“yjpsl555”通过精心收集,向本站投稿了3篇局域网技术基础之:LAN交换,这次小编给大家整理后的局域网技术基础之:LAN交换,供大家阅读参考,也相信能帮助到您。

篇1:局域网技术基础之:LAN交换
多种LAN分段方法(局域网技术基础之局域网分段)我们已经讨论过了,现在该仔细研究一下LAN中的交换技术,虽然第三层交换目前也有使用,但本文还是集中于传统的第二层交换技术。二者的不同之处在于第三层交换是基于网络层目的地址转发分组,而第二层交换是基于MAC地址转发帧。在并非很遥远的过去,使用同轴电缆的10Base2LAN或者使用一两个hub的10BaseTLAN是可以接受的。
大多数业务流并不需要很多的带宽,因此,可供用户共享的带宽很多。但在今天网络已连接到每一个职员的桌面上的情况下,在象视频以及音频电话会议这样的应用面前,带宽就成为一种相当宝贵的资源。在讨论网络中交换机的应用之前,让我们先简单回顾一下交换技术的历史。
在90年代初,好几个厂商决定开发一种替代路由器的设备,因为路由器生产成本高,并且难以配置。即使早期的交换机比路由器便宜,但事实上仍然很贵。最初交换机只限于特定的应用,以及用作更贵的路由器的替代品。与路由器的复杂性相比,交换机要容易配置得多。
实际上,交换机是即插即用(PnP)设备。数年来,交换机的价格迅猛下跌,早期的交换机一个端口就能轻易卖到$1000以上,而现在某些交换机每个端口只能卖到$100左右,并且其MAC地址表已能容纳多达500个表项(这些价格只是为了说明交换机价格在过去的几年里一直在下降,而不应当用来估计建立一个Cisco交换式网络的花费)。 交换机变得如此便宜,以至于他们在很多网络中正迅速取代hub的位置。例如,在本章前面的图1-2中(局域网技术基础之冲突域与广播域),我们已经看到多个节点通过5个hub构成的一个局域网,
所有16个节点共享理论上可以达到10Mbps的带宽。想象一下在这种网络上同时向两个节点传送视频信号的情况。在今天的网络环境中,hub可用交换机代替,如图1-6所示。
图1-6由16个节点构成的交换式网络
将交换机用于这种网络称为微分段法。微分段法将局域网分成小段,因此就为每一个用户增加了有效带宽。微分段法还能使每个用户拥有他或她自己专用的LAN网段,如图1-7所示。正如你所看到的,在微分段法中每个站点构成一个冲突域。在标准的以太网中,如图1-7中的每个用户都有其自己的10Mbps网段。
图1-7每个端用户有一个专用的10Mbps网段
交换机监视业务流,并汇编MAC地址表,这样它就能直接将帧转发到目的端口上。例如下面假定节点2向节点16发送数据的情况。图1-8显示了交换机内数据的流动情况。可以看到,节点8和节点20并不知道上述数据的传输,因为这些数据并没有传到这两个端口上。
图1-8交换机上节点2到节点6的数据流动
表1-1 交换机相对于HUB中继器的优点

交换机不但能在LAN中取代hub,他们还能直接接入骨干网(如ATM及千兆以太网),这有助于为类似实时视频或数字音频这样的应用提供必需的带宽。交换机能使用户充分利用网络的带宽,特别是在有多媒体应用的情形。其他优点就如表1-1所示。
篇2:局域网技术基础之局域网分段
局域网分段
局域网分段方法是将网络分割成较小的段网桥、交换机和路由器通过将冲突域分割成较小的部分,从而降低对带宽的竞争,减少碰撞,路由器还有一个好处,它可以控制广播业务流(traffic),也就是能将广播域分成更小的域。对广播域来说,“子网(subnet)”和“虚拟局域网(VLAN)”这两个词比“分段”更常见,一个子网可能会包含好几个冲突域。
路由器能分割广播域,因为它不转发任何广播业务流。路由器工作在OSI模型的第3层(网络层),由于它不转发广播业务,因此就有一种减小广播域的简单方法。如图1-3所示。
图1-3被路由器分开的四个广播域
图1-3以图1-2中配置的网络为例,不同之处是“主hub”改成了路由器。与路由器相连的四个网络,分别构成各自独立的广播域。hub3上的节点2向hub3上的所有节点广播,hub1上的节点4向hub1上的所有节点广播。其他两个hub上的节点也是同样的情况。因为路由器不转发任何广播业务流,所以从一个hub上发出的广播报文不能传到其他任何一个hub上。通过降低每个网段上的业务流量,就能减少冲突的次数。在这个例子中,很可能广播业务流和冲突都不是网络速度变慢的原因。
局域网分段之用网桥将LAN分段
可以用网桥分割冲突域,从而获得更好的网络性能。但是,如果网桥放置的位置不当,则会使网络性能下降而不是提高。网桥不同于路由器,它工作在OSI模型的第二层(数据链路层)的MAC子层。网桥不仅创建物理网段,也创建独立的逻辑网段。
网桥还建立了一张表,记录了所有已知的通过网桥的MAC地址,以及这些MAC地址所处的网段,
通过检查帧中的目的MAC地址,网桥确定正确的网段,并将帧转发出去。但是,如果网桥不知道MAC地址的位置,它就用洪泛法向与其相连的所有网段转发该帧。如图1-4中,网桥不知道节点2发出的数据帧的目的地址,它就将此帧发送到所有与其相连的三个网段上。注意网桥不会把数据转发给发出这个数据的节点。
图1-4用网桥分隔的三个网段
与路由器不同的是,网桥能把广播报文传给相连的网段。这项功能不利于为LAN分段,因为可能会产生广播风暴。如果不担心广播风暴的话,用网桥为LAN分段倒是一个可以接受的解决办法。
局域网分段之用交换机将LAN分段
用交换机将LAN分段可提高端用户设备的性能。交换机实际上只不过是多端口网桥,它用专用集成电路构成的硬件完成网桥用软件实现的操作。与网桥一样,交换机也使用目的MAC地址,以确保将数据转发到正确的端口上。图1-5就是一个用交换机将LAN分段的例子。
与网桥相比,这种方法增加了带宽。因为每个网段都是在交换机上各自的专用端口内运作,只有目的地址为其他网段的业务流才会经过交换机的源端口与目的端口,而其他与该目的地址无关的端口都不会受到影响。但是,上述方案有一点需要注意。由于交换机本质上是使用专用集成电路的多端口网桥,所以它也同样传递广播业务流。然而大多数交换机都可配置一个“广播限”。达到“广播限”后,所有超出“广播限”之上的广播报文均被丢弃。适当选取“广播限”,可以使仅当广播风暴发生时才会丢弃广播报文。
图1-5用交换机将LAN分段
局域网分段时需注意:当不同的硬件设备用于局域网分段时,记住他们产生的不同效果是非常重要的。
篇3:局域网技术基础之冲突域与广播域
局域网技术中,冲突域与广播域这两个词对网络性能影响很大,下面让我们看一看这两个词是如何影响网络性能的,
局域网技术之冲突域
假如你想将车驶出高速公路,但每做一次尝试,都有一辆车挡住你的去路。如果强行出来,就会发生碰撞,这与使用带冲突检测的载波侦听多路访问(CSMA/CD)协议的以太网上发生的情况很相似。电气与电子工程师协会(IEEE)将CSMA/CD以太网定义成802.3标准,如今,该标准的使用遍及整个网络界。开放系统互联模型(OSI)第二层的介质访问控制(MAC)子层,就是使用CSMA/CD协议访问物理介质。
网络中的所有节点在任何需要的时候都可以发送数据,而CSMA/CD网络却努力确保任一时刻只有一个节点发送数据。但是,两个节点却有可能同时发送数据,例如图1-1中的节点1和节点4。出现这种情况,就会导致碰撞。这与我们刚才所讲的将车开出高速公路一样,因为没有看到别的车挡了路,正当你将车驶出时,另一辆车以每小时100英里的速度撞上你。
但是,有一点和高速公路上的撞车不同,车子相撞之后就很难恢复,而网络节点却可以继续侦听线路。如果一个设备检测到碰撞,它就停止发送,并将碰撞情况通知其他节点。其他所有正在发送的节点得到通知后停止发送。碰撞只发生在以太网中。我们唯一关心的是,碰撞频率达到多少时才会影响网络性能。不知道这个比喻是否让你明白什么是冲突域?
冲突域的概念还可以通过下图解释,在工作中以太网hub前面板上的LED指示灯能帮助用户检测何时网段上冲突达到饱和,
即使有好几个工具能够检测到网络速度变慢以及瓶颈问题,我还是觉得用hub上的LED灯既快又方便。有一个网段,其hub上表示碰撞的LED灯一直是亮着的,但令人异常惊奇的是,我却从未听到该网段上任何一个用户有过抱怨。我知道这可能难以令人相信,但这确实是真的!
图1-1以太网中两个节点同时发送
局域网技术之广播域
在讨论广播域之前,你必须先明白什么是广播。广播就是要发送到网段上的所有节点、而不是单个节点或一组节点的数据。要广播的节点将数据送到MAC地0xFFFFFFFFFFFF,就能实现上述目的。因此说,广播域由一组能够接收同组中所有其他节点发来的广播报文的节点构成。通常情况下,通过hub等接在路由器一个端口上的所有节点构成一个广播域,如图1-2所示。
对上述网络来说,所有1 6个节点构成了这个广播域。H u b 3上的节点2不仅向h u b 3上的主机广播,并且还向h u b 1、h u b 2以及h u b 4上的所有主机广播。h u b 1、h u b 2以及h u b 4上的主机也一样向所有其他节点广播。
广播域中广播报文相遇的次数随着网络规模的扩大也随之增加。所有这些广播报文确实会影响网络的性能,如果管理不当,甚至会导致整个网络的崩溃。












