“香菇炖鸡面”通过精心收集,向本站投稿了6篇圆锥体积计算和应用,下面是小编为大家整理后的圆锥体积计算和应用,仅供参考,喜欢可以收藏与分享哟!

圆锥体积计算和应用

篇1:圆锥体的计算和应用的教学方案设计

圆锥体的计算和应用的教学方案设计

教学内容:教材第15页例2、练一练,练习三第6一11题。

教学要求:使学生进步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决些简单的实际问题:

教学重点:进步掌握圆锥的体积计算方法。

教学难点:根据不同的条件计算圆锥的体积。

教学过程:

一、复习旧知

1.口算。

出示练习三第6题,指名学生口算。

2.复习体积计算。

(1)提问:圆锥的体积怎样计算?

(2)口答下列各圆锥的体积。

①底面积3平方分米,高2分米。

②底面积4平方厘米,高4.5厘米。

3.引入新课。

今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的`方法解决一些简单的实际问题。

二、教学新课

l.教学例2。

出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?指名板演,其他学生做在练习本上。集体订正,让学生说说为什么要先求体积,才能求这堆沙的重量;这里已知直径和高怎样求体积的。

2.组织练习。

(1)做练一练第l题。

指名三人板演,其余学生思考第(1)、(2)题怎样做,把第(3)题做在练习本上,集体订正,重点让学生说明第(3)题是怎样做的,突出要先求半径算出底面积,再应用公式求体积。

(2)做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正。提问:这道题已知什么条件?怎样求出体积的?再怎样求重量?

(1)讨论练习三第11题。

出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第129页图制作的圆锥,求出它的体积来。

三、课堂小结

这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.布时候还?可以计算出圆锥形物休的重量。

四、布置作业

课堂作业:练习三第7~9题。

家庭作业:练习三第10、11题。

篇2:圆柱体积计算的应用

圆柱体积计算的应用

教学内容:教科书第44页的例5,完成第44页;“做一做”的第2题和练习十一的第3―7题。

教学目的:使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。

教具准备:一个圆柱形物体,一个圆柱形杯子。

教学过程():

一、复习

1.口算。

出示练习十一的第3题(可以用卡片或用投影出示):

4.5十0.37                        0.25×8                  5.8十2.9

7.2÷9                               6.1―4.8                       十

-                                          ÷                                ×

2,复习圆柱的体积。

教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么?

指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH.

二、新课

1.教学圆柱体积公式的另一种形式。

教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式

应该怎样表达?

引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。

2.教学例5。

圆锥体积计算和应用(精选6篇)

出示例5。

(1)教师提出下面问题帮助学生理解题意:

①这道题已知什么?求什么?

②求水桶的容积是什么意思?根据什么公式?为什么?

要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。

⑧要求水桶的容积应该先求什么?

要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。

①水桶的底面积应该怎样求?

(2)让学生叙述解答过程,教师板书。

求出水捅容积之后,教师提问:最后结果应该怎样取值?

使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。

(3)做第44页。做一做”的第2题。

让学生独立做在练习本上,做完后集体订正。

三、课堂练习

1.做练习十一的第4题。

这是一道实际测量、计算的`题目,可以分组进行测量和计算,每组的茶杯可以是不一样的。教师可以先让学生讲一下自己的测量方法,再进行测量和计算。

学生测量时,教师行间巡视,注意察看学生测量的方法是否正确,对有困难的学,生要及时给予指导。

做完后集体订正,要注意强调不能只计算出茶杯的体积,还要计算出可以装多少克水,以及取近似数的方法。

2.做练习十一的第5题。

读题后.教师可以先后提问:

“这道题要求的是什么?”

“题目只告诉了圆柱形粮食囤的底面半径和高,要求这个粮囤能装稻谷多少立方米,应该先求什么?怎样求?”

指名学生回答后,再让学生独立做在练习本上,教师巡视。

做完后集体订正,强调得数的取舍方法。

3.做练习十一的第6题。

教师:这道题已知什么?求什么?

指名学生回答后,再问:应该怎样求?

引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列方程来解答。

4.做练习―十一的第7题。

读题后,教师可提出以下问题:

“这道题要求的是什么?”

“怎样利用已知条件求出这个油桶的容积?”

“题目中的条件和问题的单位不统一。应该怎样改写更简便?”分别指名学生回答。要使学生明白,这里可以先将40厘米和50厘米分别改写成4分米和5分米计算更简便。

让学生独立做在练习本上,教师行间巡视,注意察看学生对圆柱体积计算方法是否掌握,计量单位是否按照题目的要求进行改写,最后得数的取舍是否正确。

做完后集体订正,指名学生说说自己是怎样计算的。

篇3:POJ 2318 TOYS 叉积应用

点击打开链接

TOYSTime Limit:MSMemory Limit:65536KTotal Submissions:11078Accepted:5312

Description

Calculate the number of toys that land in each bin of a partitioned toy box.

Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.

John‘s parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.

For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0< n<= 5000) and the number of toys is m (0< m<= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 03 14 36 810 1015 301 52 12 85 540 107 94 10 0 10 100 020 2040 4060 6080 80 5 1015 1025 1035 1045 1055 1065 1075 1085 1095 100

Sample Output

0: 21: 12: 13: 14: 05: 10: 21: 22: 23: 24: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are “in” the box.

Source

Rocky Mountain

n块木板将一个盒子分成n+1部分,给你一些玩具的坐标,求这n+1部分中每一部分包含多少个玩具,

POJ 2318 TOYS 叉积应用

给的木板的坐标是排好序的,所以可以二分时用叉积进行判断玩具的位置。double过,long long wa。

//468 KB 219 ms#include#include#include#define M 5007#define ll long longusing namespace std;double U[M],L[M];int sum[M],n;double y_1,y2;bool chaji(double x,double y,int mid)//叉积判断是否在mid左面{ double x_1=U[mid]-L[mid]; double x_2=x-L[mid]; double y_2=y-y2; return (x_1*y_2-x_2*y_1)>=0;}double binary_search(double x,double y)//二分{ int s=1,e=n,mid; while(s<=e) { mid=(s+e)>>1; if(chaji(x,y,mid))e=mid-1; else s=mid+1; } return s;}int main{ double x1,y1,x2; int m; int flag=0; while(scanf(“%d”,&n),n) { scanf(“%d%lf%lf%lf%lf”,&m,&x1,&y1,&x2,&y2); y_1=y1-y2; memset(U,0,sizeof(U)); memset(L,0,sizeof(L)); memset(sum,0,sizeof(sum)); for(int i=1;i<=n;i++)scanf(“%lf%lf”,&U[i],&L[i]); U[0]=x1;L[0]=x1; double x,y; while(m--) {scanf(“%lf%lf”,&x,&y);int pos=binary_search(x,y);sum[pos-1]++; } if(flag){printf(“\n”);}flag=1; for(int i=0;i<=n;i++)printf(“%d: %d\n”,i,sum[i]); } return 0;}

篇4:Word工具计算的应用

单击“工具→自定义”,选择“命令”选项卡,在类别下拉框中选择“工具”,在命令下拉框中找到“工具计算”,将它拖放到工具栏上的任意位置,最后单击“关闭”,

Word工具计算的应用

使用“工具计算”的方法很简单,只要选定要计算的内容,再单击“工具计算”命令,计算结果便显示在状态栏中,同时该结果被放在剪贴板中,通过粘贴操作可以获得该结果。这是一个很有意思的功能。但它能支持的计算功能只有四则运算、乘方和百分数。而表格公式则还支持多达18个函数和等式/不等式。

篇5:浅析计算科学行列式的应用

浅析计算科学行列式的应用

摘 要:行列式是研究高等代数的一个重要工具.在对行列式的定义及其性质研究的基础上,总结了计算行列式的几种常见方法:加边法、构造法、递推法、拆项法、数学归纳法等.另外,归纳了二条线性行列式、“两岸”行列式、上(下)三角形行列式、二条线叉型行列式及箭型行列式几类特殊行列式的计算公式.利用行列式证明明微分中值定理;并通过一些具体的实例介绍了行列式在求逆矩阵、求解几何图形方程和计算图形面积体积等多个方面的实际应用.

关键词:行列式 应用

一、引言

行列式不仅是研究高等代数的一个重要工具,它也是线性代数理论中极其重要的组成部分.在高等代数中,行列式的求解是非常重要的,但是直接计算行列式往往是困难和繁琐的,特别当行列式的元素是字母时更加明显.根据这一情况,对行列式计算的常见方法进行了总结.计算行列式的常见方法有化三角形法,拆分法,降阶法,升阶法,待定系数法、数学归纳法,乘积法和加边法等.另外对行列式中存在的二条线性行列式、“两岸”行列式、上(下)三角形行列式、二条线叉型行列式及箭型行列式等特殊构造的行列式的公式进行了归纳.

行列式的产生和最早的应用都是在解线性方程组中,现在的应用范围已拓展得较为广泛,成为数学、物理学以及工科许多课程的重要工具.对这些应用技巧进行探讨归纳,不仅有课程建设的现实意义,而且有深刻的理论意义.通过介绍一些具体的实例,说明行列式在证明明微分中值定理、求逆矩阵及矩阵特征值、求解线性方程组、求解几何图形方程和计算图形面积体积等多个方面中的实际应用.

二、行列式的发展与应用

行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨发明的。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。 1750年,瑞士数学家克拉默(1704-1752)在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克拉默法则。稍后,数学家贝祖 (1730-1783)将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题技巧和它的简单应用进行总结归纳。

作为行列式本身而言,我们可以发现它的两个基本特征:当行列式是一个三角形行列式时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个基本思想;行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法。这两种方法也经常一起使用,而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、因式分解法等可以看成是它们衍生出的具体方法。同时行列式的应用早已超出了代数的范围,成为解析几何,数学分析,概率统计等数学分支的基本工具。

三、行列式方法及应用

行列式的计算,高等代数中重要内容之一,最常用的是利用行列式的性质和展开定理,需要熟练的'掌握,根据其具体特点采用不同的计算方法,本文对行列式的解题方法进行了总结归纳。将一个行列式化为三角形行列式,是行列式计算的一个基本思想,也是化三角形法的思想精髓。行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法。这两种方法也经常一起使用。而其它方法如:提取公因式法、利用拉普拉斯(Laplace)定理法、利用范德蒙(Vandermonde)行列式法、利用乘法定理法、裂项法、升阶法、公式法、规律缺损补足法、特征根法、数学归纳法、利用行列式乘法规则等可以看成是它们衍生出的具体方法。

1.求通过定点的曲线方程与曲面方程.线性方程组的理论中有一个基本结论为:含有n个方程n个末知量的齐次线性方程组有非零解的充要条件是该线性方程组系数行列式等0.利用这个结论,可以利用行列式来求通过定点的曲线方程与曲面方程。

2.证明等式和不等式。我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式值不变,如果行列式中有一行(列)的元素全部是零,那么这个行列式的值等于零.利用行列式的这些性质,我们可以构造行列式来证明等式和不等式。

3.化三角形法。此种方法是利用行列式的性质把给定的行列式表示为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式。三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的N阶三角形行列式等于次对角线上元素之积且带符号。

4.利用递推关系法。所谓利用递推关系法,就是先建立同类型n阶与n-1阶(或更低阶)行列式之间的关系――递推关系式,再利用递推关系求出原行列式的值。

5.提取公因式法。若行列式满足下列条件之一,则可以用此法:(1)有一行(列)元素相同,称为“aaa,,,型”;(2)有两行(列)的对应元素之和或差相等,称为“邻和型”;(3)各行(列)元素之和相等,称为“全和型”。满足条件(1)的行列式可直接提取公因式a变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶。满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法。

参考文献:

[1] 王文省,赵建立,于增海,王廷明.高等代数.山东大学出版社,.5.

[2] 钱吉林.高等代数题解精粹[M].北京:中央民族大学出版社,.

[3] 北京大学数学系几何与代数教研室前代数小组.高等代数(第三版)[M].北京:高等教育出版社,.

篇6:高考数学圆柱体积计算知识点复习

圆柱体积=π*r2* h=S底面积*高(h)

先求底面积,然后乘高。

π是圆周率,一般取3.14

r是圆柱底面半径

h为圆柱的高

还可以是

v=1/2ch×r

侧面积的一半×半径

圆柱体的定义:

旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。

2

圆柱体积相关公式

圆柱体积:V=底面积×高或V=1/2侧面积×高

圆锥体积:V=底面积×高÷3

圆柱侧面积:S侧=底面周长×高

圆柱表面积:S表=侧面积+2个底面积

字母表示:

圆柱体积: V=sh

圆锥体积:V=sh÷3

圆柱侧面积:S=ch/2πrh/πdh

圆柱表面积:s=ch+2πr2

圆柱体侧面积=底面周长×高(底面周长知道吧,圆的周长(2π r)或(π d))

圆柱体的表面积=2个底面积+1个侧面积(底面积知道吧,圆的面积(π r×r)或(π (d÷2)×(d÷2)(不要忘了还要 ×2,因为有2个底面积哟!))

圆柱体的体积=底面积×高(Sh)(这个应该懂吧!)

圆柱体的底面积=圆的面积(π r×r)或(π (d÷2)×(d÷2))

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。