“fenglinmuzi”通过精心收集,向本站投稿了12篇高中数学教学案例分析范文,以下是小编精心整理后的高中数学教学案例分析范文,希望对大家有所帮助。

高中数学教学案例分析范文

篇1:高中数学如何教学案例分析

数学案例教学探讨

一、利用案例的趣味特征,有效激发学生的学习潜能

案例一:我在讲数学归纳法一节前,首先利用大屏幕给学生展示了几幅多米诺骨牌的视频,同学们很感兴趣,此时我提出了一个问题:“大家研究一下多米诺骨牌能够依次倒下的条件是什么?”同学们展开了讨论,回答的结果在意料之中,我说很好。紧接着将问题转入本节的数学归纳法,我引导学生通过下表的对比,进一步说明数学归纳法的一般原理。同学们兴致很高,课堂气氛活跃,多米诺骨牌效应,不仅形象地表达了数学归纳法的应用原理,而且化深奥为浅显,使学生在理解数学归纳法的应用原理方面受益多多。我趁势给同学们讲解了数学归纳法证明与正整数有关的等式,不等式问题,同学们积极参与,共同完成了这一典型问题的解答。正是我抓住了知识特点和问题特性结合点,创设了有效案例,才有效调动了学生参与学习活动的积极性,实现了学生学习欲望和内在潜能的挖掘,促进了教学活动的深入开展。

二、利用案例的概括特征,有效提升学生的创新能力

教学实践证明,在每一节数学课教学中,所涉及到的知识点内容较多,同时还与其他知识点有着密切的联系。数学案例作为教师知识教学有效载体,就要能够根据教学内容,以及知识要点等内容,提出具有启发性、诱导性和可讨论性,并能够切中知识点要害和关键点的问题,将知识点内容及内涵关系有效渗透到选取的每一个案例问题中,让学生在学习中初步感知,在探究思考过程中,能够从不同方面进行思考分析,找出进行问题解答的正确方法和有效途径,实现学生思维创新能力的有效提升。

三、案例教学是通过模拟的具体情景让学生置身其中

凭借案例素材所提供的信息和自身的认知能力,运用自己所掌握的相关理论,以当事人的身份去分析研究,寻找存在的问题和解决问题的方法。因此,在这种方式的学习中,学生没有了任何依靠,只能靠自己动脑筋思考问题,分析问题并独立地做出判断和决策,从而使学生从“要我学”转变为“我要学”。这不但增强了教师与学生之间的互动,提高了课堂教学质量,提高了学生分析问题、解决问题的能力,而且使师生之间、学生之间的信息交流十分频繁,实现了教学相长。

数学素质教育案例启示

1、教学案例研究是案例法实施和成功的最佳切入点:

在我国,案例教学在教师教育中还只是刚刚开始受到注意。教学三境界:传授知识——培养能力——优化素质,数学教学都是齐备的。数学是思维科学,也是应用科学,存在广泛的实践,然而现在都没有产生大量能为教师教学所用的教学案例,数学学科为教学案例研究提供了广阔的空间和材料,一线教学有着丰富的素材和内容,亟待数学教师去开发。

2、数学教育情境是案例开发的保障:

教育案例是对数学实践中的问题的描述,与实践的联系是案例之所以对教育起作用的核心所在,也是案例的价值所在。广大一线数学教师是案例开发的重要主体。研究表明,由从事实践工作的教师所写的案例比起由研究者开发的案例,更加能引起读者的认同感。教师对自身实践活动的反思,对自身实践活动不同角度的审视和反思自己的经历,会产生良好的教学案例。数学广泛的应用性和实践性为教师创设了良好的情境。

3、案例开发应当与教育目的匹配:

数学教育的目标是培养学生的数学思维能力和思维品质,促进问题解决和能力的发展。数学教学内容分立体几何、解析几何、代数三大部分,涉及领域广阔,开发出的案例应与特定的教师教育目的相匹配。从而改进教学观念、方法、手段,更有效地完成教育目标,并可作为范例,至少在教师教育实践中有借鉴意义。数学教育教学案例开发,不可好高骛远,只要是有益的反思、总结、描述要是实践中的真实问题和现象都将是一笔财富。

设计教学案例方法

1.高中数学教师根据本学科的教学目标,整合学科的知识

首先,高中教师要做好学科的研究,明确学科的教学目标,这样才能保证设计的案例内容既具有时代性,又符合教学改革的要求;其次,数学教师整合学科的知识,将需要运用案例的知识总结出来,便于有针对性地设计案例;最后,高中数学教师要提高自身的专业能力,不能照搬照抄网络上的资源,要根据班级的实际情况,思考选用哪一种案例,如何将案例引出[2]。

2.注意学生的能动性,合理设计案例的内容

一方面,做好上一课内容之后,高中教师就需要进行实际的设计工作,遵循尊重学生能动性的原则,避免“A或B”选择教学方式,设计开放性的案例内容,提高学生的思维活跃度,让他们积极参与到课堂中,保证教学的效果;另一方面,分析教学案例的构成要素,为实际的教学应用做好准备,这些要素主要包括教学情境的选择、案例教学的目标、讲解的过程设想、实际讲解的效果和总结不足,使设计的教学案例具有完备性,这就需要教师认真分析案例设计的结构,根据不同的内容选择合适的结构。如讲解判断直线与平面平行的内容时,在设计案例的时候,需要运用实际生活中的例子,并且采用循环结构,复习之前学过的平行的概念,然后讲解直线与平面之间的平行关系,设计学生自我学习的板块,完成提高学生实践能力的教学目标;而且要做好教学的总结,在讲解之后,对本节课的内容进行总结,找到不足,便于日后改进。

3.高中数学教师提高应用网络教学资源的能力,保证应用案例的效果

高中教师提高自身应用网络教学资源的能力,及时在网络上找到可以借鉴的内容,既保证案例内容符合学生的兴趣,也可以在浏览的过程中,扩大自身知识的掌握范围。另外,数学教师在应用案例之前,还要在数学教研组中进行探讨,综合组内各位数学教师的意见,对设计的案例进行改进,保证应用案例的效果。

篇2:高中数学教学设计的概念案例分析

一、教材分析

(一)地位与作用

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

(二)学情分析

(1)学生已熟练掌握_________________。

(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(4)学生层次参次不齐,个体差异比较明显。

二、目标分析

新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

(2)过程与方法

引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度与价值观

在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

(二)重点难点

本节课的教学重点是________________________,教学难点是_____________________。

三、教法、学法分析

(一)教法

基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

(二)学法

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

四、教学过程分析

(一)教学过程设计

教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

(1)创设情境,提出问题。

新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生的思考空间,充分体现学生主体地位。

(2)引导探究,建构概念。

数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程.

(3)自我尝试,初步应用。

有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

篇3:高中数学教学设计的概念案例分析

高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,

集合(一)教学案例

。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄國聖彼得堡,父母親是丹_人,父親出生於丹_首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学_们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神_症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。18举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。191月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。

实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:

实数正实数负实数零

4、以下由学生完成:(1)、把下列各数填入相应的圈内

0、、2.5、、、-6、、8%、19

整数集合分数集合无理数集合

(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}

整数集合:{}

正实数集:{}

无理数集:{}

3.解不等式组(1)2x-3〈5

4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)本省高考考试科目;(8)奥运会的球类项目,

《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R_或R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是(A)所有的好人(B)小于的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N

32(5)(-2)0N_(6)Q

3232(7)Z(8)—R

五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《高一数学》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()

常用数集属于a∈AN、N_(或N+)、Z、Q、R。集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA

本节课设计的目的:通过创设情境激发学生的学习兴趣,课前预习培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。

篇4:高中数学教学设计的概念案例分析

一、激发学生兴趣,让学生产生学习的动力

要想学好高中数学,激发浓厚的兴趣是最有效的手段。如何在数学学习中激发兴趣,应该从四方面来落实。一是重视数学基础知识教学。有的学生认为数学内容很抽象,都是一些数字符号,不容易理解,其实不然,数学知识是最基础的知识,是和我们的生活联系非常紧密的知识,数学就在我们的身边,我们的生活离不开数学。二是强化数学实践应用。许多学生对数学存在认识上的误区,认为学习数学没有多大的用处,事实上,数学知识就充斥在我们生活的每一个角落,与我们的生活是密不可分的。只是以前的数学教学与实践生活严重脱节,造成学生认为数学知识没有多大用处。新数学课程改革下,数学教材有了全新的改革和发展,重视数学的实践应用,使学生能够在数学学习中感受到数学的价值和魅力,从而热爱数学。三是引入数学实验教学。数学并不只是课堂上教师的讲解,还可以通过数学实验来激发学生的兴趣,让学生在实验教学中感受到数学的直观性,使学生以探究者的身份参与到数学知识的研究中,从而让学生在实验的过程中,获得成功的喜悦。四是让学生在攻克数学难关中获得积极情感。数学知识具有宝贵的资源价值,学生可以在发现和创造中获得积极的情感,数学之所以能够吸引更多的人去探索和创新,就是因为在数学学习中,可以获得成功的喜悦,激发学生的斗志。

二、教给学生学习的方法,让学生懂得怎样学习

我们常说:“授人与鱼,不如授人以渔。”这充分说明了教学中方法的重要性,在教育教学中,教师不仅是要教给学生知识,更重要的是教给学生学习的方法,它是学生获得知识的重要法宝,学生只有在掌握方法的情况下,才能学会自己去学习,从而获得知识。因此,在新课程改革下,我们不但要让学生“学会”,还要让学生“会学”。首先,要教给学生“读”的方法。有人认为,高中数学教学用不到“读”的方法。其实,数学教学和其他学科一样,同样离不开“读”的方法,学生只有在读的过程中才能理解数学问题所包含的内容,才会发现和归纳数学材料中所包含的深层次含义,使学生懂得抓住重点去思考问题,从而为学生理解数字知识奠定良好基础。其次,要引导学生“议”的思路。新的数学课程改革提出了合作、探究的学习方法,注重培养学生分析问题和解决问题的能力。因此,在数学教学中,要鼓励学生大胆发言,勇于探究讨论,尤其对于那些有争议的数学问题,要引导学生积极探究,从而帮助学生在探究讨论中提高能力。第三,要让学生学会思考。我国古代教育中就非常重视“思“的重要性,提出了“学而不思则罔”的重要论断。在数学教学中,同样要重点培养学生“思考”的品质,让学生养成思考的良好习惯,学会辨析数学知识的难点,理解数学知识的连贯性,从而增强学生的想象力,提高学生分析数学知识的能力和水平。

三、培养学生质疑的能力,使学生敢于向_挑战

数学教学离不开学生的质疑,尤其是在新课程改革下,培养学生的质疑能力,让学生敢于质疑,是提高数学教学效果的重要因素。在传统的数学教学中,学生根本没有质疑的意识,在解完一道题时,总是没有自信心,只能向教师或者_的书籍求证,这样就抑制了学生创新思维的发展,长此下去,会让学生没有学习的_。高中数学阶段,应该培养学生的质疑能力,让学生敢于向_挑战,这对于提高学生的数学能力素质,培养学生的创新能力具有重要的意义。如果真的找出了“_”的错误,这对于学生来说将是更大的鞭策。因此,在教学中教师要有意识地培养学生的质疑能力,对于学生的一些新的发现、新的想法要及时予以鼓励,激发学生进取的精神,让学生在质疑中提高数学学习的兴趣,树立数学学习的自信心。

四、教给学生学习的方法,培养学生良好的学习习惯

新的数学教材中,都有教法指导和学法渗透的内容,如在每一章都编排了“做一做”“读一读”“想一想”等相关的知识,其主要的目的就是让学生学会学习,学会思考。因此,在教学中教师要注重学生学习方法指导,让学生养成良好的学习习惯。比如,让学生学会读题的方法。读题并不是随意阅读,是让学生在读题中找到有价值的内容,从而为进一步解决问题奠定基础。如果学生在读题中找到了相关的问题,教师要及时予以鼓励,树立学生学习的信心和勇气,使学生在学习中感受到成功的喜悦,从而产生兴趣,培养良好习惯。同时,教师在教学中还要学会创设良好的学习情境,引发学生积极地去探究数学知识,让学生在教师所创设的情境中锻炼能力,提高素质,从而为培养学生的良好习惯奠定基础。总之,高中数学教学是学生数学学习的基础。作为高中数学教师,一定要认识到高中数学教学的重要性,不断转变教学观念,树立全新的数学教学思想,使数学知识能够与我们的生活紧密联系起来,做到学以致用,让学生在数学学习中感受到成功的喜悦,从而进一步增强学生数学学习的主动性,使学生在数学学习中各方面能力都能得到进一步的提高。

篇5:高中数学教育案例分析

我是从一名初中数学任课转为职业高中数学任课的教师,对于职业高中的学生学习数学的情况感到很棘手。教学实践中,我们发现“数学学习优秀生”将学业成功更多地归结为积极原因,他们普遍认为努力学习数学,正确的数学学习方法,良好的数学思考习惯是取得好的数学学习成绩的关键。而与“数学学习优秀生”相比,“数学学习困难生”所感觉到的数学学业失败的原因大多是消极的。“数学学习困难生”的归因倾向有哪些主要类型,针对具体类型,在转化中有什么注意事项,本文通过个案予以初步研究.

教学案例:

袁某,男,职高一年级学生。袁某的父亲母亲都是从事个体经商,家庭经济状况较好,平常工作都很忙,几乎无暇顾及袁某的学习。袁某为家中独生子,平时由姥姥和姥爷照顾,家人对其期望较高,但中考失利,最后决定就读职业高中.上高中后,他的各科成绩都不乐观,在高一上学期第一次测验时,数学成绩仅为28分,为名副其实的数学学习困难生。

高一上学期第一次测验后,我叫袁某到办公室,很轻松地问袁某觉得自己数学学得怎么样,他说:“很烂,我什么都不懂。”“那你愿意学吗? ”“还行吧,我以前数学很好的。”“那现在怎么不好了?”“这个问题啊,”他迟疑地说,“我初中的数学老师可讨厌了,她课讲得不好,脾气还大得很,整天只知道考试、分数,我看到她就烦。你说,她是不是到更年期啦。”我诧异他竟然对初中数学老师有这么大成见,问他是否还有别的原因。他想了想说,“也有,比如说,考试时总有很多人作弊,老师也抓不住。他每次考试后都在全班点名批评不及格的同学,好几次都有我。再比如,目前的数学教材各章节没什么联系,我对此不太适应。”“那你认为自己能学好数学吗?”“能,我稍微学一点,多做些题就比别人强,我只是不想学。”说这话时,满脸的自信与得意。我微笑着说:“你很聪明,反应快,努力学学,这章单元测验能超过某某吗?”“没问题,您看我的!”

期中考试结束后,我和袁某利用中午的时间在教室又一次沟通。我拿出试卷问他:“这次考试还是不理想,你觉得是哪方面的问题呢?”“噢,我没写完,有一道题我看错题了,下次不会了。”他故作轻松地说。“为什么在规定的时间完成不了试卷呢?”“我们考场有位同学不舒服,老师找同学送她去医护室,我关心这些事情,耽误了时间。”“这几道平时做过的试题怎么也出问题了呢?” “我都会,但一考试就错,可能是太紧张了吧。”“前几天的数学课怎么都没上呢?”“因为与同学打架,被学校停课处理问题了。”“能答应老师以后尽量避免缺课现象吗?”“我尽力吧。”最后,我鼓励道:“希望你在下一阶段的学习中能持之以恒地努力。”

针对一系列测试结果和袁某平时的表现,我发现袁某平时学习不努力、不主动,没有兴趣,却经常怨天尤人,抱怨数学枯燥,高中数学课程知识凌乱,从不在自己身上找原因,断定李某具有较明显的外在归因倾向,且表现欲较强,因此制定了以下转化策略。

(1)客观地分析数学成绩差的原因:我建议袁某的母亲以后尽量对他某一具体行为进行表扬而不只是笼统地夸他聪明,否则很容易使他停留在问题表面,无法深入了解数学成绩较差的原因。并且指出袁某在意志品质方面存在较大缺陷,应对他全面了解,不能一味指责,要耐心地引导他认清自己的长处和缺点,客观地分析成功和失败的原因。袁某的母亲表示以后会尽力配合。

(2)鼓励多做努力不够的归因:袁某对体育颇感兴趣,每天的体育新闻必看。我对他的执著大加赞赏,并很虚心地向他请教这方面的知识,同时暗示他数学学习也一样,同样需要下工夫,持之以恒。我告诉他数学成绩不好,可能有老师甚至课程的原因,但为什么有许多同学能够学好数学呢?所以,更应从自身找原因。

(3)充分搭建展示平台,督促养成好的学习习惯: 针对袁某外向型的性格特点,在课堂上尽可能地给袁某展示的机会,让他时刻感觉到老师在关注他,增强其成就期望。对袁某的数学作业实行面批面改,遇到错题,都先让他自己分析原因,再给讲解,并督促其订正。及时与家长联系,杜绝袁某的旷课现象。

(4)重视每一次考试成败归因:每次测验或一阶段学习结束后,我要和袁某进行一次推心置腹的谈话,对他这一阶段的学习进行合理评价,从自身找原因,积极鼓励他与班级同学相互合作,帮助他树立新的目标,相互竞争。

经过努力,李某的数学成绩开始出现及格,有了较高的数学学习热情,有了明确的学习目标,人也变得稳重多了。

分析:

对于平时学习不努力、不主动,没有兴趣,却经常怨天尤人,抱怨数学枯燥,数学课程教材编写不好,教师教得也不好,从不在自己身上找原因的这类学生,教师既要肯定其能力,充分搭建展示平台,更要帮助他们客观地分析数学成绩差的原因。教师可以通过每一次考试后与其单独谈话,逐题分析,有必要时还可以做备忘录以便前后对比,勤而行之等教学行为,让他们逐渐丢掉“粗心”“教材体系混乱”“缺乏师长的关心”“学习环境不好”和“家长不督促学习”等泛泛的防御性理由。同时教师还应联合家长督促学生养成脚踏实地的数学学习态度,注重基本数学知识和技能的落实。

篇6:高中数学教育案例分析

摘 要:随着教学的深入,如何使学生接受复杂繁琐的内容是一个重要的问题,好的教学导入方法可以使学生很快地进入学习状态,不仅使学生成绩更快地提高,也提高了老师的教学进度。以下是介绍高中数学课堂导入的方法和教学实际案例的解析。

关键词:高中数学;导入;案例

中图分类号:G632 文献标识码:B 文章编号:1002-766130-150-01

课堂教学是一个完整而系统的过程,每一个关节都是至关重要的,任何一个环节出现差错都会影响到整堂课的教学质量和教学进度。一个好的开端可以使学生快速地集中注意力从而进入学习状态,使学生们的思维更加活跃、提高课堂效率和减轻老师的教学负担。下面通过介绍几种课堂上的教学方式和具体的案例来进行详细地阐述。

一、创新教学模式

1、激发学习兴趣

新鲜的事物对青少年具有很大的吸引力,老师只有在教学过程中摆脱古板的教学方式,不断地创新才能抓住学生的兴趣点。真正的优秀的教学方式可以使学生的思维快速随着教师的思维运转,因为面对着繁重的课业负担的高中生很容易对数学这一课程产生厌烦甚至放弃学习,只有学生从自身意识到学习的重要性和对数学产生学习的兴趣,才能真正地融入到高中数学的学习中。而一个好的开端则可以吸引学生的注意力,慢慢在喜欢上数学。面对传统的“填鸭式”教学,使用生动形象的直观方法则可以使学生对所学知识一目了然。例如在分析立体几何时,不要单纯地将一些计算公式或者规律直接告诉学生,应当画出立体几何的透视图或者展出相关的实物模型,有条件的情况下要求学生亲手制作一些模型,这样既增加了教学过程中的趣味性,又提高了学生的学习兴趣和动手操作能力。

2、由浅入深的推导

学习是一个循序渐进的过程,没有谁可以“一口吃成大胖子”。很多时候我们只能看到事物的表象,而其中的内涵则需要我们一步一步去挖掘。很多学生极易被表象所迷惑,如何正确地引导他们不会误入歧途就是我们教师要求掌握的教学手法之一。当学生在接触到一个新知识并对其有所了解后而沾沾自喜时,就需要引导他们向更深层次去探索,只有不断前进才能有所收获。假设在学习“对数”这节课时,可以这样导入:假设用一块厚度为0.1毫米的金属板连续对折三次,计算其厚度,如果连续对折五十次,其厚度能达到多少呢?如果在不借助计算工具的情况下,学生们通过乘法是很难在短时间算出正确的数值,这时学生们就需要一种新的算法来得到他们需要的答案。通过这种方式不仅激发了学生的求知欲,在大家畅所欲言的同时也使课堂气氛更活跃。

3、课前温习

在每天教授新知识前,应当先回顾一下上一堂课学习的内容,这样做的目的是为了使学生进一步巩固学习过的知识,同时还起到了承上启下的作用,为新授知识做一个铺垫,使学生更快地接受新内容,巩固旧的知识,在教学上实现“双赢”。

例如在学习证明立体几何平行或垂直关系这堂课时,老师可以先引入平行关系:包括线面平行和面面平行;垂直关系:线线垂直、线面垂直和面面垂直。同时在黑板上写下本堂课的关于四个判定和性质定理的学习内容,四个判断定理:1、若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2、如果一个平面内有两条相交直线都平行于一个平面,那么两个平面平行3、如果一个平面内的两条相交直线都垂直,那么该直线与此平面垂直4、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直;四个性质定理:1、一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行 2、两个平面平行,则任一个平面与这两个平面相交所得的交线相互平行 3、垂直于同一平面的两条直线平行 4、两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

将新知识与旧知识同时列在黑板上,使学生直观地认识到两者之间的联系,从而进行对比,不仅巩固了之前的内容,也对新知识有了更多认识,此时教师让学生再通过字面意思进行预习,将新旧知识相互联系后就会达到事半功倍的学习效果。

高中数学教学案例分析范文4、联系实际

数学同其他课程相比更为枯燥,所以如何使学生对数学产生兴趣则至关重要,将数学与生活实际相联系,使用应用题的形式就要比单纯的计算更富有趣味性,同时也可以在课堂上举行一些“谁最快最准确”的小比赛,使学生在做题时更有动力,活跃的课堂气氛会使学生的思维更加敏捷。

综上所述导入的方法是一堂课成功与否的关键,由此可以看出好的教育方法在学习中的重要性。

二、课堂教学经典案例解析

1、随着教育地不断发展,传统的教学方法已经越来越不能适应现在的教育了,以学习“数列”为例,如果在课堂上老师的提问方式不得当,例如在上课刚刚开始时就提出一连串的关于“数列”的问题:什么是数列?等差数列有什么样的性质?它有哪些计算公式?它与等比数列有何差别,又有何联系?当学生面临老师一连串的提问时,就会产生烦躁的情绪,注意力下降,思想“开小差”。这就说明老师的教学抓不住学生的兴趣点,使学生失去了学习的耐心。如果老师换一种方法,先在黑板上列出几组等差数列和等比数列,要求学生自己观察并总结出其中的性质和异同点,当学生有参考目标时就会充满学习的欲望和兴趣,就会变得更加主动。优秀的教育方式不在于一堂课能讲多少,而是能让学生学会多少。

2、上课要做到“有始有终”,有一个好的开始就要有一个好的结束,如何利用好下课前的几分钟也是一种学问。有些老师会让学生在教室提前休息,这样不仅仅浪费了时间,也会扰乱课堂纪律,因此老师可以出一两道简单的题对所学内容进行巩固,或布置下预习作业,但是切记布置的任务不要太多,以免影响学生课间休息和使学生产生逆反心理。

篇7:高中数学教育案例分析

一、课堂教学改革势在必行

新课标的基本理念是:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识。高度概括地说,老师的教与学生的学就是自主、合作、创新。

所谓自主就是尊重学生学习过程中的自主性、独立性,即在学习的内容上、时间上、进度上,更多地给学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会;合作就是学生之间与师生之间的互动合作,平等交流;创新就意味着不固步自封、不因循守旧、不墨守成规。

传统的教学方式一般以组织教学、讲授知识、巩固知识、运用知识和检查知识来展开,其基本做法是:以纪律教育来维持组织教学,以师讲生听来传授新知识,以背诵、抄写来巩固已学知识,以多做练习来运用新知识,以考试测验来检查学习效果。这样的教学方式,在新一轮的基础教育课程改革下,它的缺陷越来越显现出来,它以知识的传授为核心,把学生看成是接受知识的容器,按照上述步骤进行教学,虽然强调了教学过程的阶段性,但却是以学生被动的接受知识为前提的,没有突出学生的实践能力和创新精神的培养,没有突出学生学习的主体性、主动性和独立性。因此,革新教学方式势在必行。

作为新课程改革的有机组成部分,课堂教学改革是不可或缺的重要一环。改革课堂教学就是要用新课程的理念指导课堂教学设计,转变学生消极被动的学习方式,培养学生创新精神和实践能力,数学课堂教学设计,即是要以《数学新课程标准》界定的课程理念为指导,逐步实现新课程标准设定的各项目标,让学生在学会数学知识的同时,学会探究、学会合作、学会应用、学会创新。

二、融入新课程理念的设计原则

(1)建构性原则 学生以怎样的方式和途径来获取知识,这是一个学习方式问题,新课程倡导建构性的学习,主张学生知识的自我建构,新课标指出:学生的数学学习活动不应只限于接受、记忆、模仿和练习,而应自主探索、动手实践、合作交流、阅读自学等。因此,数学课堂教学的设计应遵循建构性原则,使学生从“我要学”出发,树立“我能学”的自信,最终寻找到适应学习的个性化方式。

(2) 交互性原则 新课程的改革,要求教师进行角色变换,由单纯的“知识传授者”转换为学生学习的“合作者”、“激励者”和“促进者”,这样,在课堂教学中必然会出现“教师与学生”、“学生与学生”的合作学习。从另一角度看,数学课堂中的师生交往、生生交往就是不断进行信息传递的过程,因此,数学课堂设计应体现交互原则。

(3)情境性原则 培养和提高学生的数学思维能力,是数学教育的基本目标之一。学生在学习数学和运用数学解决问题时,不断地经历、归纳类比、空间想象、抽象概括、数据处理、演绎证明、反思与建构等思维过程,对客观事物中蕴涵的数学模式进行思考和判断。但这一思维过程离不开直观感知、观察发现 ,或用实际例子(即适当的形式化)来加以表达,学生更容易接受,因此,数学课堂教学设计应遵守情境性原则。

(4)开放性原则 过去的教学设计,总是教师“牵”着学生走,教师是课堂的主宰,新课标呼唤学生学习方式的转变,于是单一的师讲生听的学习方式,被“自主、合作、探究”的学习方式所替代,表现出教学方法的开放性,因此,数学课堂教学体系的设计

应关注开放性原则。

(5)实践性原则 数学科学是自然科学、技术科学等科学的基础,数学的应用越来越广泛,正在不断渗透到各个领域,在数学教育中开展“建模”活动,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野,有利于学生体验数学在解决问题中的作用,有利于提高学生的实践能力,因此,数学课堂教学过程的设计要注重实践性原则。

(6)创新性原则 新课标把“提高空间想象、抽象概括、推理论证、运算求解、数据处理等能力”列为课标之一,教师在课堂教学中必须关注学生数学思维能力训练,培养学生的创造性思维,引导学生勇于用怀疑的、批判的目光去看待数学,这样才能有所突破,有所创新,因此,数学课堂教学设计应体现创新性原则。

三、新课标理念下的课堂教学设计案例一则

新课标增加“探究性课题”这一版块,这足以说明培养学生的探究能力是非常重要的。“问题是数学的心脏”,问题探究式教学就是以问题为主线,引导学生主动探究,建构知识,体验数学发现和建构过程。情境性教学,引导学生体验,有目的地创设或引入与教学相呼应的具体场景或教学资源,以引起学生情感的体验,激发学生更主动地学习。下面我将记述一节由问题探究与情境性教学交互使用的教学过程。

如“无穷递缩等比数列求和”是在学生学习了数列及数列极限等知识的基础上提出来的,它与数列、方程、函数和极限等知识有内在的联系,能与实际生产和生活中的问题相结合,但是,学生对无穷数列各项和,有限到无限的思想方法,以及用极限的方法去解决实际问题还缺少思想基础,因此,我在设计这一节课时,设计情景,提出问题,通过实际问题、具体问题,以引起学生情感体验,引导学生学会建构、探究,最终达成教学目标。

(一)设计情境——提出问题

问题1:如果不停地往一只空箱子内放东西,箱子会满吗?为什么?

这问题表面上看是一个游戏,事实上,它隐含着无穷数列各项和知识,有一定的趣味和魅力,能引起学生的思考,不同层次的学生都有发言权,也不乏味,有能力发展点、个性和创新精神培养点,学生从实际背景出发,通过动脑思考,动手操作,动口说明,能经历从抽象表示到符号变换和检验应用全过程,能培养学生的数学建模能力。

(二) 自主探究——感知问题

我提示学生用数学眼光去看上述问题,即将上述问题转化为数学模型,然后让学生展开讨论。

(三) 合作交流——形成共识

(1)问题1的讨论结果:

S1:箱子即使很大也会满,因为,设第一次放入的量为a1, 第二次放入的量为a2,…设第n次放入的量为an,…,则a1+a2+a3+…+an+…可能很大,总能放满箱子。

S2:箱子即使很小也不会满,因为,设第一次放入的量为a1, 第二次放入的量为a2,…第n次放入的量为an ,…,则a1+a2+a3+…+an+…可能也很小。

(2)引导学生对问题进行探究,构建数学模型

问题2:你能尽可能多地举出箱子不会满的例子吗?

S3:把一支粉笔的一半放入空箱子中去,剩下粉笔的一半再放入空箱子中去,如此下去,…,放入空箱子中的充其量也只有一支粉笔,不会满,其数学模型是:a+a+a+…=a(a是粉笔的长)

S4:把一杯水的倒入空容器中去,剩下水的再倒入空容器中去,如此下去,…,倒入容器中的只有一杯水,也不会满,其数学模型是:

b+b+b+…=b(b是一杯水)

……

问题3:你能否将S3与S4这类问题一般化?若设第一次放入空箱子中去的量为a1,第二次放入空箱子中的量为a2,…第n次放入空箱子中去的量为an,…,数列{an}有何特点?

同学们得出结论:数列{an}是等比数列,也是递减数列,且项数无穷的。

接着再让学生自主研究无穷递缩等比数列的定义,并判定数列{an}是否为无穷递缩等比数列?再进一步思考无穷递缩等比数列是否一定是递减数列?总结无穷递缩等比数列的几个特征,加深对概念的理解。

(3)Sn与S的关系

问题4:当|q|

请学生思考:若设数列{an}前n项和为Sn,,所有项的和为S,运用极限的思想,你能否发现Sn与S的关系?讨论结果:S=limSn

(4) 求无穷递缩等比数列的和

问题5:怎样求无穷递缩等比数列{an}的和?

Sn=a1+a2+a3+…+an=,lim Sn=lim

因为当|q|

我这时就说:好!我们通过自主探索与合作交流,得出了无穷递缩等比

数列的求和公式:S=(|q|

(5)公式的应用(略)

通过应用交流,使学生加深对公式的认识,体验了数学模型化思想,让学生在交往中学习数学。

(四)总结反思——共同创新

本课我们运用情景化、问题形象化、探究化等数学方法,将游戏问题转化为数学模型——无穷递缩等比数列的和。为了概括

所学内容的逻辑结构,提炼思想观点,引导学生创新,我将本课研究过程和方法概括如下:

抽象概括 应用

教学全过程概括为:具体问题——————数学模型—————解决实际问题。

改造 抽象概括

解决问题的思想方法:现实问题————现实模型————数学模型——

数学方法 检验 探究、深化、拓展、

————数学模型的解————现实问题的解————————现实问题

是否符合实际?

由此课例,不难看出,问题式、情景式教学交互设计,促进了学生形象思维和抽象思维的相互补充、相互促进,这种设计以培养兴趣为前提,以指导观察思考为基础,以发展思维为重点,以自主探究、合作交流为手段,让学生在感情体验中真正地用“心”去学习。

数学本身是为人的,是开放的,是丰富多彩的,一句话,数学是为人所用的。而这一事例生动地告诉我们,作为数学老师,不同的教育观念、不同的思想方法会有不同的数学思路和教学方法,学生会有不同的发展结果,只要我们用心地去备好每一节课,设计得当的教学程序,我们的学生将会把数学掌握得更好,我们的数学教学将会更好地服务于社会。

两年来,我们学校的刘定华校长、姚文清副校长给我们不定期地做课改实验报告,刘校长亲自给我们上课改示范课,还想方设法地从外地引进A类人才给我们上研修课,所以,我们学校兴起了一股课改的热潮。现在的你们如果愿意走进我们的课堂,那定会看到师生合作学习的情景。这两年的课改,从我们的高考取得较好的成绩(理科数学高考平均分排在大桂林市第七,文科排在大桂林市第十八,理科数学高考平均分排在大桂林市第九,文科排在大桂林市第十五)可见一斑。因此,创新教育、素质教育也能很好地把握应试教育。

篇8:高中数学教学案例反思

1.对数学概念的反思——学会数学的思考

对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的眼光去看世界去了解世界。而对于数学教师来说,他还要从“教”的角度去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。

以函数为例:

● 从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。

● 从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。

方程的根可以作为函数的图象与轴交点的横坐标;

不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合;

数列也就是定义在自然数集合上的函数;

……

同样的几何内容也与函数有着密切的联系。

……

2.对学数学的反思

教师在教学生是不能把他们看着“空的容器”,按照自己的意思往这些“空的容器”里“灌输数学”这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。

要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。

3.对教数学的反思

教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们的意愿呢?

我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。

教学反思的四个视角

1.自我经历

在教学中,我们常常把自己学习数学的经历作为选择教学方法的一个重要参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们今天的学生仍有一定的启迪。

当然,我们已有的数学学习经历还不够给自己提供更多、更有价值、可用作反思的素材,那么我们可以“重新做一次学生”以学习者的身份从事一些探索性的活动,并有意识的对活动过程的有关行为做出反思。

2.学生角度

教学行为的本质在于使学生受益,教得好是为了促进学得好。我们教师在备课时把要讲的问题设计的十分精巧,连板书都设计好了,表面上看天衣无缝,其实,任何人都会遭遇失败,教师把自己思维过程中失败的部分隐瞒了,最有意义,最有启发的东西抽掉了,学生除了赞叹我们教师的高超的解题能力以外,又有什么收获呢?所以贝尔纳说“构成我们学习上最大障碍的是已知的东西,而不是未知的东西”

大数学家希尔伯特的老师富士在讲课时就常把自己置于困境中,并再现自己从中走出来的过程,让学生看到老师的真实思维过程是怎样的。人的能力只有在逆境中才能得到最好的锻炼。经常去问问学生,对数学学习的感受,借助学生的眼睛看一看自己的教学行为,是促进教学的必要手段。

3.与同事交流

●同事之间长期相处,彼此之间形成了可以讨论教学问题的共同语言、沟通方式和宽松氛围,便于展开有意义的讨论。

● 由于所处的教学环境相似、所面对的教学对象知识和能力水平相近,因此容易找到共同关注的教学问题展开对彼此都有成效的交流。

● 交流的方式很多,比如:共同设计教学活动、相互听课、做课后分析等等。交流的话题包括:

我觉得这堂课的地方是……,我觉得这堂课糟糕的地方是……;这个地方的处理不知道怎么样?如果是你会怎么处理?

我本想在这里“放一放”学生,但怕收不回来,你觉得该怎么做?

合作解决问题——共同从事教学设计,从设计的依据、出发点,到教学重心、基本教学过程,甚至富有创意的素材或问题。更为重要的是这样的设计要为其后的教学反思留下空间。

4. 参考资料

学习相关的数学教育理论,我们能够对许多实践中感到疑惑的现象做出解释;能够对存在与现象背后的问题有比较清楚的认识;能够更加理智的看待自己和他人教学经验;能够更大限度的做出有效的教学决策。

阅读数学教学理论可以开阔我们教学反思行为的思路,不在总是局限在经验的小天地,我们能够看到自己的教学实践行为有哪些与特定的教学情境有关、哪些更带有普遍的意义,从而对这些行为有较为客观的评价。能够使我们更加理性的从事教学反思活动并对反思得到的结论更加有信心。

更为重要的是,阅读教学理论,可以使我们理智的看待自己教学活动中“熟悉的”、“习惯性”的行为,能够从更深刻的层面反思题目进而使自己的专业发展走上良性发展的轨道。

教师的职业需要专门化,教师的专业发展是不可或缺的,它的最为便利而又十分有效的途径是教学反思。没有反思,专业能力不可能有实质性的提高,而教学反思的对象和机会就在每一个教师的身边.

篇9:高中数学教学案例有哪些

高中数学《平面直角坐标系》教学案例

教学设计

一、教学目标

1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;

2、过程与方法目标:通过研究平面直角坐标中数与点的对应关系,能根据坐标描出点的位置;

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

二、教学重难点

重点:理解平面直角坐标中点与数的一一对应关系;

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

三、教学用具

教师准备四张大的纸质坐标格子。

四、教学过程:

(一)温故知新,导入新课

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

(二)新课教学

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点A数轴上的坐标是-4,点B数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。

教师提问1:类似于数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?平面内给出任意点A、B、C、D,我们怎么确定这些点的位置

学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小B说我们可以每个点列一个数轴···

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由A分别向x轴和y轴作垂线。垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A的坐标是3,纵坐标是4,有序数对(3,4)就叫做A的坐标,记作A(3,4)

教师提问2:同学们按照这种做法,在坐标纸上标出B、C、D的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点E、F,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

(三)课程巩固

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的ABCDEFG等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

(四)小结作业

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

五、板书设计

平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

两坐标轴的交点为平面直角坐标系的原点。

高中数学教学中电教手段的运用方法

一、电教手段的应用有利于体现数形结合的数学思想方法

高中解析几何是综合运用代数和几何知识的一门综合性的学科,其特点之一是数和形的紧密结合,即利用方程的性质来研究相应的几何图形的特点,使几何图形及其研究实现了“代数法”。反之,如果给代数问题以几何解释,那么可以理解代数问题的直观意义,解析几何的另一个基本特点是把曲线(包括直线)看作是按一定的几何条件运动的集合,以运动、变化的观点来研究它的性质,所以具有数形结合的思想,运动变化的辨证观点是学好解析几何的关键。

电教手段应用于解几教学应是在教学过程中充分揭示教学内容中内在辨证关系,逐步使学生养成运用上述思想和观点去分析和解决问题的习惯,从而深刻地理解和掌握教学内容的实质。基于此,应主动有效地设计出“数、形动态”演示特点,赋予它特有的魅力。即能够迅速改变变数,同步达到屏幕图形的变化,或屏幕图形的渐变;窗口同步显示变数的变化,并且演示过程可以根据需要进行控制,演示速度可任意调整;可以随时看到各种情形下的数量变化或不变,图形的动或静,把“数”和“形”的潜在关系动态地显示出来。这样教师根据呈现的内容有针对性地加以讲解或组织讨论,引导学生根据内容提出的各种变数来观察、验证、对比、寻找一般规律和特殊属性。使学生能加深对几何图形的感知,敏锐地抓住变化特征,真正地将现代科技应用于辅助教学。

比如线段的定比分点概念的教学,对此概念的学习主要要引导学生深刻认识到定比分点的概念的成因,是为了有效地确定线段的唯一分点P的位置,和引入λ值的意义,即在直线、线段上唯一分点P使得有向线段的比值λ与实数对形成了一一对应的关系,进而理解定比分点的实质是通过线段的比“代数化”来确定P点的位置。可让学生积极寻找、分析、修正各种解决问题的方案。设计思路:在屏幕上显示有向直线L,在L上设置两固定点P1、P2和一个动点P,开设变化值λ窗口,对于特殊点的位置,如P1、P2点,预先设置λ对应值(0及不存在)。动点P可用鼠标拖动,动态显示时,窗口同步显示相应λ数值。拖动的速度可自由控制,可快可慢,可停留于某个点。学生可亲手动手演示操作,使直线L与各个特殊点:P1点、P2点、P1P2中点、P1P2的各种内分点、外分点等的位置与λ值关系显露出来。这样分点变化引起线段的比的变化特征,确实是直观、明显、连续、完整、精确,充分地揭示“形”(线段)与“数”(线段比)的一一对应关系。

二、电教手段的应用有利于突出重点、突破难点

突出教学重点,突破教学难点是数学教学的一个重要环节,教师为此要耗费大量的时间和精力,即便如此,学生往往仍是启而不发,感触不深,容易疲劳从而导致厌学的负面心态。在教学中运用多媒体,可以创设出动态情境,以鲜明的色彩和活动的画面把活动过程全面展现出来,那么既可突出重点、突破难点,化抽象为具体,又可促进思维导向由模糊变清晰。使学生通过直观的形象来理解数学中的概念和运算过程。

例如:《函数y=Asin(ωx+φ)的图象》这一课,重点是函数y=A sin(ωx+φ)的图象以及参数A,ω,φ对函数图象变化的影响,难点是y=Asin(ωx+φ)的图象与正弦曲线的关系,在教学中需要从简单到复杂,从特殊到一般,从具体到抽象,逐步总结图象变换的规律。利用多媒体课件形象的给出了函数 y=sinx到y=3sinx 、y=sinx到y=sin2x 及y=sin2x 到y=sin(2x+1)的变化过程,总结出y=sinx到y=Asinx、y=sinx到y=sinωx 及y=sinωx到y=sin(ωx+φ)的伸缩或平移变换的变化过程。利用多媒体课件的优势,突出了重点,突破了难点,达到传统教学手段无法达到的效果。

三、运用计算机多媒体动画,有利于学生知识的获得与保持

信息和知识是密切相关的,获取大量的信息就把握大量的知识。实验心理学家赤瑞特拉做了一个实验,是关于知识保持即记忆持久性的实验。结果是这样的:人们一般能记住自己阅读内容的10%,自己听到内容的20%,自己看到内容的30%,自己听到和看到内容的50%,在反复过程中自己所说内容的70%。这就是说,如果既能听到又能看到,再通过讨论并用自己的语言表达出来,知识的保持将大大优于传统教学的效果。如必修《2》第四章平面解析几何初步--《直线的方程》(复习课)中提出的一个问题:对于直线的斜截式方程y=kx+b,当参数k和参数b改变时,直线怎样变化?

笔者这样设计教学过程:利用《几何画板》设计好课件,以y=2.00x+0.98为例,先改变k值,b值不变;再改变b值,k值不变。让学生认真观察其变化过程,猜想、讨论,最后得出结论:当k取任意实数时,方程y=kx+b表示的直线都经过点(0,b),它们是一组共点直线;当b取任意实数时,方程y=kx+b(k≠0)表示的直线彼此平行,它们是一组平行直线。就这样学生在观察、猜想、讨论等一系列活动中获得了知识,体会了直线的变化过程,并且印象深刻。

四、充分利用电教手段安排课堂教学结构,有助于发挥学生的主体作用

学生获得知识,一是从被动接受中获得,二是从主动学习中获得。我们应提倡让学生在教师的启发、诱导下,主动地获取知识。这就要求教师注意研究学生的学习规律,改变重视“教”而忽略“学”的现状,适当的应用电教手段进行教学,可以对学生加强学习方法的指导,使学生在老师的指导下,从不知到知,从知之较少到知之较多,并在学会数学知识的同时学会学习的方法。

为了在实际教学中体现突出学生的主体作用这一特点,我们在考虑课堂教学结构的设计时,重点应研究四个方面:①科学安排一节课的各组成部分进行的顺序;②合理分配和使用时间;③精心设计安排练习;④要根据不同的教学内容和教学要求,有计划有步骤地引导学生进行各种认识活动,如操作、观察、测量、画图、解题等,引导学生在活动中思考,逐步放手让学生自己去探索。而电教手段的应用,可以节约传统的板书、画图等的时间,从时间上使有限的课堂四十分钟的时间“变长”了,使学生的主体作用可以得到更加充分的发挥。

五、运用电教手段进行教学可激发学生的学习兴趣。

数学这门课具有高度的抽象性,严密的逻辑性和广泛的应用性。正是这些特点,使得数学概念、公式具有高度的抽象性和严密性,数学方法具有概括性和普遍性,决定了长期以来数学方法的单调划一。随着教育改革的不断的开展和深入,特别是新课程标准的普遍推广和执行,对于数学课堂教学提出了新的要求,必须努力改进教学手段和教学方法,“一支粉笔一张嘴”已远远不能适应教育的改革和时代的发展。再加上由于数学学科其自身的特点,似乎就决定了其枯燥性和单调性,的确也没有其它学科形象生动而具有趣味性,学生学起来也觉得有点枯燥无味。教师使学生对上课有兴趣是比较容易做到的,但要使学生对上课的学习内容有兴趣则往往要困难些。而多媒体教学技术走进课堂,它以鲜艳的色彩、优美的图案、直观形象地再现了客观事物,充分的刺激学生的感官,调动学生的积极性,吸引长期的注意力,以轻松愉快的心情参与到课堂教学中来,达到了从“要我学”到“我要学”的转变。例如在教学《空间几何体》这一节时,利用多媒体课件中的动画向学生展示了棱住、圆柱、棱锥、圆台等空间几何体的特点,从感官上有效的刺激了学生的学习欲望,激发了学生探究知识的兴趣和情感,诱发学生在感情和行为上的参与意识,使其主观上产生对新知识追求的动力。横看成岭侧成峰,这可以说是对电教手段进行教学的最佳写照。的确,信息技术的加速发展,正逐渐改变人们的思维、表达、沟通方式,乃至改变人们长久以来形成的生活方式。

高中数学教学方法

一、讲授法、谈话法和讨论法的区别

1.讲授法是教师运用口头语言系统向学生传授知识的一种方法。主要有讲述、讲解、讲读、讲演四种方式。

优缺点:能在短时间系统传授知识,但不利于学生主动性的发挥。

2.谈话法:也叫问答法,它是教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取新知识或巩固旧知识的方法。谈话法可分复习谈话和启发谈话两种。运用谈话法,学生必须有一定的知识基础,这是谈话法的前提。

优点:能照顾每个学生的特点,有利于发展学生的语言表达能力,并通过谈话直接了解学生的学习程度,及时检验自己的教学效果。(在教学过程中,中西方分别最早采用谈话法的是孔子和苏格拉底)

3.讨论法是学生在教师指导下为解决某个问题进行探讨、辩论,从而获取知识的一种方法。

优缺点:有利于学生集思广益,互相启发,加深理解,但是运用讨论法需要学生具备一定的基础,一定的理解力,因此在高年级运用较多。

区分:对于以语言传递为主的教学方法我们可以按照实施的主体去区分讲授法、谈话法、讨论法。讲授法和谈话法的主体是老师,教师学生共同参与,而讨论法主要是学生之间。

二、演示法和实验法的区别

1.演示法主要是通过展示实物、直观教具,进行示范性的实验或采取现代化视听手段等指导学生获得知识或巩固知识的方法。运用演示法时要注意几个问题:根据学生的具体情况选择性地运用演示手段;控制演示时间,难度不宜太大;演示内容要贴近生活。

2.实验法是指学生在教师的指导下,使用一定的仪器和设备,在一定条件下引起某些事物和现象产生变化,进行观察和分析,以获得知识和技能的方法。一般在物理、化学、生物等自然科学的教学中运用得较多。实验法不仅有利于学生掌握知识,而且有利于培养学生的动手能力和科学的、严谨的学习态度。

演示法与实验法两者的区别主要在于演示法是教师演示,学生看;而实验法学生自己动手做,教师进行观察指导。

三、练习法、实习作业法和实践活动法的区分

1.练习法是学生在教师的指导下运用所学知识独立地进行实际操作,以巩固知识、形成技能的方法。练习的种类很多。按培养学生不同方面的能力分为:各种口头练习、书面练习、实际操作练习;按学生掌握技能、技巧的进程分为:模仿性练习、独立性练习、创造性练习。

2.实习作业法,又称实习法,是指根据教学任务要求,学生在教师指导下在校内外一定场所运用所学知识进行实际操作和其他活动,以帮助学生掌握知识、形成技能技巧的方法。这种方法在自然学科的教学中占有重要的地位,如数学课的测量练习、生物课的植物栽培等。

3.实践活动法

让学生参加社会实践活动,培养学生解决实际问题的能力和多方面实践能力的教学方法。在实践活动中,学生是中心,教师是学生的参谋或顾问,教师必须保证学生的主动参与。

区分:练习法和实习作业法的区别在于练习法主要在课堂上练习(课内),实习作业主要是课堂之外(课外),例如:周长的计算公式,(长+宽)乘以2,课上练习题属于练习法,学生去操场量周长属于实习作业法。而实践活动法则是由操作到知识的过程,它更强调在活动中获得知识和技能。

篇10:高中数学教学反思案例

在新课程改革背景下,怎么才能让学生喜欢上数学学习,提高学生的学习效率,这是一个很重要的课题。笔者认为,首先要整体把握教材,把前后知识紧密联系起来,形成知识体系;其次要充分了解学生的实际情况以及他们的认知水平,便于因材施教;再次要把教和学有机结合在一起,实现两者的完美统一。课堂是实施高中数学教学的主要场所,也是学生获取知识和技能的主要渠道。通过课堂教学,不但能发展学生智力,还能让学生掌握学习的方法,提高自主学习能力。

一、要有明确的教学目标

教师在备课的时候,要围绕教学目标采取有效的教学方法,利用最佳的教学设备,把教学内容进行必要的整合。在备课的过程中,不能拘泥于教材,要做到灵活运用。在课堂上,应加强师生互动,通过共同努力,出色地完成教学任务,提高学生的综合素质。

二、要能突出重点、化解难点

教学重点要突出,所有的教学活动都要围绕教学重点一一展开。在上课开始,教师就要让学生明确本节课学习的重难点,以引起学生的重视。在想方设法突破重难点的时候,就达到了整堂课的高潮。教师通过教学语言、板书、动作的变化或者利用多媒体教学手段,刺激学生的大脑,调动学生的积极性,提高学生对新知识的接受能力。

三、利用现代技术手段辅助教学

在新课程改革背景下,教师必须不断接受新鲜事物,掌握现代化教学手段。在教学中合理运用现代化教学手段,一是增加了课堂教学的容量;二是节省了教师板书的时间,提高教师讲解效率;三是生动、形象,能激发学生的学习兴趣,学生学习更加主动、积极。在数学教学过程中,为学生呈现板演量大的内容时,教师都可以利用投影仪来完成,比如,几何图形、文字较多的数学应用题、对章节内容的总结、一些选择题等都可以用电脑或者投影仪来呈现。

四、根据具体内容,灵活运用教学方法

教无定法,在数学教学中,教师要根据教学内容的变化以及学生的学习情况不断变化教学方式。数学教学方法多种多样,在讲解新内容的时候,一般都采用讲授法。而在教学立体几何时,教师可以适当运用演示法,让学生明白知识的形成过程。另外,教师还可以根据教材内容,灵活运用谈话法、辩论会、练习法等多种教学方法。不论哪一种教学方法,只要能激发学生的学习兴趣,有利于培养学生的能力,都是有效的教学方法。

五、关爱学生,及时鼓励

高中教育教学的根本目的就是促进学生的全面发展。对学生在课堂上的表现,教师要多关注,及时总结和评价,并处理好课堂的偶发事件,提高课堂调控能力。在教学中,教师对学生的学习情况要了如指掌,比如在学习完一个数学概念后,让学生进行复述;学习例题后,让不同层次的学生到讲台上进行板演。教师要关注基础差的学生,对他们放低要求,根据他们的实际为他们提供成功的机会,培养他们的自信心,让他们逐渐喜欢上数学学习。

六、充分发挥学生的主体作用

学生是教学的主体,教师要围绕学生展开教学,尽可能减少对学生的限制,利用多种教学手段让学生主动学习,教师做学生学习的领路人。这就需要教师少讲,留出时间让学生动手、动脑。然而,有的教师问题刚提出,就希望学生马上能回答准确,然后就忍不住告诉学生正确的答案,导致学生的依赖性越来越强,不利于学生独立思考能力的培养。实际上,学生的思维是一个资源库,只要给学生时间和机会,他们就能想出更好地办法,进而发展思维,提高能力。

七、重视基础知识和技能的培养

随着新课程改革的不断发展,数学试题越来越灵活、新颖,很多教师和学生把精力都用在难题、怪题上,认为只要加强难题训练就能提高能力,而那些基础知识和技能却忽视了。在实际教学中,数学教师往往直接告诉学生数学公式和定理,或者简单地讲解一道例题就开始搞题海战术。实际上,数学公式和定理的推证过程,包含了很多的解题方法和规律,但是教师不去挖掘内在的规律,而是希望学生通过练习自己去悟出这些道理。由于学生的能力不同,很多学生“悟”不出方法,不会灵活运用,只会照葫芦画瓢,甚至把简单的问题复杂化。学生对基础知识掌握不牢,理解肤浅,在考试的时候容易出现错误。有的学生认为现在的试题量太大,根本没有充足的时间去完成这些任务,而解题的速度和学生基础知识和技能的掌握有很大的关系。因此,在数学教学中,教师要落实学生双基的训练和培养。

八、化解作业,反馈信息,指导学法

在以往的教学中,教师会给学生留大量的数学作业,这一方面给学生带来很大的学习负担,另一方面给教师的工作带来压力,并且也不能更好地获取真实的信息反馈。因此,教师要改革布置作业形式,让学生在课堂上进行练习。这样,教师能及时发现学生学习中的问题,然后给予指导和帮助,避免学生机械重复已经掌握的内容,还可以纠正课堂教学中出现的失误,收到良好的教学效果。练习题的设计应体现目的性、层次性、多样性、针对性特点,教师应从知识点入手,立足于学生的实际情况,为学生设计丰富的题型,构建一个愉快的练习情境,让每一个学生都能获得成功的体验,实现学习的高效性,达到做题的目的。总之,作为高中数学教师,我们要提高学生在课堂45分钟的学习效率,就要对教材进行加工处理,不断反思自己的教学行为以及学生的学习效果,充分做到用好教材、备好课、提高自身的教学水平,引导学生学会归纳总结,指导学生学会学习数学的方法,掌握正确的数学思想,挖掘潜在的知识点,让学生能够愉快轻松地学习数学知识。

篇11:高中数学教学案例反思

本人任教高中数学新课程已有三年,通过实践,对高中新课程的教学理念有了进一步的了解,对新课标下的具体教学实施有了一些经验或想法。以下就是自己在新课改背景下,对一些教学内容所做的思考与体会。

一、将数学教学内容的学术形态转化为学生易于接受的教育形态

在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1弧度的角” 的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫做1弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。在课堂教学中,可采用如下设计的教学过程。

1、创设故事情境

一个生病的小男孩得知自己的体温是“102”时,十分忧伤地独自一个人躺在床上“等死”。而他的爸爸对此却一无所知,他以为儿子是想休息,所以才没有陪伴他,等他从外面打猎回来,发现儿子不见好转时,才发现儿子没有吃药。一问才知道,他儿子在学校里听同学说一个人的体温是“44”度时就不能活。当爸爸告诉他就像英里和千米一样,有两种不同的体温测量标准,一种37度是正常,而另一种98度是正常时,他才一下子放松下来,委屈的泪水哗哗地流下来。 在生活、生产和科学研究中,一个量可以有几种不同的计量单位(老师可以让学生说出如长度、面积、质量等一些量的不同计量单位),并指出对于“角”仅用“度”做单位就很不方便。因此,我们要学习角的另一种计量单位DD弧度。如此引入很。自然引出或鼓励学生猜测“角”还有没有其他度量方式,从而开启思维的闸门。

2、探索角新的度量方法

可从两种度量实质上的一致之处开始探索:拿两个量角器拼成一个圆,可以看出圆周被分成360份,其中每一份所对的圆心角的度数就是1度,然后提出问题“拿”圆上不同的圆弧,度量圆周时,得到的数值是否一样? 为了探索这个问题,把学生分成若干小组,思考下列问题:

① 1度的角是如何规定的?

② 用一个圆心角所对的弧长来度量一个圆心角的大小是否可行?同一个圆心角在半径不等的圆中所对弧长相等吗?

③ 用一个圆的半径来度量该圆一个圆心角的大小是否可行?其值会不会由于圆半径的变化而变化?

④ 如何定义圆心角的大小?说明这种度量的好处。

要求学生分组讨论以上问题,写出结果,在班内交流结果,师生共同确定答案。

这样处理可将弧度概念与度量有机结合起来,有效化解难点,在探索中又注重课堂交流能力的培养,使学生在不断的交流中逐渐明晰自己的思路。

二、由重结果走向重过程

新的课程标准不仅强调基础知识与基本技能的获得,更强调让学生经历知识 的.形成过程,以及伴随这一过程产生的积极的情感体验和正确的价值观。

[案例2] 等比数列的前n项和公式的探求。

为了求得一般的等比数列的前n项和,先用一个简捷公式来表示。

已知等比数列{ an}的公比为q,求这个数列的前n项和Sn。即Sn=a1+a2+a3+an

(1)知识回顾。

类比学过的等差数列的前n项和公式,不难想到等比数列前n项和Sn也希望能用a1、an,n或q来表示。

请同学们回答:对于等比数列,我们已经掌握了哪些知识?

①等比数的定义,用式子表示为:

②还可以用一系列整式表示:

a2=a1q

a3=a2q

a4=a3q

an =an―1q

③等比数列的通项公式:n=1。n―1 (n≥2)

(2)新知探求

联想等差数列的前n项和推导方法,问:等比数列前n项的和是否也能用一个公式来表示?

(这是学生完成知识形成过程的重要一步,应留出充分的时间让学生研究和讨论。)

要用a1、n、q来表示Sn=a1+a2+a3+an应先将a2,a3,an用a1、n、q来表示。

即:Sn=a1+a1q+a1q+a1qn―1

注意观察每项的结构:每项都是它前面一项的q倍,能否利用这个q倍,对Sn化简求和?

(经过一番思考)对Sn两边分别乘以q,再与原式相减。经师生共同努力,完成推导过程。

方法一:用“错位相减法”推导

方法二:用“迭加法”推导

方法三:用“等比定理法”推导

这样设计推导方法加强了知识形成过程的教学,培养了学生的发散思维,既关注了学生知识与技能的理解和掌握,更关注了学生情感与态度的形成和发展。而传统教学往往以最快的速度给出公式,然后通过例题演练学生,这样教学结果往往使学生死背公式,而不能灵活运用公式解决问题。

篇12:高中数学教学反思案例

在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的联系,形成知识框架,其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系,课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道,课堂教学不但要加强双基而且要提高智力,要发展学生的创造力。不但要让学生学会,而且要让学生会学,特别是自学,尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务,不能穿新鞋走老路。

1、要有明确的教学目标

教学目标分为三大目标,即认知目标、情感目标和动作技能目标。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

2、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,适当地还可以插入与此类知识有关的笑话,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备一堂课时,通常是将一节或一章的题目先做完,再针对本节的知识内容选择相关题目,往往每节课都涉及好几种题型。

3、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切,现代化教学手段的显著特点一是能有效地增大每一堂课的课容量,从而把原来45分钟的内容在35分钟中就加以解决,二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率,三是直观性强,容易激发起学生的学习兴趣。有利于提高学生的学习主动性,四是有利于对整堂课所学内容进行回顾和小结,在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点,同时通过投影仪,同步地将内容在瞬间跃然幕上,使学生进一步理解和掌握本堂课的内容,在课堂教学中。对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成,可能的话教学可以自编电脑课件,借助电脑来生动形象地展示所教内容,如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

4、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求,所谓教学有法,但无定法教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法,数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识,而在立体几何中,我们还时常穿插演示法。来向学生展示几何模型,或者验证几何结论,如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度,这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明,此外我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。

在一堂课上,有时要同时使用多种教学方法,教无定法贵要得法只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

5、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学生对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

6、充分发挥学生主体作用,调动学生的学习积极性

学生是学习的主体,教师要围绕着学生展开教学。在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的'领路人。在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成。学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来。

7、切实重视基础知识、基本技能和基本方法

众所周知近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学,教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生,其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律。就让学生去做题,试图通过让学生大量地做题去悟出某些道理,结果是多数学生悟不出方法、规律,理解浮浅记忆不牢只会机械地模仿,思维水平较低,有时甚至生搬硬套,照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误,不少学生说现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低,可见在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

8、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的。只有这样,学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到备教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。