“爱白桃味”通过精心收集,向本站投稿了12篇连除应用题(人教版四年级教案设计),下面是小编整理后的连除应用题(人教版四年级教案设计),欢迎您能喜欢,也请多多分享。

连除应用题(人教版四年级教案设计)

篇1:连除应用题(人教版四年级教案设计)

教学目标

(一)使学生理解连除应用题的数量关系,并会用两种方法解答.

(二)使学生进一步学习用线段图表示应用题的条件和问题.

(三)通过对连乘、连除应用题的对比,学生进一步理解其内在联系及互逆关系.

(四)通过观察、比较、分析,提高学生解答应用题的能力.

教学重点和难点

掌握连除应用题的分析方法是重点,理解连乘、连除应用题的互逆关系是难点.

教学过程设计

(一)复习准备

1.板演.

一种织布机每台每小时织4米布,5台8小时可以织多少米布?(用两种方法解答)

2.全班同时口算:

24×5×8 35×2×9 18×2×5

64÷8÷4 120÷6÷4 160÷5÷8

订正1题时,说出两种不同的解题思路.

(二)学习新课

1.新课引入.

复习题改为:一种织布机5台8小时织布160米,平均每台每小时织多少米布?我们今天要学习的内容就是解像这样的应用题.(板书:应用题)

2.出示例2.

一种织布机5台8小时织160米布,平均每台每小时织布多少米?

(1)观察、比较,例2与复习题有什么联系?

(通过观察比较可以看出:复习题中的条件是例2的问题,复习题中的问题是例2的条件.)

说明这两种应用题有着密切的联系.

(2)怎样用线段图表示已知条件和问题?在老师的引导下画出:

(3)要求每台每小时织多少米布,要先求什么?再求什么?

(根据题意,要求每台每小时织多少米布,可以先求出每台织布机8小时织多少米布,再求每台每小时织多少米布.)

(4)怎样分步列式计算?在学生回答的同时,教师板书:

①每台织布机8小时织多少米布?

160÷5=32(米)

②每台织布机每小时织多少米布?

32÷8=4(米)

(5)你能用综合算式解答吗?(独立做在本子上)

160÷5÷8  (每台8小时)

=32÷8 (每台1小时)

=4(米)

答:每台织布机每小时织4米布.

让学生叙述解题思路,说出每步求的是什么.

(6)这道题还可以怎样解答?要先算什么?怎样用线段图表示条件和问题?

小组讨论,阅读课本第10页.

在讨论、自学的基础上,把分步列式的标题填在书上,并独立列出综合算式解答.

集体交流说思路.

160÷8÷5  5台1小时)

=20÷5 每台1小时)

=4(米)

答:平均每台织布机每小时织4米.

3.师生共同总结.

(1)今天学习的是什么应用题?(今天学习的是连除应用题)

教师把“连除”二字板书在课题的前边,即连除应用题.

(2)通过刚才用不同的方法分析这道题,你发现这类连除应用题有什么特点吗?(题中的160米既与5台织布机有关系,也与8小时有关系.)

教师在学生回答的基础上,加以概括:

这类连除应用题的特点是:总量与两个变化的量有关系,是随着两个变量的变化而变化.正如同学们所说,160米既与5台织布机有关系,也与8小时有关系,因此要求每台每小时织多少米布,既可以先求每台8小时织多少米,又可以先求5台1小时织多少米.由于思路不同,就有不同的解法,重在分析数量关系.

4.对比.

(1)1辆汽车1天运货20吨,4辆汽车5天运货多少吨?

(2)4辆汽车5天共运货400吨,1辆汽车1天运货多少吨?

同学们在独立解答的基础上,二人讨论,这两道题有什么联系?有什么区别?

订正:

(1)20×5×4  2)40÷4÷5

=100×4=100÷5

=400(吨) =20(吨)

(两道题的区别:(1)题是连乘应用题,(2)题是连除应用题.这两道题又有内在联系,(1)题的已知条件是(2)题的问题,(1)题的问题是(2)题的已知条件.)

教师给以肯定后,再进一步明确说明:连乘和连除这两种应用题是互逆关系,应用这种互逆关系还可以对应用题进行检验.

(三)巩固反馈

1.独立计算基本题.

(1)3辆汽车4次可以运288筐苹果,1辆汽车1次可以运多少筐苹果?

(2)光明中学的团员平整操场,35人3小时平整了1260平方米,平均每人每小时平整多少平方米?

2.叙述条件有变化.

一份稿件共960页,8个打字员共打12小时才完成,平均每个打字员每小时可以打字几页?

3.改编题.

每只鸡每天吃饲料4500克,照这样计算,6只鸡5天吃饲料多少千克?

把上题改为用除法解答的应用题.

4.变化提高题.

4台碾米机3小时可以碾米4800千克,1台碾米机8小时可以碾米多少千克?

(如有困难可稍加提示;从问题入手分析,要求1台8小时碾米多少千克,就要先求出1台1小时碾米多少千克.)

(四)作业

练习三第1~5题.

课堂教学设计说明

本节课学习连除应用题的要点是总量与两个变化的量有关系,并随着两个变量的变化而变化,因此也可以用两种方法解答.与前面学过的连乘应用题是互逆关系.

新课分为三个层次.

第一层是在教师引导下,通过画图表示题里的条件和问题,重点分析第一种思路和方法.

第二层是通过学生自学课本,在小组讨论的基础上,明确线段图中的数量关系,自己类推出第二种思路和方法.在此基础上共同总结出连除应用题的特点.

第三层是通过对连乘、连除应用题的对比,明确这两种应用题之间的内在联系及其互逆关系.

练习的设计围绕重点,有基本题、变化题、改编题.为以后学习稍复杂的归一问题打基础.

板书设计

连除应用题

例2 一种织布机5台8小时织160米布,

平均每台每小时织多少米布?

(1)每台织布机8小时织布多少米?

160÷5=32(米)

(2)每台织布机1小时织布多少米?

32÷8=4(米)

综合算式:

160÷5÷8

=32÷8

=4(米)

答:平均每台每小时织布4米.

对比(1)1辆汽车1天运货20吨,照这样计算,4辆汽车 5天运货多少吨?

20×4×5  20×5×4

=80×5   =100×4

=400(吨)  =400(吨)

答:4辆汽车5天运货400吨

对比(2)4辆汽车5天共运货400吨,平均1辆汽车 1次运货多少吨?

400÷4÷5  400÷5÷4

=100÷5 =80÷4

=20(吨)   =20(吨)

答:平均1辆汽车1天运货20吨.

篇2:连除应用题(人教版四年级教案设计)

教学目标

1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.

2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.

3.培养学生分析推理能力和逆向思维能力.

教学重点

分析理解数量关系.

教学难点

利用线段图理解数量关系,确定计算步骤.

教学步骤

一、复习.

一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?

要求学生:画线段图,并用两种方法解答.

二、探究新知.

1.出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?

讨论:例题与复习题相比较,有什么特点?

结果:例题与复习题的问题与已知条件换了位.

根据学生汇报的讨论结果,让学生在复习题的两个线段图上,标注一下,已知什么,求什么?

2.引导学生对照线段图讨论:要想求出每台每小时织布多少米,我们应先求什么?

让学生在线段图中标出是哪一段,应该怎样求?根据学生回答,教师板书每一步的小标题.让学生在练习本上分步解答并汇报结果,教师板书:

(1)每台织布机8小时织布多少米?

160÷5=32(米)

(2)每台织布机每小时织布多少米?

32÷8=4(米)

引导学生列综合算式解答:

160÷5÷8

= 32 ÷ 8

= 4(米)

答:平均每台织布机每小时织布4米.

3.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?

4.学生讨论确定先求“5台1小时织布多少米”,再求“1台1小时织布多少米”,教师根据学生汇报书写小标题.

(1)5台织布机1小时织布多少米?

161÷8=20(米)

(2)每台织布机每小时织布多少米?

20÷5=4(米)

列综合算式解答为:

160÷8÷5

=20÷5

=4(米)

答:平均每台织布机每小时织布4米.

三、巩固发展.

第一组题目:

条件:“书法小组每人每天写8个大字,5个人4天共写了160个大字.”

填空:8×5求的是_______________________;

8×4求的是_______________________;

160÷5求的是_____________________;

160÷4求的是_____________________.

第二组题目:

判断:①8×5与160÷4表示的意义相同.( )

②8×4与160÷5表示的意义相同.( )

③8×5与160÷4表示的意义不同.( )

④8×4与160÷5表示的意义不同.( )

第三组题目:

连线题,把意义相同的算式用线连接起来.

8×4 160÷4

8×5 160÷5

8×5×4  16÷5÷4

四、课堂小结.

通过小结,进一步把连乘应用题与连除应用题进行比较区分,并对两种解题方法再进行理解区分.

五、布置作业.

联系生活实际自编一道连除应用题,要求画线段图并用两种方法解.

板书设计

探究活动

给妈妈买衣服

活动目的

引导学生灵活运用知识,尝试各种算法的多样化,进一步巩固两步计算的应用题.

活动准备

1.4开白纸1张,教师出示下表所用.

2.学生每人准备1支水彩笔.

活动过程

师:同学们,小丽是一位很懂事又很孝顺的好孩子,用自己获得的100元奖学金,要买一套衣服送给妈妈,如何买这套衣服呢?你们来帮一帮她,出一出金点子好吗?谁想先来说一说,你有什么好的金点子?用打“√”表示一种买法.你有几种不同买法,用打“√”表示,求还剩多少元呢?

学生买法一:我是这样买的,先用100元买一件最好的上衣56元,再买一条裤子用43元,还剩下1元我坐车回家.

篇3:连除应用题(人教版二年级教案设计)

课题:连除应用题

教学目标

1.使学生掌握连除应用题的基本结构和数量关系,学会列综合算式用两种方法解答连乘应用题.

2.培养学生分析解决实际问题和灵活应用所学知识的能力,学会有条理地叙述思维过程.

3.培养学生主动探索的学习热情,感受数学与生活的密切联系.

教学重点

认识连除应用题的数量关系,初步学会两种解答方法.

教学难点

理解连除应用题的两种解题思路.

教学过程

一、提出问题 激疑诱趣.

1.出示【图片“参观农业展览”】

三年级同学去参观农业展览.他们平均分成2队,每队分成3组,每组15人,一共有多少人?(用两种方法列综合算式解答)

答:一共90人. 2.改变复习题的一个条件和问题后,出示例2.

例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

教师提问:例题与复习题在条件和问题上有什么变化?

教师导入:已知条件和问题发生了变化,还能用原来的方法解答吗?这就是我们今天要共同研究的新知识.(板书:应用题)

二、师生共同参与探索.

1.学习两种分析、解答应用题的方法.

出示例2:三年级同学去参观农业展览.把90人平均分成2队,每队平均分成3组,每组有多少人?

(1)自由提问,思考讨论.

教师提问:看到这道题,你想到了什么?有哪些问题?

学生可能提出如下问题,教师可以进行简记:

①这道题已知什么条件,要求什么问题?用线段图如何表示?

②要求每组多少人?必须先求出什么?

③分步列式如何解答?

(2)汇报结果,共同探索.

①教师提问:谁能回答第①个问题?

根据学生回答,出示线段图

②教师提问:谁能解决第②个问题?

结合学生讨论,教学两种解法,并列出综合算式.

第一种解法:要求每组有多少人?必须先求出每队多少人?(借助线段图帮助学生理解)已知条件中告诉我们共有90人,平均分成2队,求每队多少人?就是把90人平均分成2份,每份是多少?用除法计算.知道每队45人,又知道每队分3组,就能求出每组有多少人?

板书:

每队多少人? 综合算式:90÷2÷3

90÷2=45(人) =45÷3

每组有多少人? =15(人)

45÷3=15(人)

第二种解法:(借助线段图)要想求每组多少人?必须先求出一共多少组?知道每队分3组,分成2队,就是求2个3是多少?用乘法计算.6组对应90人,要求出每组多少人?就是把90平均分成6份,求每份是多少?

板书:

一共多少组? 综合算式: 90÷(2×3)

3×2=6(组) =90÷6

每组多少人? =15(人)

90÷6=15(人)

2.观察比较,归纳概括.

教师提问:观察两种解法在思路上有什么异同?

引导学生说出:相同点是所求的问题一样.不同点是先求的不一样,第一种解法先求的是每组多少人,第二种解法先求一共多少组,所以第一步的解法也就不一样.

3.引发思考,掌握检验方法.

教师提问:同学们,我们已经知道两种解法可以互相检验,除了这种方法外,还可以怎么检验应用题?(小组讨论)

引导学生发现:把已经计算出的结果作为已知条件,进行逆运算,如果最后算出的结果与题目的已知条件相同,说明解答正确.

15×3×2

=45×2

=90(人)

三、分层练习反馈矫正.

1.独立用两种方法解答,口头检验.

(1)图书馆买来新书240本,平均放在3个书架上,每个书架上放4层,平均每层放多少本?

订正:

答:平均每层放20本.

(2)商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?

篇4:分数连除应用题(人教版六年级教案设计)

教学目标

1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。

2.进一步提高学生的分析概括能力及解题能力。

教学重点

找准单位“1”,巩固分数除法应用题的解答方法。

教学难点

掌握分数连除应用题的结构及数量关系。

教学过程

(一)复习

(投影)

1.找准单位“1”,并列式解答。

2.出示准备题。

(1)读题,请学生找出已知条件和未知条件。

(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)

提问:美术组,生物组,航模组三个数量之间有什么关系。

(4)请一名同学列式解答,然后订正。

(二)讲授新课

老师把准备题进行改编。

指名读题,找出已知条件和未知条件。

1.指导学生画图。

提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)

提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)

老师按学生的回答,把准备题的图示进行修改。

2.找出含有分率的句子,进行分析。

(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?

(4)根据三量之间的关系,列出等量关系式。

(5)这个式子的等号两边相等吗?为什么?

人。)

学生回答,老师板书:

3.根据等量关系列方程解答。

提问:根据上面的分析,应设谁为x?(设美术组人数为x。)

老师板书:

解 设美术组有x人。

答:美术组有30人。

看方程提问:

(3)为什么要设美术组人数为x?

(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)

师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。

(三)巩固练习

(投影)

先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。

2.看图,找出数量间相等的关系,并列方程解答:

(1)说出这个图所反映的等量关系式。

(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。

师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)

三好生4人。

学生动笔做,老师带领学生订正。

的高是多少厘米?

根据题意填空:

是(  )厘米。设(  )为x。

果树有多棵?

(四)课堂总结

今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)

这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)

(五)布置作业

(略)

课堂教学设计说明

本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。

连除应用题(人教版四年级教案设计)

篇5:连除应用题数学教案设计

连除应用题数学教案设计

教学内容:连除应用题练习

教学目的

一、计算练习

做练习二十三的第5、6、11题

1、 第6题,让学生独立口算,共同核对得数。

2、 第6题,让学生独立笔算,填出得数,集体订正。

3、 第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。

二、应用题解题练习

练习二十三的第7-10题及第12、14、15题

1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:

7200 ÷12÷ 6 7200 ÷ (12 ÷ 6)

让学生比较两种解法的不同。

2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。

3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。

4、 第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。

5、 第14、15题,让学生独立列出综合算式解答,集体订正。

三、应用题补充条件、问题练习

做练习二十三的'第13、16题

1、 第13题,读题,明确条件,然后给予适当的启发。

2、 第16题,要求学生补充一个条件和一个问题,成为一道两步应用题;再补充另一个条件和问题,成为另一道两步应用题

3、 整理和复习

复习混合运算式题、文字题和连乘、连除应用题

教学内容

课本第116页的第1-3题;练习二十六的第1-4题

教学目的

1、 通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。

2、 使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。

教学过程

一、复习混合运算

1、 混合运算式题

(1) 做课本第116页第1题及补充题

97-12× 6+43 29+187÷ 17-34

156-56÷ 4× 7 (350-275)×(19+25)

(2)做练习二十六的第1题

学生独立做,教师巡视,发现问题,集体订正。

(3)做练习二十六的第3题

左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。

2、 两步计算文字题

做第116页的第2题

让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式

做练习二十六的第2题

让学生独立列出综合算式计算,指名答出,共同订正。

二、复习连乘、连除应用题

1、 做课本第116页的第3题

让学生根据题意画线段图,教师巡视指导。

解答后,引导学生把它改编成用除法计算的两步应用题。

2、 练习二十六的第4题

让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。

篇6:应用题(四年级)(人教版四年级教案设计)

教学目标

(一)使学生初步学会列含有未知数x的等式解答需要逆思考的加、减一步应用题。

(二)培养学生分析推理能力。

教学重点和难点

重点:分析数量关系。

难点:找等量关系。

教具和学具

教具:口算卡片。

教学过程设计

(一)复习准备

1.板演。

(1)设要求的数是x,列出等式,再说一说根据什么求未知数x。

什么数加上240得320?

(2)解答应用题。

学校买来70盒粉笔, 用去28盒,还剩多少盒?

2.口答。(与板演同时进行)

求未知数x。 (口述口算过程,并说出根据。)

30+x=54  x+16=30  x-50=150  370-x=300

(二)学习新课

1.导入。

订正板演(2),把条件和问题对调一下,就成了例7。今天我们学习应用题。(板书课题:应用题)

2.教学例7:学校买来一些粉笔,用去28盒,还剩42盒。学校买来多少盒?指定一名学生读题,边读题,边画线段图。

根据线段图,全体学生列出算式,并解答出来。

指名学生列式,并说一说是怎样想的?

引导学生说出:把用去的粉笔盒数与剩下的粉笔盒数合起来,就是原来的总盒数,所以用加法解答。

28+42=70(盒)

口答:学校买来70盒粉笔。

提问:怎样进行检验呢?

引导学生说出:用求出的原来买来的70盒粉笔作为已知条件,减去用去的盒数,如果等于剩下的42盒,说明解答正确。

提问:

(1)上面的解法是我们过去学过的,今天我们来研究一下,这道题还有没有其他的解法呢?

(2)同学们可以联系求未知数x的知识想一想,按照题目的叙述顺序,哪些数量和哪些数量之间有等量关系呢?

根据学生回答,教师板书:

买来的盒数-用去的盒数=剩下的盒数

提问:

(1)买来的盒数知道吗?

根据学生回答,教师说明:可以设买来粉笔x盒。

(2)买来的盒数为x,用去的盒数知道吗?是多少?剩下的盒数知道吗?是多少?谁能把它们列出一个等式?

引导学生列出:x-28=42。

(3) 结合题意,谁能说一说这个等式什么意思?

引导学生说出:从原来粉笔的盒数x中去掉用去的28盒,就等于剩下的42盒。

教师说明:这是一个含有未知数的等式。由学生根据已学过的知识解答出来。

教师说明:因为设未知数x时,已经说明单位名称是盒,计算结果就不再注单位名称。

由学生验算:求出原来有粉笔70盒,从70盒中去掉28盒,剩下是42盒。说明解答正确,最后再写答句。

3.引导学生小结。

提问:今天我们新学的列含有未知数x的等式来解答应用题,它有哪些步骤呢?结合例7说一说。

引导学生说出:

第一步:读题弄清题意,分清已知条件,求的是什么,设未知的数量为x。(板书:设)

第二步:按照题意,找出哪些数量与哪些数量有相等的关系,列出含有未知数x的等式。

(板书:列)

第三步:求出未知数x是多少。注意x代表的数量不写单位名称。(板书:求)

第四步:检验并写出答句。(板书:验、答)

其中第二步最重要,要找出它们的等量关系式。

(三)巩固反馈

1.半独立练习。

课本第38页“做一做”:

食堂原来有27袋大米,又买来一些,现在共有42袋,食堂又买来多少袋大米?(列出含有未知数x的等式,再解答出来。)

提问:

(1)用列出含有未知数x的等式解答应用题的第一步是什么?这道题怎样设?

(2)第二步是什么?这道题的等量关系式是什么?

引导学生说出:原有袋数+买来袋数=现在袋数。

在此基础上,由学生在练习本上解答,指定一名学生在投影片上解答。

订正时,由学生说一说根据什么列出含有未知数x的等式,再检查计算和书写格式有没有错误。

2.独立练习。

小林原来有一些邮票,同学又送给他14张,现在一共有70张。小林原来有多少张邮票?

教师不作提示,由学生独立做在练习本上,指名一学生在投影片上做。订正时,由学生讲题,重点说一说根据什么列出含有未知数x的等式。

3.课后练习:

练习九第2,3,4题。

课堂教学设计说明

本节课学习了一些应用题的逆向叙述方式。需要逆思考的应用题,用一般的算术方法解答比较困难,而利用加、减法中各部分间的关系,列含有未知数x的等式来解则较容易,这样可以开拓学生的思路,提高解答应用题的能力。

本节课在新课前的复习准备部分,安排了解答含有未知数x的文字叙述题和求未知数x的口算题,直接为学习新知识打下基础。并通过一道顺向叙述的减法应用题,把其中一个条件和问题对调,引出例7,这样安排比较自然。

新课部分分为两个层次。第一层次在分析数量关系的基础上,先用已学过的一般算术方法解答,再引导学生顺着题意的顺序想,把要求的数用x表示,列出含有来知数的等式。重点帮助学生找出等量关系,通过例题,引导学生总结出解题步骤。

由于学生初学用这样的思路来解答应用题,可能会不太习惯,因此,在巩固练习时,分两个层次,第1题在关键部分教师作适当提示,第2题独立练习。两道题都要求当堂反馈,及时评价,使学生在课堂上基本学会本节课的内容,减轻学生的课外负担。

板书设计

应用题

步骤:

(1)设

(2)列

(3)求

(4)验

(5)答

28+42=70(盒)

答:学校买来70盒粉笔。

买来的盒数-用去的盒数=剩下的盒数

设:买来粉笔x盒。

答:学校买来70盒粉笔。

篇7:分数连除、乘除复合应用题(人教版六年级教案设计)

教学目标

1.使学生掌握分数连除、乘除复合应用题的结构和数量关系,能正确解答分数连除、乘除应用题.

2.进一步提高学生的分析解题能力,发展学生思维.

教学重点

使学生掌握分数连除、乘除复合应用题的数量关系,并能正确解答.

教学难点

使学生正确解答分数连除、乘除复合应用题.

教学过程

一、复习引新

(一)找准单位“1”,并列式解答.

1.一袋面粉重50千克,吃了  ,吃了多少千克?

2.一条路修了200千米,正好占全长的  ,全长多少千米?

3.白兔有40只,白兔只数是黑兔只数的  .黑兔有多少只?

(二)光明小学美术组有30人,生物组的人数是美术组的  ,航模组的人数是生物组的  ,航模组有多少人?

二、讲授新课

(一)教学例4(把复习第二题改编成例4)

例4.光明小学航模组人数是生物组的  ,生物组人数是美术组的  ,航模组有8人,美术组有多少人?

1.找出已知条件和所求问题,说说这道题里有哪几个数量?

2.画图分析

(1)航模组的人数是生物组的  ,应该把谁看作单位“1”?生物组的人数看作单位“1”

(2)生物组人数是美术组的  ,应把谁看作单位“1”?美术组的人数看作单位“1”

(3)哪两个组的人数有关系?航模组的人数与生物组的有关,生物组的人数与美术组的有关,

(4)应先画哪个组的人数?应先画出美术组

3.引导学生分析数量关系

因为:美术组的人数×  =生物组的人数

生物组的人数×  =航模组人数,航模组人数是8人.

所以:

解:设美术组有  人.

答:美术组有30人.

4.练习

商店运来一些水果.梨的筐数是苹果筐数的  ,苹果的筐数是橘子筐数的  .运来梨15筐,运来橘子多少筐?

(二)教学例5

例5.商店运来一些水果,运来苹果20筐,梨的筐数是苹果的  ,同时又是橘子的  ,运来桔子多少筐?

1.找出已知条件和问题.

2.找出分率句,找准单位“1” .

3.分析数量关系.

(1)苹果的筐数和哪个量有关系?有什么关系?

和梨的筐数有关系.苹果筐数的  是梨的筐数,即:苹果的筐数×  =梨的筐数

(2)梨的筐数和哪个量有关系?有什么关系?

和橘子的筐数有关.橘子筐数的  是梨的筐数,即:橘子的筐数×  =梨的筐数

(3)梨、苹果、橘子三量之间是什么关系?

梨的筐数既是苹果的  ,也是橘子的

(4)你能列出等量关系式吗?

苹果的筐数×  =桔子的筐数×

解:设运来桔子  筐.

答:运来橘子25筐.

(三)小结

1.今天学的应用题和以前几节课学习的应用题一样吗?(有两个分率句)

2.如何分析这类应用题?

抓住分率句,找谁单位“1”,画图来分析,列式不用急.

三、巩固练习

(一)蔬菜商店运来的茄子筐数是西红柿的  ,运来的西红柿筐数是黄瓜的  .运来茄子21筐,运来黄瓜多少筐?

(二)同学们踢毽子,小红踢了18个,小兰踢的是小红踢的  ,同时又是小华踢的  ,小华踢了多少个?

(三)商店里红气球的个数是蓝气球的  ,是黄气球的  ,有蓝气球240个,有黄气球多少个?

(四)对比练习

1.一个长方体的宽是长的  ,长是高的  ,宽是42厘米.高是多少厘米?(等量关系式:高×  ×  =宽)

篇8:连乘应用题(人教版四年级教案设计)

教学目标

(一)使学生理解连乘应用题的数量关系,并会用两种方法解答.

(二)进一步学会用线段图表示题中的已知条件和问题.

(三)培养学生认真审题的良好习惯.

教学重点和难点

掌握连乘应用题的分析方法是重点,用线段图表示已知条件和问题是难点.

教学过程设计

(一)复习准备

1.出示下图,根据下图能提出一个什么问题?(能提出:共值多少元?)列综合算式解答.(一人板演)

2.口答:(与板演同步进行)

每人每天编16个筐,照这样计算,5个人1天编筐多少个?(16×5=80(个))5个人4天编筐多少个?(80×4=320(个))1个人 4天编筐多少个?(16×4=64(个))5个人 4天编筐多少个?(64×5=320(个))

订正复习题1,说出思考方法.

(1)20×12×4  (先求出一箱多少元,再求4箱多

=240×4  少元.这种思考方法是从问题开

=960(元) 始想.)

(2)20×(12×4)  (先求出4箱热水瓶共有多少个,

=20×48  再求出值多少元.这是从题目条

=960(元) 件开始想.)

(二)学习新课

1.新课引入.

刚才我们解答了两组连乘的一步应用题,如果去掉第一个问题,直接问第二个问题,就是我们今天要学习的新课.(板书:应用题)

2.出示例1.

编筐小组每人每天编16个筐,照这样计算,5个人4天一共编多少个筐?

共同研究:

(1)题中“照这样计算”这句话是什么意思?(既按每人每天编16个筐计算.)

(2)怎样用线段图表示题中已知条件和问题?请画出来.

(3)要求5个人4天编多少个筐,先算什么?怎样列式?

(第一步,先算5个人1天编多少个,列式为16×5=80(个),即求5个16是多少.)

(4)第二步算什么?怎样列式?(第二步算5个人4天编多少个筐,列式为80×4=320(个),即求4个80是多少.)

(5)怎样列综合算式?请你们做在本子上.

16×5×4

=80×4

=320(个)

答:5个人4天编320个筐.

大家想一想,这道题还可以用什么方法解答?先求什么?再求什么?

小组讨论.

通过讨论明确:还可以先求1个人4天编多少个?再求5个人4天编多少个?

怎样用线段图表示?阅读课本第7页.

把书上分步列式的小标题补上,并且用综合算式解答.(教师把图画在黑板上)

16×4×5(第一步求 4个 16是多少)

=64×5(第二步求5个64是多少)

=320(个)

答:5个人4天共编320个.

共同小结:

我们刚才研究的这道题,是两步计算的连乘应用题(在板书“应用题”前面补上“连乘”二字).

由于思路不同,所以解题方法也不一样,这是两种解法的区别.两种解法的相同点是都以每人每天编16个筐做被乘数,所求的结果都是总量,这是掌握连乘应用题的重点.

今天研究的连乘应用题与以前学习的连乘应用题(复习题1)数量关系不同,它的特点是所求的量随着两个已知量的变化而变化,求5个人4天编多少个筐,既与参加的人数有关,也与编筐的天数有关,总量随着人数、天数的变化而变化,因此可以用两种方法解答.

(三)巩固反馈

1.基本题.

(1)只列式,说思路.

①同学们做数学题.每人每天做5道题.照这样计算,8个人5天共做多少道题?

②运输队运送一批水泥到工地,每辆车每次运140袋.照这样计算,用6辆车运8次,这批水泥一共有多少袋?

(2)笔答.(全班做在本上)

一台轧路机每小时轧路平方米.照这样计算,3台轧路机8小时轧路多少平方米?(用两种方法分步解答)

2.条件叙述有变化.

①一台锅炉平均每月用煤4000千克,一个居民小区新增加5台锅炉,一年要多用煤多少千克?

②汽车配件小组有20人,平均每人每天做25个汽车上的零件.三月份工作30天,共可做零件多少个?(用两种方法解答)

3.对比练习.

(1)学校买来5盒皮球,每盒12个,每个6元,共要付出多少元?

(2)碾米机每台一小时碾米1500千克.照这样计算,3台碾米机10小时碾米多少千克?(用两种方法,列综合算式解答)

(3)饲养场养公鸡1500只,母鸡只数是公鸡的4倍,小鸡是母鸡的3倍,有小鸡多少只?

(四)全课总结

1.今天学习了什么新知识?

2.今天学习的连乘应用题有什么特点?

3.解答应用题应注意什么?(认真审题,搞清题里的数量关系,学会画图,掌握不同的解题思路等.)

(五)作业

练习二第1~5题.

课堂教学设计说明

两步计算的连乘应用题,六册教材已经出现过,这里出现的是另一种形式的连乘应用题,它的特点是未知量是随着两个已知量的变化而变化.对于这类连乘应用题,仍要求用两种方法解答,并且要求在分步列式解答的基础上列综合算式解答.

本课教学分为三部分.

第一部分,通过口答两个连续的一步乘法题,为过渡到新课(连乘应用题)作准备,同时复习了学过的连乘应用题,掌握不同的思路,为分析新课题奠定基础.

第二部分,分三个层次进行.第一个层次是在老师的启发、提问下,引导学生通过画图,分析数量关系,掌握解题方法;第二个层次是通过小组讨论、自学阅读课本,掌握另一种解题方法,从而独立列出综合算式;第三个层次是师生共同总结连乘应用题的两种不同解法的相同点与区别.

第三部分,练习的设计既要突出重点,又要注意叙述条件的变化,重视解题思路的训练,以提高学生分析应用题的能力.

板书设计

连乘应用题

例1  编筐小组每人每天编16个筐,照这样计算,5个人4天一共编多少个筐?

(1)5个人1天编多少个?

16×5=80(个)

(2)5个人 4天编多少个?

80×4=320(个)

综合算式:16×5×4

=80×4

=320(个)

答:5个人4天编 320个.

(1)1个人 4天编多少个?  16×4=64(个)

(2)5个人4天编多少个?  64×5=320(个)

综合算式:16×4×5

=64×5

=320(个)

答:5个人4天编 320个.

篇9:连乘应用题(人教版四年级教案设计)

教学目标

1.使学生理解两步连乘应用题的数量关系,会用两种方法解答.

2.培养学生分析、推理能力.

3.渗透事物间互相联系的思想.

教学重点

利用线段图分析数量关系.

教学难点

分析、理解数量间的关系.

教学过程

一、复习.

画线段图解应用题:

(1)编筐小组每人每天能编16个筐,照这样计算,5个人1天能编几个筐?

(2)编筐小组每人每天能编16个筐,照这样计算,1个人4天能编几个筐?

答案:(1) (2)

二、探究新知.

1.导入新课.

刚才我们练习的这两道题都是一步计算的应用题,今天我们继续研究应用题(板书 课题:应用题).

2.教学例1.

(1)出示例1:编筐小组每人每天能编16个筐,照这样计算,5个人4天能编几个筐?

(2)例1与两道复习题比较,有什么相同点和不同点?要想求出5人4天能编多少个筐,我们应该先求出什么?

(3)根据学生汇报的讨论结果,(教师在上图的基础上,画出线段图)

第一种解法:

①5个人1天编多少个?

16×5=80(个)

②5个人4天编多少个?

80×4=320(个)

第二种解法:

①1个人4天编多少个?

16×4=64(个)

②5个人4天编多少个?

64×5=320(个)

(4)将上面两个分步列式改成综合算式.

第一种解法:

16×5×4

=80×4

=320(个)

答:5个人4天一共编320个筐.

第二种解法:

16×4×5

=64×5

=320(个)

答:5个人4天一共编320个筐.

(5)师生共同总结.

已知每人每天编几个筐,求5人4天编多少个,所求的结果既与人数有关,又与天数有关.解答时,可以先从人数入手求,也可以先从天数入手求,两种方法都正确,我们都应该掌握.

三、巩固发展.

1.补充条件或问题,并口头列两种算式.(投影出示)

(1)每只母鸡每月下25个鸡蛋,照这样计算,_____________?

(2)_____________,照这样计算,3只燕子5天能吃多少只害虫?

2.照练习题的形式,组织学生分组编题,要求数目尽量小一些,能直接口算出结果.

编完后请其他组同学口头列式解答,并当场给予评价.

四、课堂小结.

教师通过总结,指明这节研究的是两步计算的连乘应用题.

五、布置作业.

让学生利用5、7和8三个数字自编一道连乘应用题,并用两种方法解.

板书设计

篇10:《连除应用题》说课稿

一、 说教材分析

1、我说课的内容是九年义务教育六年制小学数学第八册第一单元第2小节“两三步计算的应用题”中的 “连除应用题”。这一部分内容分两课时教学,我要说的是第1课时,教学内容包括P9-10的复习、例2、“做一做”及练习三的第1-5题。

2、学生在第六册已经学过要求用两种方法解答的连除应用题。本课学习的是另一种形式的连除应用题,这类应用题与本册前面学习的连乘应用题是互逆的。学习这类应用题,可以为以后学习复杂的归一应用题作好铺垫。

3、教材首先安排复习与连除应用题有互逆关系的连乘应用题,为知识的迁移作准备。然后学习例2,让学生借助线段图,分析数量关系,掌握连除应用题的两种解题思路,学会在分步列式解答,弄清每算的是什么的基础上,列综合算式解答。接着在“做一做”中安排了一道与例2相似的连除应用题,让学生通过练习巩固连除应用题的解题思路。练习中的第1、5题采用不同于例题的形式叙述题目,防止学生的思维定势。第4题则把连乘应用题和相应的连除应用题排列在一起,让学生通过比较建立知识间的联系。

本课的重点是理解和掌握连除应用题的数量关系和解题思路,会用两方法解答这一类应用题。难点是掌握连除应用题的解题思路。关键是找出解答连除应用题的中间问题。

二、 说教学目标:

在理解了教材的.编排思路的基础上,本课的教学目标我是从以下三个方面考虑的:

(1) 通过观察线段图,结合线段图进行分析讨论,使学生理解和掌握连除应用题的数量关系和解题思路,会用两种方法分步解答和列综合算式解答这一类应用题。

(2) 教给学生借助线段图,分析数量关系的方法,培养学生的分析比较能力和知识的迁移能力。

(3) 通过读题,说已知条件和问题,培养学生良好的审题习惯;通过连乘应用题和连除应用题的对比,渗透普遍联系的辩证思想。

三、 说教学程序

根据本课教材提供的内容和学生的实际,本课我分三个部分进行教学:

(一) 复习导入

多媒体出示P9页复习题,通过师生讨论,借助多媒体分步用线段图表示出复习题的已知条件和问题,再借助线段图复习连乘应用题的数量关系、解题思路和解答方法,为学习例2,进行知识的迁移作准备。

(二) 学习新知(分2个环节)

第1个环节:学习例2

1、 多媒体出示例2,通过师生讨论,借助多媒体分步用线段图表示出题中的已知条件和问题,培养学生的认真审题的习惯。

2、 运用多媒体闪动应用题的问题和条件及线段图,比较例2与复习题的题目和线段图,让学生通过观察发现:例2的条件就是复习题的问题,例2的就问题是复习题的条件。从而搞清例2与复习题的联系,培养学生比较分析的能力,为知识的迁移作准备。

3、 结合屏幕出示的复习题和例2的线段图,启发学生思考:要求每台织布机每小时织多少米布,可以先求什么?通过师生间讨论得出:要求每台织布机每小时织多少米布,可以先求“每台织布机8小时织多少米布”,还可以先求“5台织布机每小时织多少米布”同时借助多媒体动态演示,分别两张线段图上表示示先求部分的。

4、 结合第1张线段图,让学生先说说要求“每台织布机8小时织多少米布”怎样算?求出“每台织布机8小时织32米布”后再算什么?怎样算?根据学生的回答教师分别板书。然后通过指名板演,集体练习的方式让学生在分步解答的基础上独立列综合算式解答。

5、 让学生自己结合第2张线段图,在学会用第1种方法解答的基础上在课本上用另一种方法分步解答和列综合算式解答。解答好以后指名说说每一步算的是什么。

第2个环节:完成P10“做一做”。

(1) 通过审题,让学生说一说要求“平均1只母鸡1个月生多少个蛋”,可以先求什么?再采用指名板演,集体练习的形式进行练习,巩固连除应用题的两种解题思路。

(2) 师生讨论,归纳例2与“做一做”在数量关系、解题思路和解答方法方面的共同点。

(三) 练习巩固

根据教材内容,我设计了以下三个层次的练习:

第一层次,基本练习,让学生独立完成练习三的第2、3题,进一步巩固连除应用题的解题思路和解答方法。

第二层次,完成练习三第1、5题。通过审题,使学生明白这也是一道连除应用题,只不过叙述的方式和例2不一样,再让学生用例2的方式把第1题叙述一下。防止学生不分析数量关系,只根据题目叙述的形式就判断运算方法,培养学生认真审题的习惯。

第三层次,对比练习:练习三第4题。

(1) 审题,说说这两题分别是什么应用题。

(2) 比较连乘应用题和连除应用题题目。通过比较,让学生发现:连除应用题的条件就是连乘应用题的问题,连除应用题的问题就是连乘应用题的条件。

(3) 独立解答。

(4) 比较连乘应用题和连除应用题的解题思路。通过比较,让学生发现:连除应用题先求的中间问题和连乘应用题先求的中间问题是一样的。从而帮助学生建立知识间的联系,为第9题改编应用题作准备。

(四) 全课小结。教师根据屏幕的线段图和板书,揭示连除应用题的特征,板书课题,并总结这一类应用题的解题思路和解答方法。

四、 说教法、学法

本课的教学主要采用了分析比较法,借助多媒体教学手段的直观演示进行辅助教学,充分发挥教师教的主导作用和学生学的主体作用,让学生在教师的引导下,学会借助线段图,分析应用题的数量关系的方法。

针对教学的重点、难点,指导学生通过分析比较复习题和例2的线段图,进行知识的迁移,找出连除应用题的中间问题,掌握解题思路,培养学生的分析比较能力和知识的迁移能力。

最后通过三个层次的练习,巩固、深化连除应用题的解题思路,提高学生解答应用题的能力。

篇11:连除应用题练习

连除应用题练习

1、一座楼房有5层楼,每层有12户家庭,每个家庭每天丢弃2个塑料袋。这座楼所有家庭一天共丢弃多少个塑料袋?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

2、一些学生为布置礼堂做纸花。每6位同学一小组,每位同学做12朵花,20个小组一共做了多少朵花?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

3、一个单元有12户人家,每家每天订3瓶牛奶,每瓶牛奶2元,这个单元每天订奶的总价是多少?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

4、参加体操训练的有5人,参加篮球训练的是体操人数的6倍,参加长跑训练的人数是参加篮球训练人数的7倍,参加长跑训练的有多少人?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

5、朝阳社区组织老人去郊游,租了3辆客车和4辆小车。每辆客 车坐42人,每辆小车坐4人。租来的车一共可以坐多少人?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ;

(3)再算,算式是 综合算式是。

6、学校的'32位老师带16个班的学生去春游,平均每班有45人,已知车上共有780个座位。请问每个人都有座位吗?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ;

(3)再算 ,算式是 ; 答:。

7、小东在游泳池里游泳,4个来回游了400米。游泳池有多长?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是。

8、李老师6分钟打字726个,王老师4分钟打字544个,谁打得快一些?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ;

(3)再算 ,算式是 ; 答:

9、三(1)班的4个组的同学去摘黄瓜,每个小组13人。平均每人摘65千克。一共摘了多少千克?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是

10、水果店卖出5箱苹果,一共360元。每千克苹果的价钱是3元,每箱苹果有多少千克?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ; 综合算式是。

11、四年级92名男生,102名女生去划船,每条小船限乘9人,一共需要多少条船?

(1)先算 ,算式是 ;

(2)再算 ,算式是 ;

篇12:三步应用题(一)(人教版四年级教案设计)

教学目标

(一)使学生熟练掌握数量关系及解题思路,会解答简单的两、三步计算的应用题.

(二)提高学生分析、推理能力

教学重点和难点

让学生掌握数量关系、学会分析问题的方法,既是教学的重点,也是学习的难点.

教学过程设计

(一)复习准备

1.板演:

新镇小学三年级有4个班,每班40人;四年级有114人.三年级和四年级一共有多少人?

2.思路训练.

全班同学口答:

(1)根据条件补充问题,并说出数量关系.

有5个教室,每个教室有8盏灯,________?

王平同学每天早晨跑500米,跑了5天,________?

8个打字员共打字1600个,_______?

三年级有160人,四年级有114人,________?

(2)根据问题找条件,并说出数量关系.

平均每人采集树种多少千克?

火车速度是汽车速度的几倍?

香蕉比桔子少多少筐?

买足球共用多少元?

订正时说说解题思路,是怎样分析的.

(二)学习新课

1.新课引入.

复习题是两步计算的应用题,如果问题不变,改变其中的一个条件,使其成为三步计算的应用题,应该怎样表示?

学生可能会想到,四年级人数不直接给出,改为四年级比三年级少46人.这样改是合理的,但它已不是三步计算题了,因此只能改成:四年级有3个班,每班38人.

教师点明:这就是我们今天要学习的应用题.(板书课题:三步应用题)

2.出示例3.

新镇小学三年级有4个班,每班40人,四年级有3个班,每班38人.三年级和四年级一共有多少人?

(1)审题、理解题意.

学生读题后,说出已知条件和问题.

师生共同完成线段图:

(2)分析数量关系.

让学生结合线段图自己分析,并独立列式解答,然后集体交流,说出解题思路和过程.

生:从最后的问题入手分析,要求三、四年级共有多少人,必须知道三、四年级各有多少人.但题中这两个条件都没有直接告诉,因此第一步先算三年级有多少人? 40×4=160(人);第二步算四年级有多少人?38×3=114(人);第三步再把这两个年级人数合并起来,160+114=274(人).就是所要求的问题,即三、四年级的总人数.

随着学生的回答,教师板书:

①三年级有多少人?

40×4=160(人)

②四年级有多少人?

38×3=114(人)

③三年级和四年级一共有多少人?

160+114=274(人)

答:三年级和四年级一共有274人.

刚才的思考方法是从问题入手,找出所需要的条件,然后确定先算什么,再算什么,最后算什么.

大家再想一想,如果从题目的条件入手分析,那么题目中哪两个条件有密切关系?可以得到什么新的数量?

学生会说出:三年级有4个班,每班40人,可以求出三年级有40×4=160(人);四年级有3个班,每班38人,可以求出四年级有38×3=114(人);最后把两个年级人数合并起来,160+114=274(人)就是题中要求的问题.

3.反馈练习.

如果例3的已知条件不变,把问题改成三年级比四年级多多少人,应该怎样解答?

全班同学做在本上.

订正时说明是怎样想的.

小结:

我们解答应用题时,在认真审题理解题意的基础上,最重要的是分析数量关系,掌握分析方法,既要根据条件想问题,得到新的已知数量,也可以根据问题找条件,哪个条件是已知的,哪个条件是未知的,因此要先把未知的条件求出来.这两种分析方法是要经常用到的所以要切实掌握.

(三)巩固反馈

1.独立解答.

体育老师买了3个排球,每个40元;还买了2个篮球,每个62元.一共用了多少元?(先用线段图表示出已知条件和问题,再列式解答)

解答后,由学生说说解题思路,并订正.

2.比较题.

(1)菜场运来黄瓜8筐,每筐25千克,茄子12筐,每筐20千克,运来的黄瓜和茄子共有多少千克?

(2)如果改变其中一个条件,茄子12筐,改为8筐,其余条件和问题不变,应该怎样解答?

学生会出现两种解法:

25×8+20×8 (25+20)×8

=200+160 =45×8

=360(千克) =360(千克)

请同学们比较一下这两种解法的解题思路是什么?哪种解法比较简便?

通过讨论明确,有些应用题,由于解题思路不同,解题方法就不同,而且计算的步数也不一样.有的三步计算题可以用两步计算,这样使得计算比较简便.

同学们再想一想,(1)题能否用两步计算?为什么?从而明确由于两种蔬菜的筐数不一样,也就是当求两个积的和(或差)时,没有相同的因数,就不能用简便方法计算.

3.粮店运来25包大米,共重2500千克,运来40袋面粉,共重2000千克,一包大米比一袋面粉重多少千克?

(四)全课总结

我们今天学习的复合应用题,都是由几个简单的一步应用题组合而成的.

解答时,首先要理解题意,在此基础上分析数量关系是关键,无论采用哪种分析方法,都要找出条件与问题之间的关系,计算时要养成认真、细心的习惯.

(五)作业

练习四第1~3题.

课堂教学设计说明

学生从现在开始学习三步计算应用题,由于数量关系比较简单,理解并不困难,重要的是使学生学会根据不同的条件和问题,学会分析问题的方法,掌握解题思路和步骤.因此本节课重点是思路教学.

教学过程分为三个层次.

第一个层次,从复习旧知识入手,通过补条件、补问题进行两种思路的训练,从解答两步应用题入手,为掌握思考方法作准备.

第二个层次,首先从改变复习题中直接条件为间接条件,使其成为三步计算应用题新课,让学生看到两、三步应用题之间的联系,再通过画图,独立试算、讨论等方式,达到掌握解题思路,学会不同的分析方法.

第三个层次,练习的设计由易到难,在掌握基本题的基础上,又提出变式题,并通过比较找出简便算法,以提高学生灵活解答应用题的能力.

板书设计

三步应用题(一)

例3  镇小学三年级有4个班,每班40人,四年级有3个班,每班38人.三年级和四年级一共有多少人?

(1)三年级有多少人?

40×4=160(人)

(2)四年级有多少人?

38×3=114(人)

(3)三、四年级共有多少人?

160+114=274(人)

答:三、四年级共有274人.

菜场运来黄瓜8筐,每筐25千克,茄子8筐,每筐20千克,运来的黄瓜和茄子共多少千克?

解法(一)(1)运来黄瓜多少千克?

25×8=200(千克)

(2)运来茄子多少千克?

20×8=160(千克)

(3)共运来黄瓜、茄子多少千克?

200+160=360(千克)

解法(二)(1)每筐黄瓜和茄子共重多少千克?

25+20=45(千克)  (2)运来黄瓜和茄子共重多少千克?

45×8=360(千克)

答:运来黄瓜和茄子共重360千克.

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。