“ffwwff33”通过精心收集,向本站投稿了12篇小学六年数学下册课件,以下是小编精心整理后的小学六年数学下册课件,希望对大家有所帮助。

篇1:小学六年数学下册课件
教学目标:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:
负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ( ) 摄氏度。
二、新授:
教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。)
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上。
其他几个点代表的数,让学生对数轴上的.点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:m
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)总结:负数比0小,正数比0大,负数比正数小。
三、巩固练习
1、说出点A、B、C、D、E表示的数。
A、( ) B、( ) C、( )
D、( ) E、( )
2、在数轴上表示下列各数。
-4 1 -2 2.5 -0.5 1.5
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
五、布置作业:
第6页第4题、第7页第7题
篇2:小学六年级下册数学课件
人教版小学六年级下册数学课件
人教版小学六年级下册数学课件
教学内容:
比例的意义
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教具准备:
多媒体课件
教学过程:
一、比例的意义
1.请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2.出示情境图,(课件演示 )
(1)说一说各幅图的情景。
(2)图中有什么相同之处?
(3)“你们知道下面这些国旗的长和宽是多少吗?”
(4)写出它们的长和宽的比,求出比的比值,你有什么发现?
出示教室里的国旗:(提问通过刚才的计算,你有什么发现?组织学生讨论。学生各抒己见) 教师说明:我们看到这两个的`长宽比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。
也可以这样表示:出示比例的分数写法。
像这样表示两个比相等的式子叫做比例。
在上面图中的四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生说出能够组成的比例。
3.在此基础上让学生总结归纳发现的规律
我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。
4.比较“比”和“比例”两个概念。(出示表格来比较。)比是两个数相除的式子;而比例是两个比相等的式子,是四个数。
教师
上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
5.做一做。
完成课文“做一做”。
第1题。
(1) 什么样的比可以组成比例?
(2) 把组成的比例写出来。
(3) 说一说你是怎么找的。说一说
(4) 同学之间互相交流,检验各自所写的比例。
(强调:本课主要利用求比值的方法判断两个比能否组成比例。)
第2题。
(5) 学生独立写比例,看谁写得多。
(6) 同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
6.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
(用1、2、5、10四个数写出所有的比例式。8个,并且找出写的规律。)
二、巩固练习
完成课文练习六第1~3题。
三、作业
教学反思:
在教学中,我遵循由易到难,步步深化的教学规律,按照复习旧知--创设情境--学生思考--学生计算--教师总结--学生自主探究(反馈)的模式进行教学。重视学生的主体地位,通过学生的自主探究,调动学生学习的积极性和主动性。
篇3:六年下册数学课件
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
3.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数
找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。 则是1/12 ,12是1/12的倒数。
8.小数的倒数:
普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括: 比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
17.比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。 如:a:b 这是比 比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。 a:b=3:4 这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质: 比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。 比例的性质用于解比例。联系: 比例是由两个相等的比组成。
18.比和比例的意义
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种形式,分数有括号的含义!
19.比和比例的联系:
比和比例有着密切联系。 比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。 比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。 如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。
20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
21.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示
22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
25.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。90°的'圆周角所对的弦是直径。
26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
27.周长计算公式
(1)已知直径:C=πd
(2)已知半径:C=2πr
(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
28.面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2
29.百分数与分数的区别
(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.
(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。
30.百分数应用
百分数一般有三种情况: ①100%以上,如:增长率、增产率等。 ②100%以下,如:发芽率、成长率等。 ③刚好100%,如:正确率,合格率等。
31.百分数的意义
百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。
32.日常应用
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。
篇4:六年下册数学课件
1.负数:负数是数学术语,指小于0的实数。
任何正数前加上负号都等于负数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。负数用负号“-”标记。
2.正数:大于0的数叫正数(不包括0)
若一个数大于零(>0),则称它是一个正数。正数的前面可以加上正号“+”来表示。正数有无数个,其中分正整数,正分数和正无理数。
3.正数的几何意义:数轴上0右边的数叫做正数
4.数轴:规定了原点,正方向和单位长度的直线叫数轴。
所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。
5.数轴的三要素:原点、单位长度、正方向。
6.圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体
即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh
8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch (注:c为πd)
圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。该直角边叫圆锥的轴 。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3Sh
S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径
12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)
13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。
圆锥的表面积由侧面积和底面积两部分组成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)
14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。
体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
底面积和高不相等的圆柱圆锥不相等。
15.生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
16.比的意义
(1)两个数相除又叫做两个数的比
(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
17.比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
18.求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。
19.比例尺:图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
20.按比例分配:
在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
21.比例的意义:比例的意义
表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
22.比例的性质 :在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。
23.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
24.成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
25.成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)
26.统计表:把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。
27.统计组成部分:一般分为表格外和表格内两部分。表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面。
28.统计种类:
单式统计表:只含有一个项目的统计表。
复式统计表:含有两个或两个以上统计项目的统计表。
百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。
29.统计表制作步骤:
(1)搜集数据
(2)整理数据:要根据制表的目的和统计的内容,对数据进行分类。
(3)设计草表:要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。
(4)正式制表:把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。
30.统计图:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。
31.条形统计图
(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。
(2)优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。
(3)取一个单位长度表示数量的多少要根据具体情况而确定
(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
(5)制作条形统计图的一般步骤:
a) 根据图纸的大小,画出两条互相垂直的射线。
b) 在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
d) 按照数据的大小画出长短不同的直条,并注明数量。
32.折线统计图
(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
(2)优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。
(3)制作折线统计图的一般步骤:
a) 根据图纸的大小,画出两条互相垂直的射线。
b) 在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
c) 在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
d) 按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
33.扇形统计图
(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
(2)优点:很清楚地表示出各部分同总数之间的关系。
(3)制扇形统计图的一般步骤:
a) 先算出各部分数量占总量的百分之几。
b) 再算出表示各部分数量的扇形的圆心角度数。
c) 取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
d) 在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
篇5:小学六年数学课件
小学六年数学课件
教学目标
1.使学生巩固线段、射线和直线的概念,使学生巩固角的概念,进一步认识角的分类及各类角的特征,使学生进一步掌握垂线和平行线的概念.
2.使学生进一步认识学过的四边形的特征及其相互之间的联系,能正确地画出长方形和正方形.进一步认识圆的特征,能正确地画圃;巩固轴对称图形的特征,能判断一个图形是不是轴对称图形,并能找出轴对称图形的对称轴.
3.进一步培养学生的判断能力和空间观念.
教学重点
能够掌握平面图形的基本特征,并且理解相互之间的联系.
教学难点
根据平面的基本特征,能够理解平面图形的相互之间的联系.
教学过程
一、复习线段、射线和直线.
1.复习特征.【演示课件“平面几何图形的认识”】
(1)请你在本上分别画出5条不同的线,然后同桌互相说说你画的是什么线,有什么特点?他们之间又有什么不同?
(2)全班汇报.
指出:线段、射线和直线都是直的.,线段是直线的一部分;线段有两个端点,是有限长的;射线只有一个端点,直线没有端点,射线和直线都是无限长的.
2.判断反馈.
(1)一条射线长5厘米.
(2)通过一点可以画无数条直线.()
(3)通过两点可以画一条直线.()
(4)通过一点可以画一条射线.()
二、复习角.【继续演示课件“平面几何图形的认识”】
1.什么叫做角?请你自己画一个任意角.
提问:根据你画的角说—说,怎样的图形是角?(板书:角)
2.复习各部分名称.
学生填写各部分名称.
教师提问:(1)角的大小与什么有关?
(角的大小与两边叉开的大小有关,与边画的长短无关)
(2)角的大小的计量单位是什么?
3.复习角的分类.
教师说明:根据角的度数,可以把角分类.
教师提问:我们学习过哪几类角? 每种角的特征是什么吗?
(板书:锐角直角钝角平角)
三、复习垂线和平行线.【继续演示课件“平面几何图形的认识”】
1.教师提问:在什么情况下可以说两条直线互相垂直?
你能举出日常生活里的例子吗?
在什么情况下可以说两条直线平行?
谁来举出平行线的例子?
2.画图.
让学生在练习本上画一组垂线和一组平行线.
六、小结.
通过这堂课的学习,你能够说出哪些包含关系的图形?
篇6:六年下册数学课件资料
六年下册数学课件资料
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学过程:
一、复习。
1、口答。
458
2、求出下面各圆的周长。
C=r
3.14223.144
=6.28(厘米)=83.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=r
(3)根据上两个公式,你能知道:
直径=周长圆周率半径=周长(圆周率2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m求:d=?
解:设直径是x米。
3.773.143.14x=3.77
1.2(米)x=3.773.14
x1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米R=c(2)求:r=?
解:设半径为x米。
3.142x=1.21.223.14
6.28x=1.2=0.191
x=0.1910.19(米)
x0.19
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
⑴3.148
⑵3.1482
⑶3.1482+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?2023.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?2023.14=125.6(厘米)
45分钟走了多少厘米?125.6=94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
四、作业。P65-66第3、6、7、9题
教学追记:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的`,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。
篇7:小学课件数学下册
小学课件数学下册
小学课件数学下册:立方厘米、立方分米、立方米
教学目标:
1、初步认识体积单位:立方厘米、立方分米、立方米。
2、掌握立方厘米、立方分米、立方米之间的进率。
3、会进行简单的体积单位之间的化聚。
4、让学生自主探究,掌握立方厘米、立方分米、立方米之间的进率。
5、通过实际的操作过程,体验学习的快乐。
教学重难点:
掌握常用的体积单位的进率,会进行简单的化聚。
教学准备:
教学课件、小正方体等
教学过程:
一、情景导入
通过课件出示1立方厘米的正方体。
师:请同学们动手量一量桌上这块白色积木的每条棱长是多少?是正方体吗?
师:这块白色积木是棱长为1厘米的正方体。
【说明:让学生测量小正方体的棱长,激发学生学习的积极性。】
二、探究新知
(一)让学生体验1立方厘米。
1、这块小正方体的体积有多大呢?(课件演示)
2、师:刚才同学们量的这个棱长为1厘米的小正方体,它的体积就是1立方厘米,可以记作1cm3。
板书:1立方厘米 1cm3 3、请学生感受一下1立方厘米的大小。
【说明:通过实物感受1立方厘米,并掌握1立方厘米的记作方法。】
(二)搭一搭
1、2个1立方厘米
(1) 请同学们用2个1立方厘米的正方体搭一搭。
(2) 师:它的体积有多大呢?还可以怎样搭一搭?
(3) 师小结:用2个1立方厘米的正方体积木搭出的立体图形,它的体积就是 2立方厘米,也可以记住2cm3。
2、3个1立方厘米
(1) 师:请同学们用3个1立方厘米的正方体搭一搭。
(2) 师:它的体积有多大呢?可以怎样搭一搭?
生:用3个1立方厘米的正方体积木搭出的立体图形,它的`体积就是(3)立方厘米,也可以记作(3cm3 )。
(3) 请同学们展示搭出的各种形状。
(4) 小结。
【说明:通过用体积为1立方厘米的正方体积木搭出各种不同的立体来进一步积累体积的经验。】
三、试一试
(一)搭一搭
1、小胖用5~6块1立方厘米的正方体积木搭出如下立体图形,哪些立体图形的体积是5立方厘米?哪些是6立方厘米?
⑴学生可以利用学具实际操作来帮助理解。
⑵让学生把5~6块的小正方体排列成其他形状,请互相讲出体积有多少?
⑶小结。
(二)比一比
1、下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件演示)
⑴学生独立完成,可以借助旁边的学具帮助理解。
⑵讨论交流,请学生说一说你是怎么想得?
⑶小结。
(三)巩固练习
1、请比一比图中每个积木块的体积都是1立方厘米,甲乙两个立体图形的体积是不是一样大?
2、小丁丁用1立方厘米的正方体积木排出下面的图形,你知道他是怎样排的,你是怎么知道它的体积? 小丁丁是这样排列的: 用16个1立方厘米正方体积木块排出最下一层, 再用12个1立方厘米正方体积木块排出第二层, 再用8个1立方厘米正方体积木块排出第三层, 再用4个1立方厘米正方体积木块排出第四层, 它一共由40个1立方厘米正方体积木块组成,体积是40立方厘米。
3、小结。
四、总结
师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?
【说明:二期课改强调对学生的评价,学生能够通过自我的评价,相互的评价和教师的评价有机结合,能够全面的反映学生的学习情况和状态。】
篇8:小学数学6年级下册课件
一份好的课件可以帮助到老师,让老师的课堂更加精彩,接下来要给大家分享的是小学数学6年级下册课件,欢迎大家的借鉴阅读!
教学目标:
1.知识与技能: 理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速自行车的速度与其内在结构的关系。
2.过程与方法:引领学生经历“提出问题――分析问题――建立数学模型――解释并应用”基本过程,获得应用数学解决实际问题的思考方法。
3.情感态度与价值观:在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。
设计理念:学习知识应是一种主动构建的过程,本节课拟通过解决生活中常见的与自行车有关的问题,使学生进一步了解数学与生活的广泛联系。经历“提出问题――分析问题――建立数学模型――求解――解释与应用”的解决问题的基本过程,使学生获得解决实际问题的思想方法,加深对所学知识的理解。
教学准备:
自行车实物、指定部分学生实践测量蹬一圈行的路程
教学过程:
一.情景导入
师:咱们班的同学有多少人会骑自行车啊?(大部分学生举手)
师:你们知道自行车里也含有数学问题吗?老师准备了一俩自行车,谁能从中找出我们学过的知识?(三角形的知识、圆的知识等)
师:其实自行车里还蕴含着更为丰富的数学知识,今天我们就一起探究自行车里的数学。
板书课题 “自行车里的数学”
二.研究普通自行车的速度与内在结构的关系
师:大家知道自己的自行车蹬一圈能走多远吗?怎样解决这个问题呢?
【兴趣是最好的老师。开篇设疑,以疑激趣,学生学习欲望高涨,注意力高度集中。】
生:可以直接测量。
师:课前我请几位同学对同一辆自行车蹬一圈所行的路程进行了独立测量,请他们来汇报一下测量结果。
生甲:我蹬一圈行了6.5米。
生乙:我行了5.7米。
生丙:我行了8.8米。
生丁:我只行了5.4米。
生:
【指定部分学生课前测量,既能促使学生课前预习,又能节约课堂时间,提高课堂效率。】
师:这些同学的测量结果差距很大,说明测量这种方法不太准确,误差很大。有没有准确一些的方法呢?
生:计算。
师:怎么算?
生:看看蹬一圈,车轮转几圈,再用车轮转的圈数乘车轮的周长。
师:蹬一圈是谁转动了一圈?车轮转动的圈数实际是谁的圈数?
生分组操作,师注意引导,讨论交流后汇报。
(1)蹬一圈是指脚踏处的齿轮转一圈
(2)车轮转动的圈数实际是后齿轮转动的圈数
师:照这样分析,解决问题的关键是什么?
生:前齿轮转一圈,后齿轮转几圈.
【引导学生透过表面现象发现其作为数学问题的本质,进而展开有效的探究。】
师:怎样才能知道前齿轮转一圈时后齿轮转的圈数呢?
生:数一数。
师:我们就来数一数。
通过实践,学生发现数的圈数也不准确。
师:有没有更准确的方法呢?大家注意观察,这两个齿轮通过链条连接在一起。前齿轮转动一个齿,链条怎么动?后齿轮怎么动?
师慢慢转动前齿轮,生观察、讨论。
生:前齿轮转动一个齿,链条移动一小节,带动后齿轮转动一个齿。
师:同学们观察得很仔细。如果前齿轮转动2个齿,后齿轮怎么动?如果前齿轮转动5个齿呢?10个齿呢?同学们有没有发现什么规律?
生1:前后齿轮转动的齿数始终一样。
生2:我知道两个互相咬合的齿轮,它们的齿数和转的圈数成反比例关系。自行车的前后齿轮通过链条连接在一起,也相当于两个咬合的齿轮。所以,前齿轮的齿数乘圈数等于后齿轮的齿数乘圈数。
师:这位同学说的很好。根据“前齿轮的齿数×它的圈数=后齿轮的齿数×圈数”,前齿轮转一圈时,后齿轮转的圈数怎样用算式表示?
生说师板书:前齿轮的齿数∶后齿轮的齿数
归纳解题思路:自行车蹬一圈走的距离=前齿轮的齿数∶后齿轮的齿数×车轮的周长
【通过此轮探究活动,学生的观察能力、逻辑思维能力、归纳概括和语言表达能力都有所提高。】
分组搜集数据,代入数学模型,求出答案。
汇报交流。
三.巩固练习
1.蹬一圈能走多远
前齿轮齿数:26
后齿轮齿数:16
车轮直径:66厘米
2.小英家离学校680米,她骑车上学大约要蹬多少圈?
【练习设计有层次,在巩固基础知识时适度提高,满足绝大多数学生的学习需要。】
四.研究变速自行车的问题
1.出示变速自行车的主要结构图:有2个前齿轮,6个后齿轮。
分组探究(1)能变化出多少种速度?
(2)蹬同样的圈数,哪种组合使自行车走得最远?
师巡视并指导有困难的小组
2.汇报第一个问题:12种方案。
3.汇报第二个问题:当“前齿轮的齿数∶后齿轮的齿数”比值最大时,走得最远。
五.思维拓展
一位自行车运动员在比赛时要经过各种路段,你觉得上坡时应怎样搭配前后齿轮?
[小学数学6年级下册课件]
篇9:小学5年级下册数学课件
【目标预设】
1、让学生在现实情境中认识负数,理解正负数及零的意义,并掌握正负数的读写方法。
2、使学生能用正负数描述生活中具有相反意义的量,培养学生应用数学知识解决实际问题的能力。
3、让学生体验数学与生活密切关联,激发对数学的学习兴趣,同时培养学生的爱国主义情感。
【重点、难点】
重点:理解正负数及零的意义,并掌握正负数的读写方法。
难点:理解正负数的及零的意义。
【教学过程】
一、游戏激趣,感知导入
1、说一句相反的话:气球上升7米;杨老板这笔生意赚了3万元;向东走300米;302路公交车有5人上车;今天气温比昨天低了2℃。
2、提到温度,老师就想到了一件宝贝——温度计。
你认识温度计吗?会读温度计吗?(学生说)
老师介绍温度计:①结构:煤油、刻度(左右不一致)②单位:摄氏温度(℃)和华氏温度(℉),我国是采用摄氏度来计量的。
学习读温度计上的温度:8℃(学习看大格、小格)、0℃、零下2℃。(重点指导零下温度的读法,明确零上和零下温度都是以0℃为界限的,一上一下,正好相反,零下温度从0℃往下数。)
二、体验深化,探求新知
1、启发:你知道在数学上怎样简洁地表示零上和零下的温度?你是怎么知道的?
2、教学读写方法:
(板书:零上8℃用+8℃或8℃表示,读作:正七
零下2℃用-2℃表示 负二)
3、出示例1的挂图
写出温度计上显示的气温,然后读一读,再比较一下北京和上海温度的区别。
4、“试一试”练习,独立完成,让学生说说想法。
5、谈话:同一时间,不同地点,温度会不同;相同地点,不同时间,温度也会不同。比如今天清晨常州的气温是17℃,中午25℃,这就是我们平常所说的最高气温和最低气温,再比如吐鲁番地区,最高气温和最低气温相差就更大了,是什么原因造成吐鲁番盆地在同一天里有着如此大的'温差呢?这主要和它的地形特点(盆地)和海拔有关。
(板书:海拔)
介绍海拔:以海平面为标准,某地与海平面比较得到的相对高度。
6、出示例2图。从图上你知道些什么?
(1)珠穆朗玛峰比海平面高8844米,海拔高度记作+8844米或8844米。
(2)吐鲁番盆地比海平面低155米,海拔高度记作-155米。
7、看一些海拔高度,用正负数表示这些数据:
①泰山海拔1524米,华山2083米。
②死海北面的被称为“地球上最低公园”,海拔负416米。
③世界上海拔最低的城市——巴勒斯坦的杰里科低于海平面300米。
8、你能将黑板上的数据分类吗?说说分类的理由。
小结:像+8、19、+8844这样的数都是正数,像-2、-11、-155这样的数都是负数。
讨论:那0是正数还是负数呢?
指出:温度、海拔等都是以0为分界线,0既不是正数也不是负数。
板书:正数>0,负数<0
三、回归生活、拓展应用
1、你在生活中见过负数吗?举例说说,并说说它表示的意义。
2、练一练1、2独立完成,说说想法。
3、练习一1~3独立写一写,说一说。
练习一4~6独立完成,说说想法。
四、课堂总结、知识延伸
1、通过今天的学习你有什么收获?(揭题)
总结:在生活中,很多相反意义的量都可以用正数和负数来表示。如零上温度与零下温度,海平面以上和海平面以下,地面以上楼层和以下楼层,收入和支出,得分与失分,股票上涨与下跌等,它们都可以用正数和负数表示。
2、了解负数的产生。
其实,早在两千多年前,我国劳动人民就已经在生活中运用负数了,这在著名的《九章算术》中就有记载,人们以收入钱为正,以付出钱为负;以粮食增产为正,以减产为负,中国运用正、负数,要比西方国家早好几百年。
【教材简解】
《认识负数》是苏教版小学数学五年级(上册)第一单元的内容。这部分内容是在学生认识了自然数、分数和小数的基础上,结合熟悉的生活情境进行教学的。这一内容的学习不仅可以拓宽学生对整数的认识范围,更好地理解自然数的意义;也为学生在以后学习有理数打下了基础。本课是本单元的第一部分教学内容,主要让学生在熟悉的生活情境中体验正负数的意义,初步认识负数,能认、读、写负数。
【设计理念】
负数这一概念与生活密切相关,学生有一定的数学事实,基于这一点,遵循学生的认识规律,在本课教学中,我尽可能为学生创设丰富多样的生活情景,为他们提供各种机会,让学生进行观察、比较、交流、归纳等数学活动。让学生在观察体会中初步认识,在比较交流中完善认识,在归纳总结中提升认识,在拓展应用中丰富认识。
【设计思路】
为了能很好地达到以上教学目标,突出重点,突破难点,我设计了以下四个教学环节:
第一、游戏激趣,感知导入
“兴趣是最好的老师”,新课一开始,我就采用游戏的方式,让学生说一句相反的话,不仅将学生的积极性完全调动起来,而且这一相反的意识也是认识负数的基础,然后顺势将学生引入零上零下这一相反温度,认识温度计,扫除了学生读温度计这一学习障碍。
第二、体验深化,探求新知
对于温度的高低,学生有着丰富的生活经验,本课就以此为切入口,让学生在体验温度中认识正负数的读写方法,在感受温度的高低中比较正负数的大小,当温度越低,离0越远,负数就越来越小,反之,温度越高,正数就越大,为认识数轴奠定基础。
第三、回归生活、拓展应用
数学知识来源于生活,也必将应用于生活。本环节通过师生列举生活中见到的负数,感受负数在生活中的广泛应用,并通过练习进一步体验正负数是一对具有相反意义的量。
第四、课堂总结、知识延伸
学生知识网络的完整构建还需要有整体的梳理,课堂的总结就显得尤其重要。在学生对负数有了较深刻的认识后,老师介绍我国古代相关的数学知识,进一步培养了学生的爱国情感。
篇10:小学5年级数学下册课件
小学5年级数学下册课件
教学目标:
1. 经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。
2. 会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3. 感悟构建数学模型是解决实际问题的重要方法之一。
教学重点:
让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学准备:
多媒体课件、答题卡。
课前准备:
首先让我们伴随着欢快的音乐来学做一节手操,好吗?
教学过程:
一、初步感知间隔的含义
1. 导入:刚才,在做手操的过程中,我发现同学们的小手特 灵活,哎,你们知道吗?在咱们的小手中,还藏着数学知识呢?想了解一下吗?
请你们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?
2. 其实,这样的数学问题,在我们的生活中,随处可见。你们看,这是同学们利用课余正在彩排节目呢?数一数,一共有几个小朋友,每2个小朋友之间牵着一根彩带,用了几根彩带,把一根彩带看成一个间隔,那6个小朋友之间是几个间隔?
过渡语:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,瞧……
3. 再次感知,找到规律。这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。
那么8棵树、9棵树之间又有多少个间隔呢?
你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!
谁来汇报一下?
边板书边说:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。
(停顿)那你们想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?
那20棵树呢?
看来,告诉你们植树的棵数,让你们说出间隔数已经难不倒大家了,接下来,如果一排树之间有22个间隔,你知道有多少棵树吗?
那30棵呢?(2人说)
像这样的例子,还可以举出很多、很多……
仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的`想法和伙伴们互相交流一下)。
反馈:谁来说说你的发现?评价:哦,这是你的发现……你还能用一个算式来概括。
边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角,运用这些规律来解决生活中的实际问题吧!
二、新授:
例1,同学们自由地小声地把题目读一读。
1. 从题目你们知道了什么?(说一说)
2. 题目中每隔5米栽一棵是什么意思?
3. 题目中有什么地方要提醒大家的吗?(两端要栽)
4. 一共需要多少棵树苗?你能自己想办法找到问题的答案吗?有困难的同学还可以借助线段图画一画。
5. 交流。
6. 反馈。
(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?
(2)学生分别说想法。
(3)听了他们说的,你们想对他们说些什么?
刚才,这两位同学画线段图和找到了问题的答案,列算式的方法解决了这个问题。他们都是很善于动脑筋的。
三、联系实际、拓展应用
1. 基本练习:
师:近几年南昌市容有了巨大的变化,随着一个个休闲广场的建立,一条条街道的逐步亮化,南昌市已成为一座具有内涵与魅力的花园城市。最近,我了解到有关胜利路步行街有这样一些信息。
那同学们能根据题中信息解决这个问题吗?第二步为什么要加1?
师:刚才这道题同学们解答得很顺利。
师:现在把这道题做了一些改变,看看你们是不是还能很顺利的解答?
师问:第一步求到的是什么?
师:虽然邓老师对这道题做了一些改变,但是还是没有难倒同学们,那刚才在做这两题的时候,同学们有没有发现,这两题解题思路有什么不同呢?(同学们可以先思考再讨论)。
咱们班的同学们不仅会解答,而且还能比较它们的不同,的确这两道题都运用了今天我们发现的这些规律,第一题是根据总长找到间隔数,再利用间隔数求出路灯的盏数,而第二题是根据路灯的盏数找到间隔数,再利用间隔数求出总长,它们的关键都是要先找到间隔数,正因为它们问题不同,所以解题思路也不同,以后大家在解决这类问题时可要注意审题哟!
2. 变式练习:
师:最受关注的两个人物,你们知道是谁?他们就是航天英雄聂海胜和费俊龙,神六号的成功发射,让人们欢心鼓舞,作为一名中国人也为之自豪。你们知道吗,宇航员叔叔他们是每2小时(师读题)。
听了这3位同学的想法,你们会支持谁?说说理由!
3. 综合练习。
师:中国的体育界也有一位英雄,猜猜他是谁?此时此刻让我们一起重温一下那精彩的瞬间,再一次为他助威、呐喊!根据信息,学生讨论,借助计算器算出刘翔一共跑了多少米?
四、总结:通过这节课的学习,你们有什么收获?
今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)那植树问题只在植树当中才有吗?学生说一说,植树只是其中的一个典型,像......等现象中都含有植树问题。
今天我们学习的植树问题仅仅是两端都栽时的情况。在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形的植树问题。
篇11:小学4年级数学下册课件
一、复习旧知
问题:我们目前学过哪几种运算?
我们学过的加、减、乘、除四种运算统称四则运算。
二、感受括号的作用
(一)感受小括号的作用
问题:1. 说一说这道题的运算顺序是什么。
2. 如果变成96÷(12+4)×2,运算顺序怎样?
3. 先说一说运算的顺序,再计算。
(二)感受中括号的作用
问题:1. 如果在96÷(12+4)×2的基础上再加上中括号,你知道运算顺序应该是怎样的`吗?
2. 先说一说运算的顺序,再计算。
3. 算式中有小括号还有中括号,应该按照怎样的顺序计算?
一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
三、巩固新知
1. 先说一说下面各题的运算顺序,再计算。
2. 你知道吗?
问题:算式中有小括号还有中括号,应该按照怎样的顺序计算?
四、布置作业
作业:第11页练习三,第1题、第3题。
篇12:小学4年级数学下册课件
一、情境导入
怎样租船最省钱?
问题:从图中你知道了哪些信息?
二、复习导入,揭示课题
32÷6=5(条)……2(人)
5条大船,1条小船:
30×5+24×1=174(元)
4条大船:30×4=120(元)
2条小船:24×2=48(元)
120+48=168(元)
三、巩固练习
1. 春游。
问题:1. 你知道了什么?
2. 你能解决这个问题吗?写出你的思考过程。
3. 谁读懂了他的意思?说一说。
4. 谁的想法和他的不一样?能再说说吗?
5. 你做的正确吗?
2. 旅行社推出“××风景区一日游 ”的两种价格方案。
四、布置作业
作业:第12页练习三,第6题。












