“ruthy”通过精心收集,向本站投稿了14篇如何利用方程来解应用题 教案教学设计(人教新课标五年级上册),以下是小编为大家整理后的如何利用方程来解应用题 教案教学设计(人教新课标五年级上册),希望对您有所帮助。

如何利用方程来解应用题 教案教学设计(人教新课标五年级上册)

篇1:如何利用方程来解应用题 教案教学设计(人教新课标五年级上册)

第四课时

教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。

教学目标:

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

教学重难点:掌握解方程的方法。

教学过程:

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

二、新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得:                                        x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以, x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二) 教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三) 反馈练习

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6     x÷9=0.7   (强调验算)

(四) 课堂作业:“做一做”第2题。

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5-7题。

五、板书:

课后记:

第五课时

教学内容:数学书P60:例3、及61页的做一做,练习十一的第8题。

教学目标:

1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析数量关系的能力。

教学重难点:找题中的等量关系,并根据等量关系列出方程。

教学准备:课件

教学过程:

一、复习导入

解下列方程:

x+5.7=10    x-3.4=7.6    1.4x=0.56      x÷4=2.7

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、新知学习。

1、教学例3.

(1) 出示题目。(课件)

出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”

我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,“警戒水位是多少米?”

(2) 分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢?(板)

警戒水位+超出部分=今日水位①

今日水位-警戒水位=超出部分②

今日水位-超出部分=警戒水位③

同学们能解决这个问题吗?

学生独立解决问题。

(3) 评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

① x+0.64=14.14   ②14.14﹣x= 0.64    ③14.14﹣0.64= x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

(4) 小结

在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

三、练习。

(5) 解决“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

(6) 独立完成练习十一中的第8题。

四、课堂小结

这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?

五、板书

列方程解应用题

解:警戒水位+超出部分=今日水位①            x+0.64=14.14

今日水位-警戒水位=超出部分②       x+0.64-0.64=14.14-0.64

今日水位-超出部分=警戒水位③                x=13.5

篇2:列方程解应用题 教案教学设计(人教新课标五年级上册)

解:警戒水位+超出部分=今日水位①            x+0.64=14.14

今日水位-警戒水位=超出部分②       x+0.64-0.64=14.14-0.64

今日水位-超出部分=警戒水位③                x=13.5

答:警戒水位是13.5米。

课后记:

5     多边形的面积

第一课     平行四边形面积的计算

教学目标

1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3.对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

理解平行四边形面积公式的推导过程.

学具准备:

每个学生准备一个平行四边形。

教学过程:

1、什么是面积?

2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?

二、导入新课

根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习习近平行四边形面积计算。

三、讲授新课

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h,告知S和h的读音。

说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

(四)应用

1、学生自学例1后,教师根据学生提出的问题讲解。

2、算出下面每个平行四边形的面积。

3、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等(    )

(2)平行四边形底越长,它的面积就越大(    )

4、做书上82页2题。

四、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

五、作业

练习十五第1题。

六、板书设计

篇3:解简易方程 教案教学设计(人教新课标五年级上册)

第一课时 方程的意义

教学内容:数学书P53-54及“做一做”,练习十一1-3题。

教学目标:

1、初步理解方程的意义,会判断一个式子是否是方程。

2、会按要求用方程表示出数量关系。

3、培养学生观察、比较、分析概括的能力。

教学重难点:会用方程的意义去判断一个式子是否是方程。

教具准备:天平、空水杯、水(可根据实际变换为其它实物)

教学过程:

一、导入新课

今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

2、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

3、反馈练习。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

4、小结。

这节课学习了什么?怎么判断一个式子是不是方程?

提问:方程是不是等式?等式一定是方程吗?

看“课外阅读”,了解有关方程产生的数学史。

三、练习

1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

四、作业

练习十一第1题。

板书:

课后记:

第二课时

教学内容:数学书P55-56及“做一做”。

教学目标:

1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

3、培养学生观察与概括、比较与分析的能力。

教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。

教具准备:天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)

教学过程:

一、导入新课

同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?

二、新知探究

(一)探寻发现“天平保持平衡的规律1”。

第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),

第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。

第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

(二)探寻发现“天平保持平衡的规律2”。

第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),

第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。

第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

(三)小结天平保持平衡的变换规律,引出等式不变的规律。

通过刚才的实验,我们发现了什么,谁来总结一下。

得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。

三、练习。

实物演示并判断:(准备8袋花生,4袋盐)

天平两端分别放有一袋500克的盐和两袋250克的花生。

1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?

2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)

3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?

4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?

五、小结。

有什么收获?还有什么问题?

课后记:

篇4:巧解应用题 教案教学设计(人教新课标五年级上册)

大同小学   余芃

掌握数量关系是正确解答应用题的关键。有时应用题的解答也有技巧,下面我们一起来看看这样一道题。

李大伯跑1.5千米,用了11.7分钟。李大伯跑1千米平均需要多少分钟?

同学们都知道这道题是用除法计算,

那么是:1.5千米÷11.7分钟

还是:11.7分钟÷1.5千米       呢?老师介绍几种方法。

一、同学们可以这样想:看要求的量的单位。这道题是求“多少分钟”,应把11.7分钟平均分到1.5千米里,看看每千米平均需要多少分钟,所以算式是:11.7分钟÷1.5千米。如果是求“李大伯平均每分钟跑多少千米”

算式为:1.5千米÷11.7分钟

二、同学们还可以这样想:把题中的小数转化成整数。“李大伯跑2千米,用了12分钟。李大伯跑1千米平均需要多少分钟?”很容易理解为:12分钟÷2 千米

即解答方法为:时间除以路程

第三单元《长方体和正方体》 概念和公式归纳

姓名

一、概念:

1、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

2、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体或正方体6个面和总面积叫做它的表面积。

6、物体所占空间的大小叫做物体的体积。

7、容器所能容纳物体的体积通常叫做它们的容积。

8、a  读作“a的立方”表示3个a相乘,(即a a a)

二、计算公式:

长方体公式:棱长和=(长+宽+高)×4

底面积(占地面积、横截面积、上面积)=长×宽

侧面积(左面、右面)=宽×高 前(后)面积=长×高

表面积=(长×宽+长×高+宽×高)×2

没盖的表面积=长×宽+(长×高+宽×高)×2

或=(长×宽+长×高+宽×高)×2-长×宽

体积(容积)=长×宽×高

长=体积÷宽÷高

宽=体积÷长÷高

高=体积÷长÷宽

体积(容积)=底面积×高

底面积=体积÷高            高=体积÷底面积

正方体公式:

棱长和=棱长×12 棱长=棱长和÷12

表面积=棱长×棱长×6 (任意一个面积×6)

没盖的表面积=棱长×棱长×5

体积(容积)=棱长×棱长×棱长=底面积×棱长

三、体积单位换算:

高级单位化成低级单位  乘进率

低级单位化成高级单位  除以进率

进率: 1立方米=1000立方分米=1000000立方厘米

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

篇5:解简易方程(四) 教案教学设计(人教新课标五年级上册)

新塘小学 何济勇

教学内容:P105~106页例5、6和做一做。

教学目标:

1、初步学会ax±bx=c这一类简易方程的解法,知道计算这类方程的道理。

2、能正确解ax+bx=c的方程,提高学生的计算能力。

3、 渗透事物之间相互联系又相互转化的观点。培养学生认真计算,自觉检验的好习惯。

教学重点:ax+bx=c这一类方程的解法。

教学难点:化简形如ax+bx的含有字母的式子。

教学过程:

一、复习

解下列方程

3x-43=27    3x+4×3=27

二、新授

1、出示下图:看图自己提出数学问题并用含有字母的式子表示。

板书: 4x+3x         (4+3)x

说明:这个式子中含有两个未知数。这就是今天要学习的解简易方程。(板书课题)

(1)这个式子怎样计算呢?学生分组讨论怎样计算,师巡视。

(2)分组汇报讨论结果:可能出现两种情况:一种认为4x表示4个x,3x表示3个x,4x+3x一共是(4+3)个x,也就是7x。或者先求一共有多少部车:4+3,再求一共多少元,就是(4+3)x=7x。

(3)教师对两种思考给以充分肯定后说明:两种思考方法既有联系又有区别,最后的结果都是正确的。板书如下:

4x+3x=(4+3)x=7x

答:这一天共卖出玩具车7X元。

(4)思考:上午比下午多卖多少元?口头列式后,板书:4X-3X=X。

(5)订正并提示:1个x,可以写成x,1可以省略不写。

(6)引导学生小结:一个式子中如果含有两个x的加减法,可以根据乘法分配律和式子所表示的意义,将x前面的因数相加或相减,再乘以x,计算出结果。

(7)练习:

4X+5X= 3.5t-t= 7b+b= 12a-2a-4a=

3X+6X-8X= 2X+5X+3=

学生自己计算结果,集体订正。

订正时注意特殊类型如:3.5t-t      3x+6x-8x 2X+5X+3

2、将上题补充条件和问题:“玩具车一天共卖得56元,每辆玩具车多少钱?”

(1)生尝试列方程解答,师个别指导。

(2)集体订正,让学生讲计算过程,并板书解题过程。

解方程4x+3x=56

解: 7x=56

x=8

检验:把x=8代入原方程。

左边=4×8+3×8=56,右边=56。

左边=右边

所以x=5是原方程的解。

3、练习:P106做一做:独立完成,集体订正,计算小数时要注意小数点。

4、拓展:

师:其实,用方程解决问题在人类历史上早有出现,你们知道吗?请看书P106。

生看书后让他们谈一谈自己的古朴,以激发他们热爱数学的感情。

三、巩固练习

1、判断正误,对的画“√”,错的画“X”

(1)5x-4.7x==1.7x  (    )

(2)8x+0.06x=8.06x  (    )

(3)3.5x-x=3.4x    (    )

2、P107第4题。

3、对比练习:解下列方程

3X+2=20 3X+2X=20 3X+2X+5=20

4、全课小结:

今天我们学习的方程与前几节课学习的方程有什么不同?解这样的方程首先应该怎么做?

四、作业

P107第2题。

篇6:巧解应用题小学数学五年级上册第六单元教学预案 教案教学设计(人教新课标五年级上册)

《统计与可能性》

单元教材分析:

教学目标:

1.体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。

2.能按照指定的要求设计简单的游戏方案。

3.理解中位数在统计学上的意义,学会求中位数的方法。

4.根据数据的具体情况,体会“平均数”“中位数”各自的特点。

教学重、难点:对等可能性思想的理解对中位数在统计学意义上的理解

教学课时:4课时

第 一 课 时    事件发生的可能性

教学内容:P.98.主体图P.99.例1及练习二十第1-3题。

教学目的:

1、认识简单的等可能性事件。

2、会求简单的事件发生的概率,并用分数表示。

教学重点:感受等可能性事件发生的等可能性,会用分数进行表示。

教学难点:验证掷硬币正面、反面朝上的可能性为。

教学准备:主体图挂图或投影,老师、学生收集生活中发生的一些事件(必然的、不可能的、不确定的),硬币。

教学过程:

一、信息交流。

1、学生交流收集到的相关资料,并对其可能性做出说明。

师出示收集的事件,共同讨论。

2、小结:在生活中有很多的不确定的事件,我们现在一起来研究它们的可能性大小。

二、新课学习

1、出示主体图,感受等可能性事件的等可能性。

观察主体图,你得到了哪些信息?

在击鼓传花中,谁得到花的可能性大?掷硬币呢?

生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。

在生活中,你还知道哪些等可能性事件?

生举例…..

2、抛硬币试验

(1)分组合作抛硬币试验并做好记录(每个小组抛100次)。

抛硬币总次数 正面朝上次数 反面朝上次数

(2)汇报交流,将每一组的数据汇总,观察。

(3)出示数学家做的试验结果。

试验者 抛硬币总次数 正面朝上次数 反面朝上次数

德摩根 4092 2048 2044

蒲丰 4040 2048 1992

费勒 10000 4979 5021

皮尔逊 24000 1 11988

罗曼若夫斯基 80640 39699 40941

观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近。

3、师生小结:

掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是。

三、练习

1、P.99.做一做

2、练习二十 第1---3题

四、课内小结

通过今天的学习,你有什么收获?

反思:通过趣味提升,感受到生活中还有不等可能性的存大,让学生从无知到有知,从知到多知,拓展学生的视野,贴近学生生活实际,学活的数学,学有用的数学,通过设计转盘培养学生多方面的能力。

第 二 课 时

教学内容:P.101.例2及练习二十一第1-3题。

教学目的:

1、会用数学的语言描述获胜的可能性。

2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。

3、 通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。

教学重、难点:让学生认识到基本事件与事件的关系。

教学准备: 投影仪、扑克牌

教学过程:

一、复习

说出下列事件发生的可能性是多少?

1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出红色球的可能性是多少?白色呢?黄色?

2、商场促销,将奖品放置于1到9号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?

3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?

二、新授

1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。

出示击鼓传花的图画。

请学生说一说,击鼓传花的游戏规则。

小结:每一个人得到花的可能性相等,每个人得到花的可能性都是。

2、画图转化,直观感受

(1)每一个人得花的可能性是,男生得花的可能性是多少呢?

生发表意见,全班交流。……..

我们可以画图来看看同学们的想法是否正确。画图……..

生:从图中可以发现,每一个人得花的可能性是,两个人就是,……9个人就是,女生的可能性也是。

师:如果18个学生中,男生10人,女生8人,男生女生得到花的可能性又各是多少呢?……

(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?

(3)解决复习中的问题

拿到蓝色球的可能性是……

3、小结

4、巩固练习

完成P.101.做一做。

(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。

三、练习

完成练习二十一

1、第一题,准备9张1到9的扑克牌,通过游戏来完成。

2、第二题,学生在独立设计,全班交流。

3、第三题,独立思考,小组合作,全班交流。

四、课内小结

通过今天的学习,你有什么收获?

第 三 课 时

教学内容:P.103.例3及练习二十二第1-3题。

教学目的:

1、通过罗列出两人玩“剪子、石头、布”的所有可能的结果,计算出其可能性。

2、了解采用“剪子、石头、布”游戏的公平性。

3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。

教学重、难点: 不重复、不遗漏的列出所有可能的结果。

教学准备:投影仪、生收集生活中的等可能性事件

教学过程:

一、复习

1、生交流收集的等可能性事件,并说明其发生的可能性。

2、计算发生的可能性,首先看一共有多少种可能的结果,再看发生的事件又几种,最后算出可能性。

二、新授

1、同学们都会玩“石头、剪子、布”的游戏,谁能和老师一起玩?游戏……

这样确定谁胜谁败公平吗?

生发表意见。

如何利用方程来解应用题 教案教学设计(人教新课标五年级上册)下面我们就用可能性的指示,看看这个游戏是否公平?

2、罗列游戏中的所有可能。

可交流怎样才能将所有的可能都列出来,方法的交流。

小丽 石头 石头 石头

小强 剪子 布 石头

结果 小丽获 胜 小强获 胜平

3、通过观察表格,总结

一共有9种可能;小丽获胜的可能有3种,小强获胜的可能也是3种,平的可能也是3种。所以小丽获胜的可能性是,小强获胜的可能性是,二者相等,所以用“石头、剪子、布”的游戏来决定胜负是公平的。

4、反馈练习

P.103.做一做

重点说明:一共有多少种可能,如何想的。

注重学生判断的方法多样化,(1)计算出单数、双数的可能性;(2)其他方法,如双数只有一个6,而单数则有两个,因此末尾出现单数的可能是双数的两倍,因此这是不公平的。

三、练习

1、练习二十三第一题 独立完成,集评。

2、练习二十三第二题 可以采用初步判定,然后罗列验证的方法。

3、练习二十三第三题 制定游戏规则,小组内合作完成!

四、课内小结

通过今天的学习,你有什么收获?

第 四 课 时

教学内容:P.105--106.例4、例5及练习二十三。

教学目的:

1、了解中位数学习的必要性。

2、知道中位数的含义,特别是其统计意义。

3、区分中位数与平均数各自的特点和适用范围。

4、通过对中位数的学习,体会中为数在统计学上的作用。

教学重、难点:

教学准备:投影仪

教学过程:

一、导入新课

姓名 李明 陈东 刘云 马刚 王明 张炎 赵丽

成绩/米 36.8 34.7 25.8 24.7 24.6 24.1 23.2

这是一组同学在体育课上掷沙包的成绩统计表,你从这个表中得到哪些信息?

生交流。

二、新课学习

1、提问:你可以用一个数来表示这一组的同学掷沙包的水平吗?

生1:大概在23-25米之间。

生2:可以用他们的平均数来表示。

计算平均数得27.7,发现和平均数相差太远。

分析:为什么会出现这样的情况?

观察发现,有两个同学的成绩太高,而大多数同学的成绩都低于平均值,说明用平均数来表示这一组的一般水平不太合适。那用什么样的数合适呢?

2、认识中位数

中位数:把一组数据按大小顺序排列后,最中间的数据就是中位数,它不受偏大偏小数据的影响。

把掷沙包的成绩数据进行大小排列,找出最中间的数来表示这组同学掷沙包的一般水平。

辨析:中位数是一组数据按大小顺序排列后,最中间的数。

3、小结

平均数、中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好选用中位数来表示这组数据的一般水平。

4、教学例5 求一组数据的中位数

出示数据 ,问:用什么数来表示这一组的一般水平?

(1)求平均数

(2)按大小排列(从大到小,从小到大),求中位数。

(3)矛盾:一共有偶数个数 最中间的数找不到?

讨论……………..结论:一组数据中有偶数个数的时候,中位数是最中间的两个数的和除以2。

计算出中位数来。

(4)比较用平均数还是中位数合适。

小结:   区分平均数、中位数的适用范围。

5、在上面的数据中如果增加杨东的成绩2.94米,这组数据的中位数是多少?

排列大小,找出中位数。

6、课内小结

什么叫中位数?和平均数的区别。

三、练习

练习二十三

1、第1--2题

2、第3题

课后作业 第4题

四、课内小结

通过今天的学习,你有什么收获?

大同小学   余芃

2台同样的抽水机,3小时可以浇地1.2公顷,1台抽水机每小时可以浇地多少公顷?

解答这道应用题,首先同学们应知道:

1、2台抽水机浇地1.2公顷,1台抽水机浇地多少公顷?

列式是:1.2÷2=

2、3小时浇地1.2公顷,每小时浇地多少公顷?

列式是:1.2÷3=

这两题都是求单一量,我们知道求单一量用除法计算。这道题是求“1台抽水机每小时可以浇地多少公顷”,所求的单一量跟“台数”“时间”两个量有关,所以要除以 “台数”,除以“时间”,是连除应用题。

作业中易错的是有些学生不知用哪个量作被除数。同学们可以这样想:

1、首先要读懂题意。1.2公顷是浇地的总量,应作被除数。

2、“2台同样的抽水机,3小时可以浇地1.2公顷,”要求 “1台抽水机每小时可以浇地多少公顷”,要除以 “2台”,除以“3小时”。

3、还可以看单位进行判断。要求“多少公顷”,应该用“1.2公顷”作被除数。

篇7:课题:解方程 教案教学设计(人教新课标五年级上册)

课型:新授课 课时安排:1课时

教学目标:

1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。

3、培养的分析能力应用所学知识解决实际问题的能力。

4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。

教学重点:理解并掌握解方程的方法。

教学难点:理解并掌握解方程的方法。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?

2、判断下面哪些是方程吗?

(1)a+24=73       (2)4x<36+17       (3)234÷a>12

(4)72=x+16        (5)x+85            (6)25÷y=0.6

3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?

4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。

二、探究新知:

认识方程的解和解方程:

1、看图写方程。

出示上节课用天平称一杯水的情景图。(100+X=250)

2、求方程中的未知数

教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?

学生交流后汇报:

方法一:根据加减法之间的关系250-100=150,所以X=150

方法二:根据数的组成100+150=250,所以X=150

方法三:100+X=250=100+150,所以X=150

方法四:假如在方程左右两边同时减去100,那么也可得出X=150

3、引出方程的解和解方程的概念。

教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。

4、辨析方程的解和解方程两个概念。

教师:方程的解和解方程这两个概念有什么区别?

5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?

探究例1:

1、出示例1图,让学生说图意后列出方程。

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。

x+3=9

解:  x +3-3=9-3

x =6

4、引导学生检验方程的解。

探究例2:

1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?

2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。

3、学生独立完成解方程。

3x=18

解:  3x÷3=18÷3

x =6

方法总结:

1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?

2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。

三、应用巩固:

1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。

2、解方程。

x+3.2=4.6          x-1.8=4           x-2=15

1.6x=6.4            x÷7=0.3          x÷3=2.1

3、我会选

(1)32+χ=76的解是(   )

A、χ=42      B、χ=144     C、χ=44

(2) χ-12=4的解是(   )

A、χ=8      B、χ=16     C、χ=23

(3)5χ=60的解是(   )

A、χ=65      B、χ=55     C、χ=12

(4) χ ÷20 =5的解是(   )

A、χ=15      B、χ=100     C、χ=4

4、解决问题。

教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

四、全课小结、课外延伸:

教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

五、知识扩展:

1、引出讨论:如果在解方程时,遇到减数或除数是未知数时,利用等式的基本性质如何解呢?

2、解方程。

100- x =15                  180÷x=30

课后反思:

学生在解方程的时候都喜欢用等式各部分间的关系来解,很少用到天平原理,不管用什么方法,只要能解对方程就可以了,但用等式各部分间关系解题时,要与学生强调加、减、乘、除各运算在移到数字的时候,符号有什么的变化,学生也常在这些地方出错。

篇8:第8课时:用方程解决问题 教案教学设计(人教新课标五年级上册)

教学内容 P60:例3、及61页的做一做,练习十一的第8题。

教学目标 1、初步学会如何利用方程来解应用题

2、能比较熟练地解方程。

3、进一步提高学生分析等量关系的能力。

知识重难点 找题中的等量关系,并根据等量关系列出方程。

教学辅助 课件

教学过程 教学方法和手段

教学过程 一、复习导入

解下列方程:

x+5.7=10    x-3.4=7.6    1.4x=0.56      x÷4=2.7

学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。

二、新知学习。

1、教学例3.

(1) 出示题目。(课件)

出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。

“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”

我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。

同学们想想,“警戒水位是多少米?”

(2)分析,解题。

根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。

它们之间有哪些数量关系呢?(板)

警戒水位+超出部分=今日水位①

今日水位-警戒水位=超出部分②

今日水位-超出部分=警戒水位③

同学们能解决这个问题吗?

学生独立解决问题。

(3)评讲、交流。(侧重如何用方程来解决本题。)

学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。

学生列出的方程可能有:

① x+0.64=14.14   ②14.14﹣x= 0.64    ③14.14﹣0.64= x

每一种方法,都需要学生说出是根据什么列出的方程。

如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。

对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。

对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。

(4)小结

在解决问题中,我们是怎样来列方程的?

将未知数设为x,再根据题中的等量关系列出方程。

课堂练习(1)解决“做一做”中的问题。

从题中知道哪些信息?有哪些等量关系?

用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。

(2)独立完成练习十一中的第8题。

小结与作业

课堂小结 这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?

课后追记

让学生看懂线段图并尝试画出线段图,然后在线段图上标注相应的已知数字和未知数X,是帮助学生理解并列出方程的一个很好的方法。

列方程解应用题

解:警戒水位+超出部分=今日水位①            x+0.64=14.14

今日水位-警戒水位=超出部分②       x+0.64-0.64=14.14-0.64

今日水位-超出部分=警戒水位③                x=13.5

答:警戒水位是13.5米。

篇9:解简易方程教学设计 (人教新课标五年级上册)

道滘镇中心小学 卢凤香

教学内容:义务教育课程程标准实验教科书数学(人教版)小学数学第9册57-58页的内容。

教学目标:

1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

2、培养学生的分析能力应用所学知识解决实际问题的能力。

3、帮助学生养成自觉检验的良好习惯。

重点、难点:理解并掌握解方程的方法。

教具准备:多媒体课件

教学过程:

一、复习铺垫

1、方程的意义

师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

生:含有未知数的等式叫方程。

2、判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73   (2)4x<36+17  (3)234÷a>12

(4)72=x+16    (5)x+85       (6)25÷y=0.6

生:(1)(4)(6)是方程。

师:你为什么说这三个是方程呢?

生:因为它含有未知数,而且是等式。

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

生:我知道杯子重100克,水重X克,合起来是250克。

师:你能根据这幅图列出方程吗?

生:100+X=250.

2、求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

生1:根据加减法之间的关系250-100=150,所以X=150.

生2:根据数的组成100+150=250,所以X=150.

生3:100+X=250=100+150,所以X=150.

生4:假如在方程左右两边同时减去100,那么也可得出X=150.

3、验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

学生自学后汇报。(板书)齐读两个概念。

4、辨析方程的解和解方程两个概念

师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

生:要看这个数能不能使方程左右两边相等。

师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

5、巩固练习,加深理解。

师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

(二)解简易方程

1、复习等式的性质

师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

(1)如果5+3=8,那么5+3-3=8(     )

(2)如果50-13=37,那么50-13+13=50(      )

(3)如果a - 7=8,那么a - 7 + 7=8(      )

(4)如果X+9=45,那么X+ 9-9=45(      )

师:你是根据什么填空的?

生:等式的性质。

师:等式有什么性质呢?我们齐来说一遍。

2、理解方程与等式的联系,引出课题。

师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

3、出示例1图,列出方程。

师:图上画的是什么?你能列出方程吗?

生:X+3=9

师:这个方程用天平怎么表示呢?

生:天平左边放X个和3个球,右边放9个球。(电脑显示)

4、引导学生思考怎样解方程。

师:我们解方程的目的是求X,怎样使天平一边只剩x呢?

生:天平两边同时减去3个球。(电脑显示)

师:天平两边还平衡吗?怎样反映在方程上呢?

生:方程两边同时减3。(结合学生回答板书)

师:为什么同时减3而不是其它数呢?

生:方程两边同时减3就可以使方程一边只剩X。

5、检验方程的解。

师:X=6是不是方程的解呢?

生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

6、强调解方程的格式步骤

电脑显示:      解方程要注意:

(1)先写“解”,等号要对齐。

(2)做完后要注意检验。

7、看书质疑

8、学生练习

师:你会学老师这样解方程吗?请同学们解方程X+3.2=4.6,   x+19=30。

9、学生板书练习集体订正

师:你是怎样解这个方程的,为什么方程两边要同时减19.

生:使方程一边只剩X。

师:在这个过程中哪些是解方程,哪些是方程的解。

生:我们计算的过程是解方程,而x=11是方程的解。

10、小组讨论怎样解方程X-2=15,X-1.8=4

师:请同学们小组讨论怎样解方程X-2=15,X-1.8=4说出你这样做的根据

生:我根据方程两边同时加上一个数,方程两过仍然相等来解这两个方程的。

三、实践应用,加深理解

1、下面的方程你打算怎样算。

①X+0.3=1.8

② X-1.5=4

③X-6=7.6

④X+5=32

2、我会填。

(1)含有(              )的(             )叫方程。

(2)使方程左右两边相等的(                 )叫方程的解。

(3)求(                             )叫做解方程。

(4)x-15=20 这个方程的解是(                        )

3、我会选

(1) χ+32=76的解是(   )

A、χ=42      B、χ=144     C、χ=44

(2) χ-12=4的解是(   )

A、χ=8      B、χ=16     C、χ=23

(3) χ+8=60的解是(   )

A、χ=480      B、χ=52     C、χ=7.5

(4) χ -3.5 =1.5的解是(   )

A、χ=5      B、χ=20     C、χ=2

4、看图列方程并解答

5、解决问题

师:请同学们认真观察图,你能根据题意列出方程并解方程吗?

学生练习

四、全课小结,课外延伸

师:这节课你有什么收获?

师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

五、布置作业

1、复习本节课的内容。

2、完成课本63页练习十一第5、6题第1、2横行。

篇10:方程的意义 教案教学设计(人教新课标五年级上册)

课题:方程的意义 课型:新授课 课时安排:1课时

教学目标:

知识目标:理解与掌握方程的意义,弄清方程和等式两个概念的关系。

能力目标:培养学生认真观察、思考分析问题的能力。

情感目标:激发学生求知欲和好奇心,感受数学探索的乐趣,体会“生活中处处蕴涵数学知识”; 渗透数学来源于实际生活辩证唯物主义思想。

教学重点:理解和方掌握程的意义,会用方程的意义去判断一个式子是否是方程。

教学难点:会用方程表示简单情境中的等量关系。

教学准备:教学课件。

教学流程:

一、导入新课:

教师:我们已经学习了用字母表示数,今天学习解简易方程。这部分知识非常重要,掌握了它会使我们多了一种解题方法,可以使某些较难的应用题化难为易,有助于提高我们分析问题和解决问题的能力。

二、探究新知:

(一)探究方程的意义:

介绍天平:(课件出示天平图)

天平实验,引出方程:

1、第一步,称出一只空杯子重100克;

第二步,往杯子里倒人约X克水,使天平出现倾斜。

第三步,增加100克砝码,发现了什么?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?(100+x>200)

第四步,再增加100克砝码,天平往砝码这边倾斜。哪边重些?怎样用式子表示?(100+x<300)

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?( 100+x=250)

2、教师:①观察100+x=250:这是一个等式吗?这个等式有什么特点?

②像100+x=250这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?(方程)

小结:像100+x=250这样的含有未知数的等式,称为方程。

3、深入探讨理解:

①根据方程的含义,方程应该具备哪些条件,

②方程与等式之间有什么关系,你能用集合图来表示吗?

写方程,加深对方程的认识:

三、练习巩固:

1、完成课本第54页做一做。在是方程的式子后面打上“√”。

判断并说胡理由。通过交流使学生明确判断一个式子是不是方程,一看是不是等式,二看有没有未知数。

2、判断,对的在括号里打√,错的打×。

(1)等式都是方程,方程都是等式。    (      )

(2)含有未知数的式子叫方程。        (      )

(3)  不是方程。               (      )

3、用方程表示下面的等量关系。

(1) 加上35等于91。              (2) 的3倍等于57。

(3) 减31的差是86。              (4)7.8除以  等于1.3。

4、先说出下面题目中的数量间的相等关系,然后用方程表示出各题中数量间的相等关系。

(1)文具店原有乒乓球40筒,卖出χ筒,还剩18筒。

(2)某班有男生23人,女生χ人,共有50人。

(3)小红买了5支铅笔,每支χ元,共付9元。

(4)一头大象重5.1吨,一头牛重χ吨,这头牛比大象轻4.75吨。

(5)甲地距乙地S千米,一辆汽车以每小时42千米的速度从甲地开往乙地,12小时到达。

5、开放题:妈妈生日到了,小明想用12元零花钱为妈妈买几枝康乃馨,康乃馨每枝X元,他的钱如果买4枝则多3.6元,如果买6枝则少0.6元。根据题目提供的信息,选择有用的条件,你能列几个方程?(同桌议一议)

四、课堂总结:

教师:想一想,这节课学习了什么?你有哪些收获?

课后反思:

学生对什么是方程都有所了解,本节课是成功的。

篇11:第四单元简易方程 教案教学设计(人教新课标五年级上册)

教材简介:

本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。

单元教学目标:

1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公

式,能够在具体的情境中用字母表示常见的数量关系。

2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程

3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。

教学建议:

1. 关注由具体到一般的抽象概括过程。

2. 用好教材资源,适当扩展联系实际的范围。

3. 重视良好学习习惯的培养。

课时安排:

1.用字母表示数      3课时

2.解简易方程       12课时

1.用字母表示数

第一课时:用字母表示数(一)

教学内容:教材P44-P46例1-例3  做一做,练习十第1-3题

教学目的:

1、使学生理解用字母表示数的意义和作用。

2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。

4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。

教学重点:理解用字母表示数的意义和作用

教学难点:能正确进行乘号的简写,略写。

教学准备:投影仪

教学过程:

一、初步感知用字母表示数的意义

教学例1。

1、投影出示例1(1):

引导学生仔细观察两行图中,数的排列规律。

问:每行图中的数是按什么规律排列的?(指名口答)

2、学生自己看书解答例1的(2)、(3)小题

提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程A、B两地,C大调…….

二、新授:

1、学习用字母表示运算定律和性质的意义和方法。

教学例2:

(1)学生用文字叙述自己印象最深的一个运算定律。

(2)如果用字母a、 b或 c表示几个数,请你用字母表示这个运算定律。

(3)当用字母表示数的时候,你有什么感觉?

看书45页“用字母表示…….”这一段。

(4)你还能用字母表示其它的运算定律和性质吗?

请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

加法交换律:a+b=b+a    加法结合律:(a+b)+c=a+(b+c)

乘法交换律:a×b=b×a  乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

减法的性质:a-b-c=a-(b+c)

除法的性质:a÷b÷c=a÷(b×c)

2、教学字母与字母书写。

引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

a×b=b×a            (a×b)×c=a×(b×c)

可以写成:ab=ba或ab=ba    (ab)c=a(bc)或(ab) c=a(bc)

(a+b)×c=a×c+b×c

可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc

其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

3、教学用字母表示计算公式的意义和方法。

教学例3(1):

师:字母不但可以表示运算定律还可以表示公式、及数量关系。

用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

学生先自己试写,然后小组交流,看书讨论。

问:

(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

(2)字母和数字之间的乘号省略后,谁写在前面?

a2表示什么?2a表示什么?

师强调:a  表示两个a相乘,读作a的平方。

口答结果:3的平方    5的平方    6的平方

省略数字和字母之间的乘号后,数字一定要写在字母的前面。

4、练习:省略乘号写出下面各式。

x×x     m×m     0.1×0.1    a×6     3×n    χ×8   a×c

教学例3(2):

学生自学并完成相关练习。两生板演。师强调书写格式。

三、巩固练习:

1、完成做一做1、2题。

要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。

2、练习十:第1-3题  先独立解答后,再集体评议。

四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)

板书设计:

用字母表示数(一)

乘法交换律:a×b=b×a             S=a×a      C=a×4

可以写成:  ab=ba或ab=ba     S =a2           C=4a

课后小记:

这是学生在小学阶段第一次系统接触代数知识。这一单元学生掌握的好坏将直接影响到他们初中代数知识的学习。因此,我将其放在十分重要的地位。

在学习周长与面积的计算公式时反馈出学生C与S不分。为此,我用形象的比喻帮助学生记忆:摸图形的周长时就要用手沿边画一周,所以是C;摸面积是时就要用手把物体的表面全部都摸到,所以是S。通过这种动作形象记忆法,绝大多数同学能够正确区别这两个字母的含义。

今天十分紧张的在一节课内完成了全部教学内容,但从作业反馈来看却差强人意。问题主要表现在以下几方面:

1、省略乘号写出各式子问题较大。如b×1应该简写成b,而学生却常常会写成1b,没想到1乘任何数还得原数;x×x应该简写成x2,可学生却往往习惯于只省略乘号写成xx;(a+b)×2应该简写为2(a+b),而学生却常常会写成(a+b)2,忘记将数字放在字母的前面。

2、作业格式错误。部分学生求图形周长和面积时列式结果均正确,但却不喜欢将已知数据代入计算公式求值的格式。看来,这中间还需要一段适应调整的过程。

第二课时:用字母表示数(二)

教学内容:教材P47-P48例4  做一做,练习十第4-6题

教学目的:

1、使学生进一步理解用字母表示数的意义和作用。

2、能正确运用字母表示常用数量关系,理解式子的含义。

3、能较熟练地利用公式、常用数量关系求值。

教学重点:能正确运用字母表示常用数量关系。

教学难点:理解字母所表示的含义,知道在含有字母的式子中字母的取值是有一定范围的。

教学准备:投影仪

教学过程:

一、复习。

1、用字母表示数,有哪些好处?但要注意什么?

2、用字母a、b、c表示乘法分配律。

3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。

4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。

2×3   a×7    14+b    a÷7    a×a    5-x    0.6×0.6

二、新授。

导入:我们学过用字母表示运算定律,计算公式,而含有字母的式子还可以表示数量。(板书课题:用含有字母的式子表示数量关系)

1、教学例4(1):

(1)猜一猜老师今年多大了?(指几名学生来猜)

师:老师不告诉你们实际年龄,只告诉你们我比XX同学大23,请你们算一算,XX同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁?

跟着学生的回答,老师板书:

XX同学的年龄(岁)    老师的年龄(岁)

1                1+23=24

2                2+23=25

请一名同学到黑板上接着写,其他同学在草稿本上写一写。

师:这样的式子还能写下去吗?(师在表下补一栏,并打上省略号)

师:XX同学的年龄在变,老师的年龄也在变,但有没有不变的?

师:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)

结合讨论情况师适时板书:

法1:XX的年龄+23岁=老师的年龄

法2:a+23

提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。

在式子a+23中,a表示什么?23表示什么?a+23表示什么?

(a表示XX的年龄,30表示老师比XX大的年龄,a+23即表示老师的年龄)

想一想:a可以是哪些数?a能是200吗?为什么?

(3)结合关系式解答:当a=15时,老师的年龄是多少?

2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。

3、教学例4(2):

1969年7月21日,美国宇宙飞船“阿波罗11”号登上月球,首次实现人类登上月球的梦想。在月球上宇航员是跳着走路的,你知道是为什么吗?这是因为月球的引力只有地球的1/6。

引导学生看书讨论:(可分成四人小组进行讨论)

(1)从图、表中你了解到哪些信息?

(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?表中的X表示什么?6X呢?

(3)式子中的字母可以表示哪些数?出示举重记录的小资料。

人的寿命是有限的,能举起的重量也是有限的,因此,字母表示的数也是有限的。

(4)图中小朋友在月球上能举起的质量是多少?

6X=6×15=90,使学生掌握求含有字母算式值的正确写法。

请小组派代表回答以上问题。

4、总结:今天你学会了什么?有哪些收获?

三、巩固练习:

1、独立完成P48做一做 集体评议。

2、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)

四、作业:

1、独立完成P50 第5题

2、独立完成P50 第6题

解答第6题时可提问:v =            t =            让学生掌握三种量之间的数量关系。

注意巡视指导求式子值的书写格式。

即:S=vt=150×30=4500

板书设计:

用字母表示数(二)

例4(1):                                        例4(2):

法1: XX的年龄+23岁=老师的年龄    人在月球上能举起的质量是:6a

法2: a+23                                   小朋友在月球上能举起的质量是:

当a=11时,老师的年龄是:               6a=6×15=90

a+23=11+23=34

教学反思:

本课以学生感兴趣的内容为话题,探讨老师与郑X同学之间的年龄关系,引发学生自主思考,亲近数学,激发起他们对新知的学习热情,拉近了与新知的距离。学生在草稿本上由郑X同学的年龄计算老师年龄时,产生了厌烦的心理,自然而然地想到用更简便的方式来表示老师的年龄。在这一过程中,使学生经历了由数到式的认识过程;在这一过程后,使学生感受到数学的简约美,从而加深了学生对字母表示数的优越性的理解。

困惑:教材50页第5题“鸟的骨骼约是体重的0.05~0.06倍,人的骨骼约是体重的0.18倍。一个人重a千克,骨骼约是( )千克。”按以往老教材的说法,这里只能说人的骨骼约是体重的18%。因为不足1倍,所以只能说是几分之几或零点一八,为何在这题还能以“倍”自居?不知道是否与老教材有所区别。

篇12:稍复杂方程(三) 教案教学设计(人教新课标五年级上册)

课题:稍复杂方程(三) 课型:新授课 课时安排:1课时

教学目标:

1、会根据两个未知量之间的关系,列含有两个未知数的方程解“已知有两个数的和或差,和两个数的倍数关系,求两数各是多少”的实际问题,理解和掌握列方程解这类问题的数量关系和解题方法;

2、在教学解题思路的同时培养初步的分析、综合、类比、比较的能力;

3、在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯

4、在教学中渗透环保教育。

教学重点:学会根据两个未知量之间的关系,列方程解答含有两个未知数的实际问题。

教学难点:理清题中的数量关系,找出等量关系。恰当地设未知数,并根据数量据两个未知量之间的关系,列出方程。

教学准备:教学课件。

教学流程:

一、复习铺垫:

1、用含有字母的式子填空。

(1)科技组的男同学人数是女同学的3倍。设女同学有X人,男同学有(        )人;设男同学有X人,女同学有(          )人。

(2)美术组的男同学人数比女同学多18人。设女同学有X人,男同学有(        )人;设男同学有X人,女同学有(          )人。

比较两种设求知数的方法,选择设哪个量为X,另一个量就比较容易表示?

(3)书法组有女同学X人,男同学人数是女同学的2.5倍。男同学有(      )人,男女同学一共有(            )人,男同学比女同学多(             )人。

2、地球科普知识介绍,引出准备题。

(1)地球科普知识介绍:(电脑演示出现地球)同学们,这就是我们人类赖以生存的地球,你对它了解多少呢?地球表面大部分的地方都被海洋所覆盖,海洋的面积要远远超出陆地的面积。因此,也有人把地球称为“水球”,所以通过卫星,地球看上去是漂亮的深蓝色。你想知道陆地面积、海洋面积到底有多少吗?好,下面你给老师提供一些信息。   (课件出示:地球上的陆地面积为1.5亿平方千米;

海洋面积约为陆地面积的2.4倍;)

(2)教师:你能根据老师给出的关于地球面积的信息,提出一个数学问题吗?

反馈学生提出的问题,并引出准备题:

地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍。地球的表面积是多少亿平方千米?

理解题意后,引导学生画出线段图,并就学生找出数量关系, 独立完成计算。

二、探究新知:

1、(课件出示:)  地球的表面积为5.1亿平方千米;

其中,海洋面积约为陆地面积的2.4倍。

教师:现在又能提出哪些数学问题?

引出例3:地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。

地球上的海洋面积和陆地面积分别是多少亿平方千米?

2、让学生比较复习题与例3的相同点和不同点。

3、引导学生把准备题的线段图改为例3的线段图,引导学生进一步理解题意和找出题目中数量关系。

4、引导学生小组讨论:这道题要求的数量有两个,根据题目的已知条件我们应设哪一个数量为x比较简便?为什么?

5、让学生任意选择一个喜欢的关系式尝试列方程解答。

6、反馈学生的尝试完成情况,引导学生列方程完成例3(重点在于解方程方法的指导)。

解:设陆地面积为X亿平方千米,海洋面积为2.4X亿平方千米。

陆地面积+海洋面积=地球上的表面积

x+2.4x=5.1

(1+2.4)x=5.1       (这是用了什么运算定律?)

x=1.5

7、教师:方程求出了陆地面积后,海洋面积怎样求呢?根据是什么?

5.1-1.5=3.6           (利用和的关系)

或2.4X=1.5×2.4=3.6     (利用倍数的关系)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

8、引导学生进行检验。

教师:我们做得对吗?如何检验呢?除了代入方程检验之外,还可以怎样验算?

9、引导学生观察讨论:今天我们学习的列方程解决的这种问题有什么特点?怎样怎样列方程解答?

归纳小结:今天我们学习的列方程解决的这种问题是已知两个数量的倍数关系,以及这两个数量的和或差的关系,求这两个数量各是多少?我们一般根据这两个数量的倍数关系,设一倍数的数量为x,另一个数量用含有字母的式子表示,再根据这两个数量的和或差的关系,找出等量关系,列出方程求出一个数量,最后再利用先求出的数量,求出另一个数量。

三、练习巩固:

1、解方程。

7x+9x=80                  3.6x-0.9 x=5.4

2、看图列方程(单位:棵)

3、铅笔的支数是钢笔的3倍,铅笔比钢笔多8支,铅笔和钢笔各有多少支?列方程是(     )。

解:设钢笔有x支,铅笔有3x支。

① 3x+x=8           ② 3x-x=8           ③ (x+8)÷x=3

4、、试一试,我能行:列方程解决问题。

(1)小英买了一枝铅笔和一个练习本,一共花了1.5元,练习本的价钱是铅笔价钱的2倍。铅笔和练习本的单价各是多少钱?

(2)小红妈妈年龄是小红的4倍,小红比妈妈少27岁。她们俩人的年龄各是多少岁?

板书设计:

稍复杂方程(三)

例3:解:设陆地面积为X亿平方千米,海洋面积为2.4X亿平方千米。

陆地面积+海洋面积=地球上的表面积

x+2.4x=5.1

(1+2.4)x=5.1

x=1.5

5.1-1.5=3.6           (利用和的关系)

或 2.4X=1.5×2.4=3.6     (利用倍数的关系)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

课后反思:

在稍复杂方程应用题的教学中,可以让学生先对应用题进行分类,因为并不是每一种应用题都要去分析数量关系,可以用画图、列表法等进行数量的分析,这样有助于学生的学习。

篇13:稍复杂的方程 教案教学设计(人教新课标五年级上册)

第六课时

教学内容:教材第61页例4,练习十一的第9-11题。

教学目标:

1、理解和掌握列方程解答问题的步骤和基本方法,能够正确列出ax=b的方程解答比较容易的问题。

2、自主探究,正确地列出方程解答问题。

3、培养学生独立探究的好习惯,并渗透环保教育。

教学重点:能够正确列出ax=b的方程解答比较容易的问题。

教学难点:根据题意找到等量关系,列出方程。

教学准备:例题情境图。

教学过程:

一、导入新课

1、你知道一个滴水的水龙头每分钟浪费多少水吗?如果想要知道每分钟浪费的水,你能想到什么办法?

介绍教材中一位少先队员的做法:拿桶接了一段时间,然后称出其一共接了多少质量的水。

今天我们一起来研究这个问题。[板书课题:解方程]

二、探究新知

1、出示教材第61页例4的情境图,组织学生审题,分析题目的已知条件和问题。

2、找出题目的等量关系。

提问:半小时的接水量表示什么?

每分钟滴水量、30分钟、半小时的滴水量三者之间有什么关系?

[板书: 每分钟滴水量×30=半小时滴水量

半小时滴水量÷每分钟滴水量=30

半小时滴水量÷30=每分钟滴水量]

3、根据等量关系式,哪些量是已知的?哪些量是未知的?我们应该设哪个量为未知数?

[板书:设每分钟滴水量为X克]

怎样根据等量关系列出议程,与同位说一说自己的想法。

提醒:设每分钟滴水量为X克,与已知条件“共接水1.8千克”单位不一致,应该怎样解决呢?

[板书:1.8kg=1800g]

组织学生列出方程,并在课本上完成解题过程的填空。提醒学生要验算。指名学生回答,集体订正。

[板书:解;设每分钟滴水量为X克。

每分钟滴的水×30=半小时滴的水

1.8kg=1800g

30x=1800

30x÷30=1800÷30

x=600

与同位交流验算的过程,集体核对。

三、巩固练习

1、教材练习十一第6题。让学生找出题目中的数量关系,指名口答。再根据数量关系列出方程解答。

2、实践运用

学校买来20米长的布,准备做16件儿童表演服。每件儿童表演服用布多少米?

王老师买奖品,其中有42棵练习本,是日记本的3倍。日记本有多少本?

四、全课小结:说说你今天有什么收获?

板书设计:                           解方程

例4

解:设每分钟滴水量为X克。

每分钟滴的水×30=半小时滴的水

1.8kg=1800g

30x=1800

30x÷30=1800÷30

x=600

验算(略)  答(略)

课后小记:

校领导对本课教学设计提出以下意见和建议:

1、从课堂反馈来看,本课的导入问题设计不太合适。当问“想要知道每分钟浪费的水,你能想到什么办法”时,学生回答拿一个容器接水龙头的滴水,1分钟后用工具测量所接水的质量。如果按学生的方法已经能够直接测量出结果,那还需要列方程解答吗?所以建议先出示“一个滴水的水龙头浪费水,同学们拿桶接了半小时,共接了1.8千克水。”然后请同学们思考知道这两个条件可以求出什么问题,如何用算术方法解答,并说明列式理由。这样既能够直奔主题,又能够使学生主动思考三个数量之间的关系。

2学生质疑“我想知道这个水龙头1小时共浪费多少水”,教师以这个问题不是咱们本节课研究的重点,只请一名学生口头列式并计算出结果后即一笔带过。其实,这里可适当拓展,让学生也试着分析其数量关系式。

3学生在新授前通过预习共提出了以下五个想要了解的问题“我想知道这个水龙头1小时共浪费多少水”、“怎样求每分钟滴水量为多少”、“为什么要将1.8千克要化成克”、“列的方程是不是已经学过的”“这题除书上的解法外还有没有其他解法”5个问题。我在新授前解决了第1个问题,紧接着我将学生的问题按照教学的顺序重新进行了编号,在教学中接号依次解决。校领导建议这些问题不必编号,当教师进行到某个教学环节时,适时指明所需要解决的相应问题即可。

4在评课时,校领导首先让我自己谈一谈本课最成功与失败之处。当时,我就谈到学生质疑的水平还有待提高,他们只重结果,却没有刨根问底的精神。大家普遍只关注到怎样解决这一实际问题,却少有人去关注为什么可以这样列方程(算式)。在本课的教学中,我是在引导学生读题后,要求学生去分析三种数量之间的关系,再选择其中最喜欢的一种列方程或算式解答。等量关系的引入很被动,学生解决也很被动,此处他们的学习热情较质疑时明显下降。如何调整教学,能够使他们的情绪始终高昂呢?校领导建议:在教学中教师应该再大胆些,放得更开些,由于有例3的学习作基础,这里可以放手让学生先尝试解答例题,不会的学生可以建议他们翻开书本自学,其他学生则独立完成。在全班交流时,通过追问的方式将三种数量关系式一一呈现出来。这样的学习就是自主探究式的学习,这样的学习,学生学得更积极主动。

5、当教学完三种不同解法后,我请学生对不同解法进行点评,他们补充并完善了板书中的设和答,我也就顺手将答板书在黑板上,最后才对结果进行了验算。其实这种做法不严谨,应该先引导学生验算完后再写答,因为如果在难处中发现有错可以修正,不能写完答后再验算。

再教改进设计:

补充复习环节,请学生思考要求下列问题必须知道哪两个条件:

还剩多少米布?

要求速度

平均每天跑多少米?

平均每分钟浪费多少水?

由最后一个问题直接引入本课的学习。这样不仅可以帮助学生提高分析数量关系的能力,同时能够顺畅地引入新课的学习。

第一课时

教学内容:教材第三5页例1。练习十二的第1-6题。

教学目标:

1.学生能根据等式的基本性质解形如ax±b=c的方程,初步学会列方程解决一些简单的实际问题。

2.培养学生抽象概括的能力,发展学生思维灵活性,进一步提高学生的分析能力。

3.学生感受数学与现实生活的联系,培养学生的数学运用意识与规范书写和自觉检验的习惯。

教学重点:掌握解形如ax±b=c方程的解法。

教学难点:正确找出数量间的相等关系,列出方程。

教学过程:

一、复习铺垫:

1、       解方程。

X-2.5=10

0. 4X=12

3.2+X=40

2、       根据下列句子说出其数量间相等的关系。

1)    女生比男生人数的3倍少10人。

2)    这个月比上个月水电费的2倍多200元。

二、情景导入:

1、同学们见过足球吧?(出示1个足球)那你们观察过足球上的花纹有什么特点呢?

(出示例1)一起观察挂图,问:同学们能从图中获得什么信息?要求什么问题?

2、师:几位同学的观察能力都很强。老师还知道:那款黑白相间的足球是1970年墨西哥世界杯的比赛用球,此后的一系列世界杯用球都是在此基础上加以改进的。

三、探究新知:

1、      小组合作探究解决问题的方法:

师:刚才有一位同学想知道黑色皮有多少块,用我们学过的知识怎样解决黑色皮有多少块呢?

小组讨论,合作交流:

(一部分学生用算术的方法解答,在学生讲解题思路时,老师可以用线路图表示; 另一部分学生找到题中的等量关系,并依据等量关系式列出方程;还有另外的学生找到另外的等量关系式,列方程。)

师:第一小组的同学用我们前面学过的知识成功的解决了这个问题,在解决问题的过程中,能运用画线段图的方法,帮助分析,很善于动脑。其他同学依据不同的数据关系列出较复杂的方程,怎样解答呢?今天我们就来学习“稍复杂的方程”。(板书课题)

2、   小组合作探究稍复杂方程的解法:

1)    生:我们还可以用 黑色皮的块数×2=白色皮的块数+4 这个等量关系式列方程,最后求出 X=12,还要检验12是不是这个方程的解。(学生在黑板上展示解方程的步骤)

师:这位同学特别会想办法,利用我们原来学过简单方程的方法解决了这个问题,而且还有检验方程的好习惯。但像 2X-20=4 和 2X-4=20 这样的方程能转化成我们原来学过的简单的方程再解答吗?

2)(两个学生在黑板上展示两个不同方程的解法步骤,并检验)

师:同学们真了不起,这几个小组解答较复杂的方程都是先转化成简单的方程,然后用学过的知识去解决。请同学们不要忘记,最后要检验结果是否正确。

大家在用方程解决问题的时候,有什么共同特点吗?步骤是什么呢?

(生答完特点后,师生共同总结列方程解决问题的步骤:

①  弄清题意,找出未知数用X表示;

②  分析、找出数量间的相等关系,列方程;

③  解方程;

④  检验并写答语。)

四、     巩固拓展:

1、解下列方程

4X+13=365

8+4X=56

3X-2=28

2、说出数量间相等的关系。

故宫的面积比天安门广场面积的2倍少16万平方米。

猎豹的速度比大象的2倍还多30千米。

亚洲的面积比大洋洲面积的4倍还多812万平方千米。

地球绕太阳一周的时间比水星绕太阳一周所用时间的4倍还多13天。

3、P66 第二题

五、     全课总结:

本节课你有什么收获?

作业:P66-P67 练习十二 1、3、4

板书设计:              稍复杂的方程

例1

解:设共有X块黑色皮。

黑色皮的块数×2-白色皮的块数=4

2X-20=4

2X-20+20=4+20

2X=24

2X÷2=24÷2

X=12

验算:方程左边=2X-20=2×12-20=4

方程的右边=4

左边=右边

所以X=12是方程的解

答:共有12块黑色皮。

课后小记:

本节课担负着双重任务,不仅要引导学生正确分析等量关系,学会列方程,同时还要教会他们解形如ax±b=c的方程,所以在教学过程中老师要注意节奏的调控,重难点处应把握好轻重缓急。

在尝试用算术方法解答此题过程时,我班学生错误频频。有的用20÷2-4,还有的用(20-4)÷2……。当然,也正是由于有了这些错误才使得学生对方程充满期待,正是因为这些错误才使学生倍感方程的“好”、“顺”、“易”。所以,错误并不可怕,合理利用它可以成为课堂的“催化剂”、“助动器”。

在教学例题时,我根据学生思维特点将教材中介绍的方程“2X-20=4”改为了“2X-4=20”对学生进行重点指导。因为根据条件“白色皮比黑色皮的2倍少4块”学生更容易分析得出“黑色皮的块数×2-4=白色皮的块数”的等量关系式。

教学困惑:当一题多解时,教材如果只呈现一种解法时,这种方法往往是其中最简洁、最容易理解、更值得推荐的方法。可这一课为何会采用“黑色皮的块数×2-白色皮的块数=4”呢?难道这个关系式比其它两种更好理解吗?

篇14:第四单元简易方程 教案教学设计(人教新课标五年级上册)

杜玉梅

(一)教学目标

1.使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。

2.使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。

3.使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。培养学生根据具体情况,灵活选择算法的意识和能力。

(二)教材说明

1.本单元的内容结构及其地位作用。

本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。

这些内容是在学生学了一定的算术知识(如整数、小数的四则运算及其应用),已初步接触了一点代数知识(如用字母表示运算定律,用○、△或□表示数)的基础上,进行学习的。

一般地说,在小学教学简易方程有以下几方面的意义。

一是有助于培养学生的抽象概括能力,发展学生思维的灵活性。因为对小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

二是有助于巩固和加深理解所学的算术知识。通过用字母表示所学过的数量关系、运算定律以及一些图形的周长、面积计算公式,可以使学生加深对这些知识的理解。同时,由于用字母表示比用文字表述更简明易记,所以便于学生巩固所学知识。

三是有利于加强中小学数学的衔接。让学生初步接触一点代数知识,能使学生摆脱算术思维方法中的某些局限性(逆向思考,未知数不参加运算,等于缺少一个条件,思维的步骤增加),为进一步学习代数知识做好认识的准备和铺垫。

本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。

2. 解简易方程

第一课时 方程的意义

教学内容:数学书P53-54及“做一做”,练习十一1-3题。

教学目标

1、初步理解方程的意义,会判断一个式子是否是方程。

2、会按要求用方程表示出数量关系。

3、培养学生观察、比较、分析概括的能力。

教学重难点:会用方程的意义去判断一个式子是否是方程。

教学过程

一、导入新课

今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.

第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

2、写方程,加深对方程的认识。

学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

3、反馈练习。

完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

4、小结。

这节课学习了什么?怎么判断一个式子是不是方程?

提问:方程是不是等式?等式一定是方程吗?

看“课外阅读”,了解有关方程产生的数学史。

三、练习

1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。

2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。

四、作业

练习十一第1题。

第二课时

教学内容:数学书P55-56及“做一做”。

教学目标

1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。

3、培养学生观察与概括、比较与分析的能力。

教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。

教学过程

一、导入新课

同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?

二、新知探究

(一)探寻发现“天平保持平衡的规律1”。

第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),

第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。

第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)

第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。

(二)探寻发现“天平保持平衡的规律2”。

第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),

第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。

第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

(三)小结天平保持平衡的变换规律,引出等式不变的规律。

通过刚才的实验,我们发现了什么,谁来总结一下。

得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。

交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。

三、练习。

实物演示并判断:(准备8袋花生,4袋盐)

天平两端分别放有一袋500克的盐和两袋250克的花生。

1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?

2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)

3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?

4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?

四、小结。

有什么收获?还有什么问题?

第三课时

教学内容:数学书P57,及“做一做”,练习十一第4题。

教学目标

1、结合具体的题目,让学生初步理解方程的解与解方程的含义。

2、会检验一个具体的值是不是方程的解,掌握检验的格式。

3、进一步提高学生比较、分析的能力。

教学重难点:比较方程的解和解方程这两个概念的含义。

教学过程:

一、导入新课

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(2)利用加减法的关系:250-100=150。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

3、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

4、练习。(做一做)

齐读题目要求。

怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x

=5×3

=15

=方程右边

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

二、作业。

独立完成练习十一第4题,强调书写格式。

三、小结。

通过这节课学到了什么?还有什么问题?

第四课时

教学内容:数学书P59及“做一做”,练习十一第5-7题。

教学目标:

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

教学重难点:掌握解方程的方法。

教学过程:

一、导入新课

前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

二、新知学习

(一) 教学例1

出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9

要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3

化简,即得:                                        x=6

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

板书:方程左边=x+3

=6+3

=9

=方程右边

所以, x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二) 教学例2

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。

展示、订正。

通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?

(三) 反馈练习

1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。

2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。

试着解方程:x-2.4=6     x÷9=0.7   (强调验算)

(四) 课堂作业:“做一做”第2题。

三、课堂小结。

这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

四、作业:练习十一5-7题。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。