因此,我们在复习小学数学奥数时,对这些重要方法一定要认真进行了解。一起来看看吧。

1、直观画图法:

解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

2、倒推法:

从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

3、枚举法:

奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的*。

4、正难则反:

有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

5、巧妙转化:

在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

6、整体把握:

有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。


小学数学奥数题解题技巧分析5

导语:小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。因此,我们在复习小学数学奥数时,对这些重要方法一定要认真进行了解,一起来看看吧。

解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的*。

有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。


数学奥数题解题技巧积累6

小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。下面是小编分享一些数学奥数题解题技巧积累,欢迎大家参考!

1、直观画图法:解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

3、枚举法:奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的*。

4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。

6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。

奥数题的七种解题方法

题目:计算1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是()

(A)0(B)-1

(C)1999(D)-2000

(第十届“希望杯”初一培训题)

原题所给的参考*为:

原式=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+…+(1994-1995-1996+1997)+(1998-1999)-2000=1+0+0+…+0-1-2000=-2000,故选(D)。

以上解法我们权且称作不均匀分组法。下面我们再给出几种不同解法。

解法一:观察法

∵1+2-3-4=-4,1+2-3-4+5+6-7-8=-8,1+2-3-4+5+6-7-8+9+10-11-12=-12,…

经观察知,每一“片断”的代数和均为参加运算的最后一个数,故原式=-2000,选(D)。

解法二:小段均匀分组法

将式中每连续4个数分为一组,则有1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4,…,∴2000÷4=500(组),故原式=500×(-4)=-2000.

解法三:凑零法

∵-0+1+2-3=0,-4+5+6-7=0,…,-1996+1997+1998-1999=0,∴原式=0+0+…+0-2000=-2000.

解法四:大段均匀分组法

按个位数0,1,2,3,…,8,9分为一大组,进行计算,则有

1+2-3-4+5+6-7-8+9=-0+1+2-3-4+5+6-7-8+9=1,

又10-11-12+13+14-15-16+17+18-19=-1

而-20+21+22-23-24+25+26-27-28+29=1

另外:30-31-32+33+34-35-36+37+38-39=-1,…

1990-1991-1992+1993+1994-1995-1996+1997+1998-1999=-1.

∴原式=1-1+1-1+…+1-1-2000=0+0+…+0-2000=-2000.

解法五:添数法

每一个方框数之和为-2,而这样的方框有1000个,将每个方框中添加2,故有:原式+2000=0.

∴原式=-2000.

解法六:隔数相加法

在1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000中

隔数相加:如1-3=-2,2-4=-2,5-7=-2,…,这样的数对共有1000对,∴原式=-2×1000=-2000.

解法七:倒序错位相加法

令1+2-3-4+5+6-7-8+…+1997+1998-1999-2000=T

∴有1+2-3-4+5+6-7-8+…+1997+1998-1999-2000

故2T=3-2003-2003+3=-4000,∴T=-2000.


小学自然数奥数解题技巧7

将14个互不相同的自然数,从小到大依次排成一列。已知它们的总和是170;如果去掉最大的数及最小的数,那么剩下的总和是150.在原来排成的次序中,第二个数是多少?

*:7。

详解:最大数与最小数之和为20,故最大数不会超过19。从大到小排列,剩下的数依次不会超过18、17、16……7。而由于

7+8+……+18=150,

最新的六年级奥数题及*-互不相同:由题意有剩下的12个数之和恰为150,于是这12个数只能取上面的情形。在原来的次序中,第二个数为7。

注:这道题是按自然数是1解答的。之前我国中、小学数学教学中,都把自然数等同于正整数,最小的自然数是1.近年来,由于和*接轨,我国把自然数的定义修订为非负整数,因此,最小的自然数是0。


小学奥数解题技巧:整数拆分8

导语:整数拆分是小学奥数数论模块的重要知识点,小学奥数题所谓整数拆分就是把把一个自然数(0除外)拆成几个大于0的自然数相加的形式。下面小编为您收集整理了关于整数拆分的奥数解题技巧,希望对您有帮助!

把一个自然数(0除外)拆成几个大于0的自然数相加的形式。

1、基本型

2、造数型

3、求加数最多

方法:1+2+3+……接近结果但是不超过已知数为止,再补差

4、两数型

(1)和不变:差小积大,差大积小

(2)积不变:差大和大,差小和小

5、拆数型

积最大(1)允许相同:多3少2没有1

(2)不允许相同:从2连续拆分2+3+4+……刚好超过目标数为止

1)超几就去几

2)多1去2,差1补尾

有40枚棋子分别放入8个盒子里,要使每个盒子里都有棋子,那么其中的一个盒子里,最多能有多少棋子?

考点:整数的裂项与拆分.

分析:要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.

解答:解:因为要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,而要使其中的一个盒子的球最多,则另外的7个盒子里面的球分别为1,

即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.

答:其中的一个盒子里,最多能有33枚棋子.

奥数题点评:关键是理解题意得出7个盒子里面的球分别为1,求出最多的盒子里面球的个数.


小学奥数应用题解题技巧9

【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

【详解】

方法1:

(1)每本书多少毫米?

42÷7=6(毫米)

(2)28本书高多少毫米?

6×28=168(毫米)

方法2:

(1)28本书是7本书的多少倍?

28÷7=4

(2)28本书高多少毫米?

42×4=168(毫米)

【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?

1500×6=9000(千克)

(2)可以烧多少天?

9000÷1000=9(天)

(3)可以多烧多少天?

9-6=3(天)。

【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

(1)每小时耕地多少公顷?

40÷5=8(公顷)

(2)需要多少小时?

72÷8=9(小时)

答:耕72公顷地需要9小时。


阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。