“singleshoe”通过精心收集,向本站投稿了16篇一种简单水位自动控制系统设计论文,下面是小编给各位读者分享的一种简单水位自动控制系统设计论文,欢迎大家分享。

一种简单水位自动控制系统设计论文

篇1:一种简单水位自动控制系统设计论文

摘要:本文介绍一种简单实用的水箱水位自动控制系统的基本组成及工作原理,通过对该系统组装测试,达到预期效果,正式应用于乡镇供水系统中。实践证明,该水位控制系统设计方案合理,运行效果好,具有低成本、高使用价值的优点。

关键词:水位自动控制系统

0引言

近年来对城市供水提出了更高的要求,水塔水位控制自动化系统被不断地改造,以适应社会的发展和人民生活水平的提高,满足及时、准确、安全和保证充足供水。目前水位自动控制系统有很多成熟的产品,控制手段主要有单片机监控、比较电路监控、利用PLC和传感器构成水塔水位恒定的控制系统等,运行可靠,可实现远程监控和无人值守。在许多偏远地区,特别是居住相对分散的农村地区,供水问题也待解决。如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障。本文针对乡镇和偏远农村家庭供水的特点,设计一款简单实用、符合要求的水位自动控制系统。

1水箱水位自动控制系统的组成

针对偏远农村分散居住,取水不方便(包括从水井取水)的特点,考虑到农民生活消费水平不高,设计的供水系统必须是既方便农民的生活,又经济实惠等特点的水箱水位自动控制系统。水箱水位自动控制系统的组成。

由图中可知,水位自动控制系统电路主要由主电路和控制电路两大部分组成。主电路是一台抽水水泵,由220V交流电源电压供电。控制电路由包括整流、滤波、稳压电路、感应电路及限流限压电路组成。

篇2:一种简单水位自动控制系统设计论文

水位自动控制系统的设备只需选用价格低廉、安全可靠的设备。

由设备表可知,所有的设备都是简单而常用的小型设备,价格低廉,控制和维护简单易于掌握,对远离城市的偏远地区非常适用。传统的水位控制系统通常使用传感器进行上、下限控制,以保证水位在上、下限之间。此设计中只用三根导线来代替传感器放置在上、下限水位之间,利用水的导电特性完成上、下限水位的自动控制,节省了购买传感器的费用,也不必考虑传感器的故障,进一步降低成本,提高系统的可靠性。

常见的生活用水供应系统工作形式是由外来补充水源(一次水源)向一个高位水塔和一个低位水池补水,再由高位水塔和低位水池(二次水源)向各用户供水。此设计主要考虑针对家庭供水系统(或者某些单独取用水之处),因此只需用(储)水箱而非水塔供水。系统供水是由水箱直接供应,不用考虑由位置高度所形成的压力来进行供水,不用气压供水,不必在屋顶上设置水箱,也不用单独建筑水塔,仅在厨房或需用水的地方放置一足够大的(储)水箱即可满足供水要求。

3水箱水位自动控制系统的控制原理

该水箱水位自动控制系统结构简单,控制原理如下:系统上电后,交流电源经整流、滤波、稳压后,由电位器调节获得12V直流工作电压。当水箱水位低于下限时,接触器线圈失电,其常闭触头使水泵接通工作,抽水到水箱中;当水位上升到上限时,接触器线圈得电,常闭触头断开,常开触头闭合,水泵停止抽水。

V1、V2用来保护LM317输出端电压为安全电压,使其免受短路电流的影响;V3用来保护三极管,同时避免触电事故的发生。水位的上、下限可通过调整三根导线的位置设定。

4测试应用

该设计经安装调试,结合实验室给排水系统进行测试,效果良好。正式应用于某乡镇几个家庭的日常用水装置中已将近两年,至今未发生故障。该系统在运行期间稳定性高,完全符合预先规定的标准,只需将控制电路稳压输出调整在10V-12V之间,可投入使用。可用交流变压器供电,也可以用直流供电。

5结束语

设计的水箱水位控制系统因价格便宜,结构简单,使用方便,不易发生故障,可用于要求不高的给排水系统中,特别适用于城镇及偏远山区取水装置。

参考文献:

[1]布挺,王帆.基于西门子PLC的水塔水位自动控制系统[J].科技信息,第12期.

[2]曹琦.一种节能的变压变频供水系统[J].变频器世界,(7):133-137.

[3]朱晓青主编.过程检测控制技术与应用.北京,冶金工业出版社,.

篇3:一种大型飞机飞行自动控制系统设计

一种大型飞机飞行自动控制系统设计

现代飞机的各项性能都大幅度提高,飞行控制系统变得越来越复杂,使得设计也变得更加复杂和困难,这都会使飞行控制系统发生故障的可能性越来越大.相应地,对各相关部件的'可靠性、准确性也提出了越来越高的要求. 飞行自动控制系统是大型飞机的重要组合驾驶设备,该系统与飞机组成一个闭环控制系统.在这个闭环控制系统中,飞机是被控对象,飞行自动控制系统是控制器.利用飞行自动控制系统控制飞机,可实现飞机的自动飞行和自动着陆.

作 者:李宁 孙秀霞 田松 陈金科 侯颖  作者单位:空军工程大学工程学院 刊 名:航空制造技术  ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY 年,卷(期): “”(16) 分类号:V2 关键词: 

篇4:自来水厂投药间自动控制系统设计分析论文

自来水厂投药间自动控制系统设计分析论文

摘要:自来水厂投药间控制是自来水质量控制的重要环节,该环节通过对自来水进行化学处理,以此来保证自来水正常使用,文章对其设计研究进行分析。

关键词:自来水;投药;设计控制系统

前言

水是我们生活中不可或缺的必备品,而能够供人类饮用的洁净的自来水更是人类赖以生存的保障。如果想要城市建设正常发展,首先要保证城市供水系统的稳定运行。根据国家的相关规定,不同用途的水在各个方面有不同的标准。随着近几年污染的加剧,国家对饮用水的评价标准也不断变化,所以在对这些新标准的研究中逐步深入,从而带动了饮用水研究的新标准。

1自来水加工工艺阐述

自来水的处理过程大致可以分为以下四个方面:取水泵房、净水车间、送水泵房和脱水泵房。取水泵房的作用是将未经处理的水送进反应池准备开始净化:净水车间包括反应池、沉淀池、滤池、加氯加药间以及排泥系统,这一环节在整个净水处理系统中起着至关重要的作用,负责对水进行净化;送水泵房是将处理过后的达到标准的自来水送出去供用户使用;最后,脱水机房就是对废水的回收处理及再利用。虽然在处理过程中运用了大量的常规处理方法,比如:生物预处理工艺、深度处理工艺、膜处理工艺、富营养化原水的除藻技术等等,虽然初见成效,但远远不能达到标准所需,因此需要进一步更深的技术探索,这是一项任重而道远的任务,所以国内外相关专业人士都投入到进一步的研究中并加以实施。在自来水加工工艺中,投药间是一个化学处理车间,通过加入矾和氯对自来水进行化学处理。投药控制直接影响到自来水的物理、化学性质。

2投药间投矾系统

2.1沉淀阶段

这一环节的成败对自来水质量的好坏将产生直接影响,首先将药剂加入到原水中进行化学反应,该反应会生成矾水花,这时加入物理作用即剧烈搅拌,会使这些絮状物凝结成块。之后,由于重力作用这些絮状物会在反映池中与水分离开来。

2.2过滤阶段

沉淀阶段在混凝和沉淀的双重作用下会产生大量的颗粒杂质,紧接着进入过滤阶段,通过这一步骤,初步清除了一部分杂质,也处理掉了在沉淀阶段不易清除的更小的悬浮物质,从而使水质更加洁净,此过程在滤池中进行。另外,一些剩余的杂质会排放到排泥池以供脱水机房的回收再处理。最后,为了去除肉眼所看不到的水中的细菌、病毒等不易处理的微生物,需要加氯进行深加工。

2.3电搅拌阶段

首先,将矾剂和清水投入矾池中加以搅拌,由隔膜计量泵根据源水的流量按比例加到源水管道中,在混合槽中充分混合后进入折板反应池中充分反映,最后沉淀池中的排泥池机会除去由水中的杂质凝聚成的较大的颗粒物。投矾泵、伺服控制器等组成整个投矾系统。电搅拌机主要是对溶液进行搅拌并使其充分均匀混合,使加入的药与所需净化的水达到最大的接触面积,能够使药效充分发挥。计量泵可以用来运送药液并且可以计量药液的质量,在运输的过程中还可以根据实际情况的需要改变需要输送的流量,进行调节,此技术在净水领域被经常使用。提升泵可以运送废水、污水,同时又可以提升污水,在使用过程中非常方便。

2.4开度调节

以实际用水量为参考,通过控制器自动调节计量泵机组的开度,当水量增加时,加大开度,增加计量泵的冲程以减少投矾量,相反,如果水量减少,减少开度,减少计量泵的冲程以减少投矾量。在整个系统中,反应池、沉淀池和滤池中都需要加上排泥装置,污泥从这些池子中被排放到调节池,这都要根据不同工厂的具体情况而定排泥时间。排泥后,可以用污泥浓缩机和污泥切割机对污泥进行再处理,其中回收的水资源可以再次参加净化过程,而处理出来的污泥则可以输送出去作为其他用途。

3投矾系统注意事项

(1)想要控制混凝效果,必须要对原水浊度、待滤水浊度、混凝剂的流量等进项检测,可以通过先进的浊度仪和流量计来采集上述数据。

(2)在投矾过程中,系统为混凝和沉淀双闭环系统,内环控制混凝,外环控制浊度。混凝效果可以通过浊度仪来检测,如果浊度仪值越低,表示投矾效果为最佳,相反,同理可得。浊度是一种光学效应,是光线透过水层时受到阻碍的程度表示水层对于光线散射和吸收的'能力。它不仅与悬浮物的含量有关,而且还与水中杂质的成分、颗粒大小、形状及其表面的反射性能有关。同时,浊度环在线沉淀池出水浊度,通过串级主控反馈回路,构成闭环反馈系统。通过高精度的双闭环控制,系统能够全自动的控制沉淀池出水浊度。如果是在不好的天气期间,浊度会增加,这时系统就会自动加大投矾量,保持最优的絮凝剂控制效果。隔膜计量泵是投泵系统的执行部件,计量泵由马达驱动,控制器控制开度,通过调节开度达到最佳的混凝和沉淀效果。

(3)手动、PLC远程控制是投矾计量泵开度调节控制实现两种控制方式,手动方式顾名思义即通过人工方式调节来控制计量泵开度,PLC远程控制即在接收到现场的浊度仪信号后,经其处理后输出控制信号实现对计量泵开度的调节,使浊度保持在一定范围内。

(4)现场手动、PLC远程自动或者手动控制、现场自动是投泵系统计量泵速度调节控制实现的三种控制方式。

4投加氯控制系统

源水在经过混凝、沉淀、过滤后,水中大量的颗粒物已经被清理出去,但还是会有一定数量的微生物,包括对人身体有害的细菌、病毒等等,因此必须用比较彻底的消毒方法去除。通常使用的是目前国内普遍使用的加氯消毒法,也就是说把液氯气化成氯气后通过水射器加到水中,从而起到杀菌的目的。

4.1加氯系统作用

加氯系统主要是由氯瓶、自动切换阀、加氯机、水射器等组成。氯气通过管道,经过蒸发器后,再到加氯机里。同时加氯机的控制又是非常自由的,既可以手动调节,也可以自动控制。系统主要分为前加氯和后加氯两个部分,进行前加氯这一步骤的目的是杀死水中的青苔、氧化部分有机物等,同时降低亚硝酸盐的生成;后加氯的目的是杀死细菌等,保证水质的质量,抑制水中残留物的繁殖。

4.2投氯系统运行方式

投氯系统主要有两种方式:PLC远程控制、现场手动。现场手动方式允许操作人员在现场控制柜操作旋钮来控制投加量。氯气瓶自动切换装置可以通过设定的既定程序实现自动控制的功能,同时,系统还设有漏氯自动吸收控制装置和漏氯检测仪,如果氯瓶中的漏氯超过一定数量,装置会自动启动,对氯气进行中和处理。

5结束语

自来水厂投药间控制是自来水质量控制至关重要的环节,通过加入矾和氯对自来水进行化学处理,实现自来水的原水利用和回收废水的再利用,投药控制也会直接影响到自来水的质量。通过现代先进的设备,可以努力促进以上实验系统的自动控制并使其成为可以为人民造福的重要自来水净化措施。

参考文献:

[1]刘晓梅,王彬.水厂管理自动投药系统的研究[J].现代营销(学苑版),,2:124.

[2]汪晓.自来水厂投药间自动控制系统设计[J].广东科技,,15:113-114.

[3]段宗杰,王国安.二氧化氯发生器在自来水厂的自动控制系统设计及应用[J].中国建设信息(水工业市场),,8:77+79.

篇5:基于冗余PLC的井下排水自动控制系统的设计的论文

摘 要:本文针对目前井下排水系统的故障出现在PLC硬件或者外围线路上的问题,提出了一种基于冗余PLC的井下排水自动控制系统的设计方案,介绍了系统的硬件设计和软件设计。实际应用表明,设计方案提高了井下排水自动控制系统的安全性、可靠性,具有显著的实际意义。

关键词:自动控制 冗余PLC 自动控制系统

随着国家煤矿工业的发展,井下排水系统作为矿山的六大系统之一,承担着排除井下积水的重要任务。井下排水自动控制系统的技术性能,直接影响着煤矿生产的安全运行。在传统的井下排水控制系统中,一般采用继电器或者PLC控制的方法,不具有冗余控制的功能,一旦PLC发生故障或者外围硬件出现问题,严重影响整个煤矿企业的安全性能。因此,本文设计了冗余型井下自动排水系统,实现了冗余控制,有效地保证系统的稳定性。

1 系统总体设计结构

篇6:基于冗余PLC的井下排水自动控制系统的设计的论文

该系统采用S7-400H冗余系统PLC,一套PLC系统正常运行,另一套PLC系统同步运行。当其中一套PLC出现故障时,同步地切换到另一套PLC系统,实现了PLC系统切换的快速性,保证了硬件和软件的冗余,提高系统的安全运行效率。整个冗余系统采用工业以太网通讯,将水泵机组子模块ET200中的检测信号(电动阀门、水泵运行状态、电机电压、电流、温度、流量、液位等)通过以太网传输到冗余控制箱,在井下通过显示操作台控制和监控排水系统的工作状况,可通过光纤网络将数据传输到地面的调度室上位机,实现排水系统的远程控制功能。

2 系统硬件设计

篇7:基于冗余PLC的井下排水自动控制系统的设计的论文

图2 硬件系统结构

排水自动控制系统硬件部分由冗余PLC、触摸屏、上位机、交换机、检测传感器等组成。其中冗余系统的I/O输入量:水泵工作方式、启停信号、控制方式、主副真空泵的选择、真空泵的启停、急停、复位、液位开关、排水闸阀、电磁阀的到位信号等;I/O输出量:水泵的启动停止信号、故障指示、水泵运行指示、水位超限指示、排水闸阀和电磁阀开关控制信号等;模拟量输入信号:出水口正压力、水泵吸水口负压力、电机电压、电流、水泵轴温、电机轴温、管路流量、水位等。触摸屏采用西门子公司生产的MP277,通过以太网与冗余S7-400通讯,当一套PLC系统发生故障时,触摸屏自动切换到另一套PLC系统,保证与触摸屏的正常通讯。

3 系统软件设计

冗余PLC的排水系统软件程序有冗余切换子程序、避峰就谷子程序、模拟量采集子程序、水泵启停子程序和故障检测子程序组成。冗余切换程序完成对PLC通讯系统的检测,当主PLC发生故障,程序自动切换到备用系统;避峰就谷子程序根据用电部门提供的'不同时间段的电价和数字液位开关的信号自动控制水泵的启停数量;模拟量采集完成对电机参数、水泵进水出水压力、液位、温度等的检测;故障检测程序完成对电机温度、水位报警等的检测;水泵的自动启停有水仓的液位完成,控制流程如图3所示。

图3 水泵自动控制流程

排水泵房控制系统上位机监控软件采用组态王6.55软件进行开发,电机参数、水泵的启停状态、通讯状态、压力、流量、液位等数据,展现在上位机上,实现井下排水系统的远程控制。排水自动化集控系统监控画面如图4所示。

图4 排水自动化集控系统监控画面

4 结语

基于冗余PLC 的井下排水自动控制系统采用完善的硬件和软件思想实现了电机参数、压力、温度、液位、水泵启停状态、工作方式等功能,完全满足煤矿安全生产的要求。实际应用表明,设计的排水自动控制系统安全可靠,故障处理容易,维护简单,大大提高了排水系统的安全性、可靠性,完善了排水系统的控制功能,具有一定的实际意义。

参考文献:

[1]王华东,李世光,高正中.基于 PLC 和 WinCC 的井下泵房监控系统[J].工矿自动化,(6):51-52.

[2]吴同性.基于PLC 及以太环网平台的井下中央泵房自动化系统设计[J].煤炭技术,(5):45-46.

[3]谢苗苗,李华龙.基于LPC2292的煤矿井下排水分站设计[J].煤矿机械,(5): 227-228.

[4]谭国俊,韩耀飞,熊树.基于PLC的中央泵房自动化设计[J].工矿自动化,(2):48-50.

篇8:造纸配浆自动控制系统的设计与实现论文

造纸配浆自动控制系统的设计与实现论文

关键词:纸浆,软件组态,动态链接库,DDCRun

0.引言

随着造纸机车速的提高和设备的更新,原来的配浆箱方式配浆已逐步被管道配浆方式替代,而在管道配浆方式中,采用的三种配浆方式包括流量给定控制方式,比率自动控制方式和绝干量配比自动控制方式。配比自动控制方式按参与配浆的绝干纤维量来计算和控制各种浆的配比,具有配浆效果好,浆种配比稳定等优点。

1.配浆自动控制系统总体设计

纸浆配浆采用绝干量比例控制方式,自治浆池和废纸浆池的纸浆以一定的绝干量配比打入成浆池充分混合,同时送往造纸车间的成浆的浓度需要控制在工艺给定要求范围内。为了保证生产的正常运行,防止成浆池缺浆和满浆,在控制废纸浆和自制浆的绝干量配比同时,需要控制废纸浆和自制浆的浓度和成浆池的液位。

2.配浆自动控制系统的硬件设计

2.1 硬件结构

2.1.1浓度的.检测与控制

浓度计采用武汉宇通仪表有限公司的DBNZ-1200型的动刀式纸浆浓度变送器,电动调节阀选用上海中泰自动化仪表厂的ZAZC型电动调节阀。

2.1.2流量的检测与控制

流量计采用上海光华仪表厂的LDG-150S型的电磁流量计,检测精度为0.5%,长时间测量累计误差小于1%。伺服放大器采用上海自动化仪表十一厂的ZPE-2010型伺服放大器,变频器采用日本富士通公司的5000G11S/P11S变频器。

2.2 硬件抗干扰技术

在此主要采用那RC滤波抗干扰技术。我们选用了光电隔离的多功能HY-6040A/D板,该板使用三总线隔离的形式,使其抗干扰能力大大增强。在此基础上,我们在810接口板上设计了RC滤波电路。对于变化速度很慢的直流信号,在仪表输入端加入滤波电路可使混杂于信号的干扰衰减至最小,这样我们就有效的提高了系统的硬件抗干扰能力。参考网。

3.配浆自动控制系统的控制策略

本配浆控制系统控制部分可分为绝干量配比控制;废纸浆和自制浆浓度控制;成浆池液位的控制及联锁控制,各控制部分具有耦合作用。

绝干量配比的控制较为复杂,废纸浆、自制浆的浓度、流量变化等都会对配比控制产生干扰,同时配比控制时又要考虑到节省能耗。通过对配比的分析,对配比中比重占较大的自制浆,我们将自制浆泵满负荷运行,而让废浆泵根据给定的配比,采用带有延迟环节的增量PID控制算法控制。

废纸浆和自制浆的浓度的控制,由于两者相互不影响,且受其他影响较少,我们分别通过控制相应电动阀的开度来控制加水量,从而控制纸浆的浓度。参考网。采用较为典型的闭环控制策略,控制算法采用增量式PID控制。

纸浆液位的控制,纸浆液位的控制是本控制系统的一个难点,由于搅拌器的动作及液位本身的不稳定,给液位控制带来了困难。参考网。我们采用了带联锁的液位宽限开关控制策略:

3.1 以成浆池液位为主控制对象,设立成浆池液位高低限开关,成浆池液位高于高限开关时,自动关闭废浆池泵和自制浆池泵;如果成浆池液位低于低限开关时,根据自制浆池和废浆池液位要求,确定是否启动废浆池泵和自制浆池泵控制。

3.2 考虑到液位的波动,在对采集的液位数据进行平均滤波的同时,对限位开关值设立宽限,宽限值的大小通过实际试验确定。当液位波动值小于宽限值时,则不动作;只有当液位变化值大于宽限值时才进行相关动作。

3.3 考虑到废浆池与自制浆池的联锁要求,启动废浆池泵和自制浆池泵时必须满足:废浆池和自制浆池的液位必须同时都大于设定的下限值。同时,浓度控制电动阀也产生联锁动作。

4. 配浆自动控制系统的软件设计

在本控制系统中,软件必须安全可靠,可移植性和可扩展性好,参数修改方便,调试简单。本系统软件分为:控制程序,显示操作程序,数据采集程序。各个部分分别开发,并通过DLL结合成一个有机整体。

控制程序采用自行开发的组态软件DDCRun进行设计,显示操作程序使用Visual C++6.0开发,接口程序利用WinDriver进行开发。系统软件的各个组成部分通过DDL实现连接。

4.1 数据采集程序

WinDriver可用于各种接口程序的开发,在本系统中,我们 采用它开发系统的数据采集程序的接口,我们首先使用驱动程序开发工具Windriver创建基于PCI/ISA的设备驱动程序,在此基础上,我们就可以在Visual C++中利用上述工具产生的硬件操作函数编写相应的数据采集程序。同时我们把数据采集程序做成DLL形式,DDCRun控制程序通过调用它实现控制程序和系统硬件的接口。 4.2 控制程序

在本系统中,控制程序采用软件组态方式实现。具有大大缩短开发周期,减轻调试复杂性,方便控制程序修改,系统易于维护等优点。

DDCRun控制组态软件是我们自行开发设计的模块化的控制组态软件,它的各个模块是以DLL的形式存在的。首先编写好控制程序需要的各个功能模块DLL:增量式PID,加减运算,限幅运算,绝干量统计,条件开关,平均滤波等;然后将各个模块添加到DDCRun;最后便可以根据控制策略进行组态设计,设置控制参数和相应硬件接口板卡的地址。

控制程序通过调用WinDriver生成的数据采集程序与硬件直接联接;与此同时,在显示操作程序中,通过调用DDCRun提供的接口函数,实现对控制程序各个控制模块的输入输出读写和控制参数的修改。

在系统调试过程中,我们只须通过软件修改控制算法的参数即可达到预定的控制目标。

4.3 显示操作程序

显示操作程序是本系统必须的组成部分,具有以下特点:界面简单直观,用户操作方便,运行稳定可靠,满足人体工学要求,采用面向对象的编程语言Visual C++6.0设计。根据要求功能模块分为[主界面]、[流量浓度曲线]、[液位曲线]、[报警显示] 、[参数设置]、[统计报表]、[关于系统]、[退出系统]、[密码保护]等九个模块。

为了方便历史数据的查询和以后网络化的需要,我们将所有有关数据保存在关系数据库SQL Server中,通过ADO对象对数据库中的数据进行操作。

ADO是面向对象的OLE DB,它继承了OLE DB技术的优点,并且对OLE接口作了封装,定义ADO对象,使应用程序的开发得到了简化。ADO技术属于数据库访问的高层接口,其主要优点是易于使用、内存支出少和磁盘遗迹小。与DAO和RDO类似,ADO也是一种基于对象的集合 .

主界面 主要实现重要参数的显示,纸浆动态显示功能以及启动和停止自动控制的功能。主要参数包括:废纸浆池的液位.浓度.电动水阀开度和变频泵的电流信号大小;成浆池的液位,浓度和两个抽浆泵的纸浆浓度和流量,自制浆池和废纸浆池的液位,浓度,电动水阀开度和变频泵的电流信号大小。同时,主画面上的水流动态显示,使得系统状态更加直观。

流量浓度曲线、液位曲线、报警显示、参数设置、统计报表、密码保护 实现系统密码保护、修改等功能。

5.结束语

与手工配浆相比,成浆的纤维配比更加稳定,系统控制精度高,提供了配浆的质量与效率;与此同时减轻了工人的劳动强度。

【参考文献】

[1]傅兴仁.管道配浆.中国造纸.,(01).

一种简单水位自动控制系统设计论文

[2]葛升民,童树鸿,周斌.纸浆浓度控制系统的设计.中国造纸.(03).

[3]邵惠鹤.工业过程高级控制,23.上海交通大学出版社..

篇9:基于PLC的水泥灌浆机自动控制系统设计与实现论文

基于PLC的水泥灌浆机自动控制系统设计与实现论文

摘 要:本文主要介绍基于欧姆龙CP1H PLC及世纪星组态软件设计水泥灌浆机控制系统。本控制系统实现了生产线系统的上水,上水泥,上添加剂,混炼器搅拌,泥浆出料,停止出料以及自动和手动两种配料等功能。利用世纪星组态软件实现了实时监控系统设计,完成了上位机与PLC的连接以及世纪星主画面的制作。

关键词:水泥灌浆机 可编程控制器 CP1H 世纪星

1 水泥灌浆机自动控制系统的组成及工作过程

1.1 系统组成

根据水泥灌浆机自动控制系统的工艺要求,水泥灌浆机控制系统的组成包括上水,上水泥,上添加剂、混炼器里搅拌、储存罐储存,泥浆出料等,具体工艺工艺流程图如图1所示。

图1 水泥灌浆机工艺流程图

其中当启动水泥灌浆机后,水泥灌浆机把水泥、水、添加剂等按照一定的配比自动进料,然后搅拌,灌浆,搅拌好的水泥浆储存在搅拌器中,搅拌器的双层叶片不停的搅拌,主要为了防止在灌浆过程中水泥浆凝固,当水泥浆到达一定的存储数量时泥浆泵把搅拌器中的水泥浆压出灌浆机。

1.2 水泥灌浆机工作过程

根据水泥灌浆机自动控制系统的.设计目的和设计要求,水泥灌浆机自动控制系统具体的工作过程如下:

1.2.1 水泥灌浆机的启动

当水泥灌浆机处于起始位置,按下启动按钮,则水泥灌浆机启动,水泥灌浆机进入工作状态。

1.2.2 上水,上水泥,上添加剂

启动后,水泥灌浆机分别上水,上水泥,上添加剂。当水、水泥和添加剂达到所需重量时,进入混炼器搅拌。

1.2.3 混炼器搅拌并储存

当水、水泥和添加剂进入混炼器搅拌时,搅拌一定时间,使其充分搅拌后,泥浆进入储存器里储存,然后等待出料信号出料。

1.2.4 泥浆出料

当储存器里水泥储满后,系统有报警信号提示储存器已满。当给出料信号后,水泥灌浆机里的泥浆出料。

2 系统的硬件选型

本系统采用OMRON公司的CP1H-XA40DR-A型PLC作为水泥灌浆机自动控制系统的控制器。日本OMRON公司CP1H系列可编程序控制器的体积小、可靠性高,功能强而价格较低,应用较为广泛。PLC外部接线图如图2所示。

图2 PLC外部线图

3 系统功能图及I/O分配

3.1 功能图

根据系统的具体流程可知,水泥灌浆机控制系统的工作方式分为手动和自动两种,其自动功能表图如图3所示。

图3 水泥灌浆机控制系统功能图

水泥灌浆机自动控制系统中分为手动控制和自动控制,手动控制时,按下启动后,水泥灌浆机上水,上水泥和上添加剂,然后进入混炼器搅拌,定时一定时间后,使其充分搅拌,进入搅拌器存储,当给出料信号后,泥浆出料,当按下停止键后,泥浆停止出料。自动控制时,按下启动键后,水泥灌浆机同自动时一样上水,上水泥和上添加剂,然后进入混炼器搅拌,定时一定时间进入搅拌器存储,当给出料信号时泥浆出料,当达到储存器容量下线时,返回,开始新的上料过程。

3.2 I/O分配

输入:本控制系统有十二个输入点,启动按钮一个,停止按钮一个,开关有两个,分别为手动开关和自动开关。信号开关有五个,分别为手控电机信号,水称重信号,水泥称重信号,添加剂称重信号及出料信号。停止出料开关一个,储存器容量下限行程开关一个,储满传感器一个。

输出:本控制系统有七个输出点,这七个输出点分别为启动指示灯,上水,上水泥,上添加剂,搅拌存储,泥浆出料及储满报警指示灯。

4 组态监控设计

本系统在设计组态监控时使用的世纪星组态开发软件,本系统的组态监控画面设计如图4所示。

图4 组态界面图

第一步是先开始运行并进行选择手动/自动控制。按照要求,水泥灌浆机启动后首先上水,然后再上水泥,最后再上添加剂。当上料结束后,水、水泥和添加剂进入混炼器搅拌。当水、水泥和添加剂在混炼器里搅拌一定时间后,进入储存罐里储存。当储存罐里的泥浆储满时,水泥灌浆机储满报警。当给个出料信号后,泥浆出料。

5 系统的运行与调试

首先,在电脑上安装上OMRON CX-ONE软件;然后在CX-Program软件中编写控制程序,并在电脑上进行初步仿真调试,测试程序无编写错误后,再到实验室进行实物仿真按外部接线图连好实物,并将PLC程序下载到PLC中。然后将PLC和世纪星组态软件进行链接。

按照系统的工作顺序对系统进行控制,观察PLC控制的各个输出端口是否按照编程好的顺序进行工作,对系统进行合理的适当的调整。

参考文献:

[1]邓三鹏,周述齐,孙爽,等.基于PLC的水泥灌浆机自动控制系统[J].可编程控制器与工厂自动化,(1).

[2]宋伯生.PLC编程理论算法及技巧[M].北京:机械工业出版社,.

篇10:泵站集水井PLC自动控制系统的设计运用分析论文

1 泵站的集水井自动化排水方案预设

1.1 集水井机械自动化排水方案设计

在针对泵站的集水井机械化设计过程中,保证工作能够有序进行的根本因素就是感应探头,三个探头主要的作用就是为了确定水位,进而完成排水的控制,在适当的水位时能够及时的停止工作,或者做到及时的排水。

当水位降低到一定的程度以后,就会触发另外的感应探头,从而能够做到及时的电源断开,这样就能够及时的断开排水装置。而当水位重新回到上面位置的时候,就会触发最上面的探头,同理自动打开继电器就可以开通水泵进行排水处理,进而保障整体的水位。而在进行自动化处理的过程中我们也需要考虑到各闸刀开关方面的水位处理,通过继电器进行自动控制,这样也能够在保证控制结构的合理性同时保证其安全性。

1.2 泵站集水井的电子自动排水

在进行泵站的集水井的传感器安装过程中,因要考虑到水位的关系,所以在针对传感器进行低水位的处理过程中,若启动排水泵就需要对不同水位进行检测。在进行排水作业时,运用单片机进行水位检测,带动传感器元件的同时,保持电气继电器连接。当电磁继电器闭合的时候,是能够有效的保障其单片机的问题检测的,而排水泵方面,也能够有效完成相应的停水和排水功能。

1.3 泵站的集水井自动化排水设计

机械自动化的排水装置在通过电子自动排水装置进行接触器方面的交流处理过程中,就需要针对触点进行相应的排水设置,而在进行这一问题的处理预案中,也需要针对不同的水位问题进行排水方面的设计,在达到完美结合的同时,能够有效的完成排水系统的任务。当我们完成机械自动排水系统的信息进行感应设计之后,仍需要对开关进行相应的功能检测。只有确保其单片机能够有效的保证信息的精确有效,才能够更为有效的完成相应的通讯作业。

篇11:泵站集水井PLC自动控制系统的设计运用分析论文

我们在运用集水井的自动控制系统过程中,主要的自动化机械就是将不同的水位信号进行处理,从而完成集水井的自动排水。这也是一种相互转化的有效措施手段,是能够保证两方可靠性的。在进行自动控制系统的安全运行中,需考虑到运行过程中的可靠性进行分析。当机械自动化出现一定的故障以后,就可能导致自动排水系统出现失灵。我们根据机械自动化的供水逻辑供电图,针对可能引发的故障进行相应的排查,其主要针对的是依靠单片机功能进行自动排水装置的故障检测,在有效避免机电故障问题的同时,能够有效的处理其运行中发生的各种现实故障。而当单片机的电子系统出现了故障以后,若是能够做好自动排水装置方面的失灵控制,那么也是可以通过电子继电器进行吸合,保障单片机的正常运行。在进行集水井的自动化控制过程中,当机械和电子系统的任意一处出现故障以后,都可以通过信息进行汇总,通过单片机的信息系统接口进行信息调度,通过调度内容进行故障方面的排查,这样对于整体的运行方面,都能够很好的完成相应的控制。而这也是提高系统可靠性的一项基本设施要求。

3 集水井自动化处理措施

在进行泵站的集水井自动化处理过程中,若出现了预案以外的事故问题,那么如何才能有效的完成相应的处理,就出现了一定的技术需求。我们在针对集水井的自动排水技术应用方面,主要还是针对其汇水位置的水位研究,利用感应器进行的水位定位,从而确定排水或者停止排水。

我们根据泵站的集水井特点进行设计,主要还是针对其中可能出现的一些特殊问题进行的预应力处理,在结构上也能够更有效的完成相应的基础建设。这对于保证集水处理方面都能够更为有效的保证系统的安全。而我们在进行防护的过程中,也主要针对的'是整体系统没有出现故障时,针对隐患问题的处理方式。这里我们针对在进行此类建设方面的应急处理手段进行讨论。

泵站往往处于管槽地下水位较高的位置,而管道长期浸泡在水中,所以在长时间的浸泡之后,就可能导致管道的锈蚀,当液压过大的时候,就可能导致爆管。而这些问题通过单片机进行检测是很难检测出来的。因为单片机仅仅是针对系统上面的检测,对于这方面的硬件质量方面是很难完成安全检测的。

在针对集水地质方面的处理,我们主要是确保其系统的建设过程中,能够应对泵站的各项基本工作需求。同时针对自动降排技术进行改进。在针对不同季节进行水位处理,也应做到防冻伤,这样能够提供设施安全。最后我们针对管理方面,根据当地的环境因素和人员分配任务上加强管理制度,这样在有效的防止锈蚀、冻伤等方面做到有效的防护以后,能够确保整体系统的安全使用同时,也能够更好的完善系统的可靠性运行。而这也是我们针对集水井自动化优化设计的最主要目的。

4 结束语

泵站的集水井在进行自动化控制系统设计过程中,主要的目的还是要保障工作的安全运行。如果在进行作业时,不能够及时的减少对主体结构的影响,那么就可能导致整体的自动化管理出现紊乱。基于这些,我们在进行可靠性分析方面,也需要针对其中的各重大问题进行相应的要求,通过分析可以明显的找出自动化建设过程中的主要问题,从而完善在有人值守或者无人值守的过程中,系统的安全有效运行。

篇12:一种基于传感器的智能谷仓的设计论文

一种基于传感器的智能谷仓的设计论文

提出了一套应用于谷物储存的智能谷仓设计方案,通过特定传感器和计算机程序,对进出谷仓的谷物的重量变化和位置分布进行精确估计,并通过无线局域网上传谷仓内谷物或粮食的进仓时间及位置分布到储粮调度服务器,实现谷物进出仓优化调度,通过智能传感器并利用专家知识对谷仓内储存的谷物状态进行评估,调节仓内温度湿度并及时报警,防止谷物霉变和因储存时间过长形成陈化粮,对于保证粮食安全以及优化粮食调度具有积极意义。

粮食储存过程中的质量保障是关系到国家稳定发展的重要问题。近年来发生的陈化粮流入市场等不良事件已经成为现阶段困扰我国食品安全和社会稳定的一个重要问题,对我国的粮食供应和人民健康构成严重威胁[1]。

与此同时,谷物(粮食的一种主要形态)的储存管理十分繁杂,不但耗费大量的人力和物力,而且涉及到一系列技术和设施。随着农业的发展,基于计算机网络的智能技术成为解决复杂事务管理的重要方向[2-4]。研究智能谷仓系统来实现粮食安全存储具有重要的现实意义。

1 智能谷仓的功能及控制

1.1 智能谷仓的功能

作为谷物安全存储的设施,智能谷仓除了能够实现谷物的进仓、出仓和存放等普通谷仓的功能之外,还具有两个方面的特殊功能,一方面它可以自动感知仓内谷物的储存环境和谷物储存状态,如平均进仓时间、最长进仓时间、分批进仓的量和位置分布,仓内温度、湿度变化状况,仓内是否有霉变倾向等;另一方面它可以通过专家系统根据入仓谷物的类型、入仓时间、传感器采集的各项数据,运用知识库中的专家知识对仓内谷物的状况进行综合分析和评估。

在此基础上可以实现谷物入仓和出仓调度优化。通过智能传感器可以预知仓内谷物霉变风险,根据仓内谷物类型和最长储存时间预防谷物储存时间过长而形成成化粮。此外,通过计算机系统的统计和监测降低日常管理工作强度、提高工作效率。

1.2 谷物进仓出仓控制及统计

从物理结构上看,储存谷物的智能谷仓是一个具有一个入口和一个出口的封闭罐体和相应的控制系统组成。谷仓的物理结构如图1所示。该谷仓的出口和入口由电子系统控制,不能同时打开。当入口打开时,压力传感器和处理机进入工作状态,压力传感器不断将压力变化参数传给处理器。处理机将压力参数换算成仓内谷物重量并记录时间,按照比重和谷仓内径换算成仓内谷物分布图,当压力达到临界值时自动停止谷物输入。

与此类似,当出口打开时,压力传感器和处理机进入工作状态,压力传感器不断将压力变化参数传给处理器。处理机将压力参数换算成仓内谷物重量并记录时间,按照比重和谷仓内径换算成仓内谷物分布图,当压力降低到临界值时自动显示存量谷物重量并提示停止谷物输出。

1.3 谷物储存状态检测与管理

实施谷物存储管理依赖于谷仓内设置的各类传感器和知识库内的谷物储存知识。这些传感器包括电子鼻[5-6]及温度和湿度传感器。通过温度和湿度传感器获知舱内谷物的储存温度和湿度,再通过知识库提供该类谷物的特性相关知识,评估当前温度和湿度环境是否适应当前谷物的安全存储。

通过知识库中有关该类谷物储存周期评估谷物的存储安全时间周期。通过电子鼻等智能传感器检测仓内谷物是否有异常气味来确定仓内谷物是否有霉变倾向。

1.4 谷仓与服务器的通信

处理机通过无线局域网将谷仓的编号、物理位置、谷物分布数据及谷物进出的时间上传到粮库管理中心服务器中。管理中心可以及时查询谷物的储存时间和物理位置和重量等状况,为科学的储粮调度决策提供依据。

1.5 服务器中知识库的知识组成

谷物类型知识,每种类型谷物存储期间发生霉变的原因以及防止霉变的措施,例如温度和湿度及通风等方面的要求、每种谷物的安全存储周期以及评估在存谷物质量的知识等。

1.6 服务器中谷物调度子系统

当新来谷物进仓时,记录和上传谷物的数量、类型和时间,服务器启动相应程序进行统计,以相同类型谷物放在临近谷仓或同一谷仓和保持同一个谷仓的谷物进仓时间差最小为原则,输出最佳进仓方案,这样有利于维持谷仓的储存环境管理。当有谷物出仓任务时,服务器启动相关程序,确定哪些谷仓的谷物适合出仓。在满足提取谷物在数量、类型和质量方面的要求前提下,尽可能将储存时间相对较长的谷物出仓,这样可以最大程度降低陈化粮的形成,防止管理上的失误造成仓内谷物因储存时间超期而形成陈化粮。

2 传感器、处理机及服务器的功能

2.1 传感器

智能谷仓具有一系列传感器,一类用于仓内环境监测,如温度、湿度、气味。这些传感器安装在图1所示的传感器安装柱内,可按照不同高度和位置进行布设。安装柱本身还具有通气等功能,可以独立取出,便于维修。另一类用于谷物重量变化和仓门开闭监测,如压力及仓门位置等传感器。通过这两类传感器可以使得谷仓的存储环境及时得到监测。其中谷仓的气味传感器在最近几年中取得了很大的突破,该类智能传感器被称为电子鼻[5],是一类专门为防止谷物霉变而研制的智能传感器,使得一旦谷物有霉变倾向,谷物必然产生异常气味,电子鼻通过其布置在谷仓内若干个传感器件以及其内部的专门针对谷物霉变的分析程序及时报警,为谷物的存储提供安全保障。

将这些传感器安装在谷仓的'上中下三个层面可有效提高其对谷仓储存环境变化的敏感性。传感器的设置和位置选择如图1所示。仓内安装三组温度、湿度和气味传感器,用于实时探测谷仓内不同部位的温度、湿度、气味所处的范围;通过处理机内的程序进行平滑处理,获得仓内谷物储存环境的具体数值。传感器的安装如图3 所示。

2.2 处理机

数据处理和通信则由安装在谷仓的处理机来执行,它由嵌入式计算机、无线网卡及A/D和D/A转换模块组成,是智能谷仓的数据收集、发送及对采样数据进行预处理的执行机构。它从压力、电子鼻、温度和湿度等传感器获得参数并通过特定程序计算出谷物重量变化,从电子鼻获取检测信息进行预处理后发送至服务器,从湿度及温度传感器获取监测数据进行加权平均和噪声处理后通过无线局域网发送给服务器。此外,处理机还可以接收从服务器发来的指令,调节仓内空调、通风等设施的运行状态,维护仓内环境,适应谷物的存储。此外,处理机还通过A/D转换控制电机开启和关闭谷仓的出入口。其构成如图2所示。

压力传感器位于谷仓的底部,主要用于检测仓内谷物重量的变化。由于谷仓本身重量很大,采用减力杠杆的方式安装,在计算实际重量时将传感器获得的压力乘以杠杆的长度比就可以获得谷仓的实际重量。具体结构如图3所示。

2.3 服务器

服务器根据智能仓谷物发来的温度、湿度、重量、及电子鼻获得的参数,针对仓内储存的谷物的重量、类型、平均存储时间,利用特定的计算机程序计算出仓内增加或减少的谷物重量及各批次进入谷仓的谷物在谷仓内的分布状况及谷物在仓内堆积高度。通过近似的分布图展示在服务器界面上,使管理员可以在管理中心浏览各个谷仓的存储状况。

服务器利用其知识库内的专家知识,综合季节、天气等因素,评估仓内谷物是否具有霉变风险,评估仓内谷物的湿度及温度环境是否适应该类谷物的存储。如果不适应仓内谷物的存储,应调节仓内的温度和湿度及采取相应措施。并将这些数据通过无线网卡传送到主服务器。

3 工作流程

3.1 处理机程序及工作流程

3.1.1 通信程序 每天定时将谷仓谷物所存谷物进入时间批次和每批次进入的重量发送给陈化粮监管服务器;定时将谷仓温度,湿度,气味参数传送给服务器。接收服务器发送来的温度、湿度调节指令,调节仓内储存环境。

3.1.2 谷物重量及分布位置 估算方法当有一批谷物进仓时,仓内谷物分布会发生改变,其估计公式如下:

进仓谷物净高度=谷物比重÷谷仓底面积;

谷物进入谷仓前谷物高度=谷物进入谷仓前重量÷谷仓底面积;

进仓谷物相对于谷仓底部高度=谷物进入谷仓前谷物高度+进仓谷物净高度;

进仓谷物分布范围=谷物进入谷仓前谷物高度-进仓谷物相对于谷仓底部高度;

当有一批谷物出仓时,仓内谷物分布会发生改变,其估计公式如下:

出仓谷物净高度=谷物比重÷谷仓底面积;

谷物进入谷仓前谷物高度=谷物出谷仓前重量÷谷仓底面积;

出仓谷物相对于谷仓底部高度=谷物出谷仓前谷物高度+出仓谷物净高度;

出仓谷物分布范围=谷物进入谷仓前谷物高度-出仓谷物相对于谷仓底部高度;

谷仓内谷物储存平均时间=(第1层谷物重量×第1层谷物存储时间+第2层谷物重量×第2层谷物存储时间+…第n层谷物重量×第内n层谷物存储时间)÷仓内谷物总重量;

出入口控制程序:当出口按钮通电时,检查入口是否处于关闭状态,如果处于关闭状态则启动开启电机打开谷仓出口;当入口按钮通电时,检查出口是否处于关闭状态,如果处于关闭状态则启动开启电机打开谷仓入口。

如果入口打开则处理器启动图4对应的程序流程图工作,如果出口打开则处理器启动图5边对应的程序流程图工作。通过对历次增加和减少的谷物重量的统计以及谷物的比重可以估算出谷仓内每次存入的谷物的重量和位置。由于采用先进先出的顺序,谷仓底部的谷物保存的时间最长,因此一旦某谷仓底部的谷物接近存放极限值,则服务器更具智能谷仓提供的数据可以及时向管理员报警。

4 结语

智能谷仓的管理员通过服务器中的数据可及时掌握粮食储存状况:(1)共有多少谷物在储存。(2)保存时间1~3月的谷物量及位置分布,3~6月的谷物量及位置分布,7~9月的谷物量及位置分布。管理员可以根据粮食的储存状况优化出库顺序,防止谷物陈化事件发生,保障出仓谷物质量达到国家标准。

服务器知识库的建立需要有经验的专家进行密切配合,尤其是针对不同类型的谷物,发生霉变和陈化的诱因和时间有很大的差异,不能一概而论之;此外处于不同的地理位置,谷物的存储期间质量保证的措施也应当因地制宜,对于具体问题应当根据以往的经验形成针对性强的具体对策。

电子鼻的性能对于智能谷仓对谷物霉变的预防和监测非常重要,这类智能传感器目前还没有统一的国际或国家标准,因此在应用时应当根据所储存的谷物事先进行实验和校对,只有当试验结果符合预期时方能投入使用。

篇13:一种高精度波形发生器的设计论文

一种高精度波形发生器的设计论文

摘要:随着电子技术的发展,在诸如测量、控制等领域,经常要求信号的幅度保持在某个高精度的整数值上。但由于一般数据转换器在最小量化电平上的限制,其输出的信号电平很难在整数值上得到较高的精度。针对该问题,介绍一种高性能的16位数据转换器AD7846,使用TMS320VC54X系列DSP作为核心控制器,设计出幅度可精确至1mV的波形发生器。文中给出具体的硬件实现框图以及用来产生波形的DSP汇编源程序。

关键词:波形发生器 高精度 AD7846 DSP

引言

随着电子技术的发展,波形发生器已经广泛的应用在通信、控制、测量等各个领域。在很多地方,如测试测量领域,需要输出的波形能够精确地定位在某一整数值上,但通常由于ADC参考电平的限制,使之很难达到所需的精度,给系统的调试及软件设计带来诸多不便。本文采用了高精度的电压参考芯片ADR434为模数变换器提供参考电平,使波形发生器的最低可调电压达到125μV,为精确地输出数据值电压及其相应波形提供了方便的硬件环境。本设计具有输出精确,控制灵活方便等特点。

1 系统设计

本系统采用TI公司生产的TMS320VC54X系列DSP作为核心控制器件,并采用Cypress工司生产的CY7C1021V(64K×16位RAM)来扩充DSP的外部数据存储空间。在DSP与ADC及RAM之间的数据接口加入74LVC16245(16位总线变换器)以增加DSP的驱动能力,并用来隔断器件间的干扰。DSP与DAC之间的逻辑控制采用CPLD实现,这样可以方便系统的设计与调试,本文中采用的CPLD为Altera公司的EPM7064SLC84-10。

整个系统的方框图如图1所示。

2 器件简介

本系统所采用的`数模转换器为AD7846,它是美国AD(Analog Device)公司基于LC2MOS工艺生产的16位数模转换器。它有VREF+和VREF-两个参考电平输入端以及一个片内放大器。标准情况下可以将其配置为单极性输出(0~+5V,0~+10V)或双极性输出(±5V,±10V)。当然,改变VREF+VREF-两个参考电平输入端的电平,也可以改变其输出的动态范围。如本文中的采用高精度电压参考芯片AD434提供参考电平,使D/A的动态范围设置为±4.096V。

AD7846采用分段式结构。DAC锁存器的高4位选通16个电阻串中的一段,段的两端接有运放作为缓冲,运放的输出反馈至12位的模数变换电路,并由该电路提供后12位分辨率。这种结构可以确保16位单调性,两个缓冲运放间输入失调电压的高度匹配还确保了优良的积分非线性。

除了优良的精度指标外,AD7846与微处理器的连接也非常方便。它有16位数据I/O以及4根控制线(CS,R/W,LDAC以及CLR)。R/W与CS用来控制对I/O锁存器的读写,LDAC信号用于多DAC系统中同步更新多片DAC数据,CLR用于将DAC的输出复位至0V。

3 AD7846参考电压的设计

为了使系统的输出波形在幅度上能够精确到1mV,本文采用AD434为AD7846提供参考电压。ADR434为AD公司生产的低噪声、高精度、低温漂的电压参考芯片。它采用了AD公司的温漂曲率修正专利技术,可以使其电压对温度的非线性达到最小。二者的具体连接如图2所示。

图2所示的连接方式使AD7846工作在双极性输出状态下。AD434为D/A提供+4.096V的参考电平,D/A根据此电平经过双极十六位线性分解,所得的最低可调电压为4.096V/2 15=125μV。具体的编码表如表1所列。

表1 AD7846编码表

DAC锁存器中的二进制数

模拟输出VOUT/V

1111 1111 1111 1111+4.096C(32767/32768)=+4.0958751000 0000 0000 1000+1.096V(8/32768)=+0.0011000 0000 0000 0001+4.096V(1/32768)=+0.0001251000 0000 0000 0000+4.096V(0/32768)=00111 1111 1111 1111-4.096V(1/32768)=-0.0001250000 0000 0000 0000-4.096V(32768/32768)=-4.096

4 逻辑控制及软件实现

本文使用CPLD作为DSP控制D/A映射在DSP的I/O口,地址为4000H~7FFFH。AD7846一共有4根控制线,它们组成的控制逻辑如表2所列。

表2 AD7846控制逻辑真值表

CSR/WLDACCLR

功 能

1XXX使DAC的I/O锁存器呈高阻态00XX数据(DB1~5DB0)装入I/O锁存器01XXI/O锁存器中的数据输出到数据线上XX01I/O锁存器中的数据装入DAC锁存器X0X0DAC锁存器装入数据000...000X1X0DAC锁存器装入数据100...000

CPLD中烧入的逻辑图如图3所示。

对于波形的产生,通常有两种方法。一种方法为使用算法计算输出波形某点的幅度编码值(如正弦波可通过泰勒级数展开得到),这种方法可直接精确地计算出每个角度的波形值,所占用的存储空间小,但对于任意波形的输出,所需的算法较为复杂,系统实时性也会受到影响。另一种方法为查表法,该方法可能需要占用较大的存储空间,但软件控制却非常方便,实时性也更高。采用查表法的软件控制可由如下代码实现。

.mmregs

.global main

main:nop

ori:stm #SINtable,ar2 ;将数据表头地址送入ar2

ld #13H,a ;循环输出20个样点值

JUMP:portw *ar2+,4000h ;AD4846被配置在I/O口的4000H~7FFFFH处

Rpt #1fffh ;改变rpt的值可以改变正弦波的频率

Nop

Sub #1d,a

Bc JUMP,aneq

bori

SINtable ;正弦波幅度编码表

.word 7FFFH .word 0A78DH .word 0CB3CH .word 0EF8DH

.word 0F9BCH .word 0FFFFH .word 0F9BCH .word 0E78DH

.word 0cB3CH .word 0A78DH .word 8000H .word 5872H

.word 34C3H .word 1872H .word 0643H .word 0000H

.word 0643H .word 1872H .word 34C3H .word 5872H

.end

该段程序可使AD7846输出标准正弦波,幅度范围为±4.096V,频率可通过改变rpt的值加以调节。若提供大量采样点,可使其实时输出高精度的任意波形。当然,利用DSP强大的运算处理能力,也可用软件计算出所需波形的各点采样值,这样可以节省存储空间

,降低系统硬件成本。

结语

本系统已经过实际测量,系统各部分工作正常,AD7846可精确稳定地输出所需波形。该方案不仅达到了很高的精度与系统实时性,还具有控制灵活方便等特点,是一种很好的波形发生器。

篇14:一种基于单片机的可控成像系统设计论文

一种基于单片机的可控成像系统设计论文

摘 要:基于彩色面阵CCD传感器设计的高速实时图像采集系统,以信号处理芯片CXD3172AR为核心,可实现输出标准PAL/NTSC格式的视频信号,具有自动白平衡、自动曝光、缺陷补偿等功能,并构建优化的模拟前端电路(包括相关双采样和自动增益控制)大幅度提高了采集数据的信噪比。根据DSP芯片具有参数化控制的特点,通过单片机实现与DSP的特殊通讯传输协议来配置DSP参数,并使用外部开关控制完成各种信号处理功能。通过仿真调试,该电路很好地实现了图像采集和控制功能。

关键词:单片机; CCD;可控化;图像采集

基金项目:教育部留学回国人员科硕启动基金(GGRYJJ07-2)0 引 言光学成像系统是将光学信息转化为人们更易处理的电子信息的重要工具,特别对于智能监控、医学诊断及消费电子领域,其重要性就更大。随着成像系统功能的复杂化,摄像机的便携易控性成了设计中需考虑的重要要素。自从1969年Willard S. Boyle和George E.

Smith发明电荷耦合器(CCD)以来,它一直就是光学成像系统的首选传感器。相对于目前发展快速CMOS图像传感器,它仍然具备噪声低,动态范围高的优点。而CCD的模拟前端决定了采集信号的质量,对整个系统信噪比有着决定性的影响,因此对它的噪声抑制是设计中的重点[1]。完成各种图像处理功能的模块是成像系统的核心,针对低照度视频信号成像[2]的设计要求,采用专业信号处理芯片进行各种处理,通过单片机(MCU)对信号处理芯片(DSP)进行参数配置,以完成各种复杂运算功能的控制,简化了系统的逻辑设计,使其具有良好的可控性。

1 系统组成

该系统由CCD、模拟前端AFE(包括相关双采样CDS和自动增益控制AGC)、信号处理模块、微处理器模块以及模拟数字输出模块等组成。系统框图如图1所示。

图1 CCD成像系统框图

图中CCD传感器是整个系统的基础,外部光学信号通过光电转换才能进行各种处理。传感器输出模拟信号将经前端放大,以差分输入的方式进入AFE,然后通过一系列模拟信号的降噪放大处理(CDS,AGC),进入信号处理模块进行各种运算处理。信号处理模块是连接CCD输出和后端通用设备的桥梁,专业信号处理芯片提供了大量视频处理运算功能和多种视频输出格式,为后续处理带来了方便。通过DSP的各种处理,得到设计要求的色度、亮度和饱和度图像,最后输出与终端格式兼容的模拟或者数字信号。模拟输出可以直接与监视器相连,数字输出可以通过FPGA,ASIC等器件与VGA,DVI接口显示器相连。

2 模拟前端模块

CCD读出电路的噪声主要包括读出电路中所用器件的固有噪声,以及因电路结构、电路工作方式引入的附加噪声[3]。主要有1/f噪声[4]、KTC噪声[5]和固定平面噪声[6],这些噪声限制了图像传感器的动态范围,降低了信噪比。在读出电路中,相关双取样技术(CDS)是目前应用最广泛的噪声抑制技术。由于一个像元传输时间中的复位噪声是相关的,相关双取样电路(CDS)可以利用信号相减的运算关系来消除或消弱信号里的1/f噪声、KTC噪声和固定平面噪声,从而可大大提高系统的信噪比。自动增益控制电路(AGC)可以使放大电路的增益自动地随信号强度而调整,使图像信号的亮度平稳,特别是低照度环境里微弱光信号的放大。但不足的是它也会放大低照度条件下的暗电流,降低图像质量。另外,模拟前端带宽的合理选择可以对系统噪声和系统调制传递函数进行折中,以满足应用的需求。目前有两种AFE设计方法,一种是采用分立元器件实现,另一种是采用集成AFE芯片实验。随着AFE芯片的成熟,其内部还集成了暗电流校正电路,各项指标远高于一般分立元器件搭建的电路,并且调试简单。该系统选择的集成AFE是CXA2096N,是专门为数字摄像机而设计的,内部包括相关双取样电路(CDS)、自动增益控制电路(AGC),为A/D转换器提供的参考电平以及采样保持电路,其自动增益变化范围为-0.8~31.3 dB[7]。

3 信号处理模块

3.1 视频处理芯片本文选择的信号处理芯片是SONY公司的'CXD3172AR。该芯片内建10位高精度A/D转换器,具有自动白平衡、自动曝光、自动黑电平校正和缺陷补偿等功能,并能产生驱动CCD的时序脉冲,能够输出PAL/NTSC制式的模拟信号和ITU656格式的数字信号[8],其控制方式有2种:通过RS 232接口用PC机软件控制;通过MCU通用管脚直接用硬件控制。因为MCU的传输总线不属于通用的I2C和SPI总线,所以参考芯片资料,设计了与MCU的通信接口。该芯片支持的最大传输速率为400 Kb/s;使用PC机软件仅支持19.2 Kb/s,且不能完全利用该芯片的带宽,软件控制还必须依赖PC机,不利于携带。在该系统中,采用纯硬件控制方式实现的DSP功能,具有快速灵活的特性。

以CXD3172AR为核心组成信号处理模块的外围电路主要有电源、时钟、视频输出接口和控制通信接口。

3.2 时钟产生电路

CXD3172AR需要产生驱动CCD的时序脉冲,其主时钟将影响整个系统的正常稳定工作。该系统选择的CCD兼容PAL制式色彩摄像机,总共像素为795(H)×596(V),系统要求28.375 MHz的时钟驱动系统和27 MHz的时钟驱动编解码器。为了有稳定的时钟源,采用锁相环路(PLL),用一个高稳定性参考源的一个分频和VCXO的一个分频进行相位比较,产生一个误差变化电压,给VCXO进行环路负反馈,从而使输出频率更稳定[9]。设计VCXO输出28.375 MHz时钟和石英晶振回路输出27 MHz时钟,系统产生的水平同步信号频率为15.625 kHz,其与VCXO的分频进行相位比较,PCOMP引脚输出相位比较结果,判断是否相位锁定。

3.3 电源电路

系统需要4组独立电源,其电压分别为:3.3 V,5 V,15 V,-7 V。基于便携性的考虑,采用9 V直流电压作为电路板的输入,通过线性稳压电源芯片LT1117-3.3和LT1117-5得到3.3 V和5 V电压,选择TPS65131得到15 V和-7 V电压。TPS65131能够输出正负双电压,非常适用于便携性设备。4组电源的输出端分别通过LC低通滤波器,就能为系统提供高精稳定的直流电源。

3.4 视频输出电路

CXD3172AR能输出PAL制式的模拟信号,其输入端口采用电流输出结构,通过电阻产生信号电压,但是由于系统噪声的存在,特别是模拟地和数字的干扰,信号走线长度,元器件布局等因素,对输出端可以增加一级滤波器,以提高信噪比。对于亮度信号而言,芯片内部在输出端已集成了LPF,故只需对色度信号进行处理。设置DSP输出Y/C分离信号,视频信号的带宽一般为6 MHz,色度信号副载波频率为(4. 43±1.3 MHz),图2是色度BPF的频率特性图。亮度信号和通过BPF的色度信号进入视频信号混合放大器NJM2274,其输出阻抗为75Ω,放大后的信号可以直接输入监视器。

3.5 MCU-DSP通信

DSP处理功能可以通过MCU或软件进行控制。

将DSP各控制参数通过特定的通信协议传输到DSP189第2期颜 豪等:一种基于单片机的可控成像系统设计内部寄存器或者外部E2PROM保存,以使其实现视频信号的各种处理功能。这里的MCU为STC的STC89C52RC芯片,并且外搭基本硬件电路,使其成为最小系统。DSP控制参数有635 B,在调试的时候,可以存入DSP的寄存器组以便修改,调试完成之后,优化的参数可以存入E2PROM,使得下次掉电复位后可以继续使用。

图2 BPF频率特性

在通信过程中,一个通信协议包传输的字节数是可变的,最高可达32 B。DSP接收到一包数据后分析它,执行控制命令,完成1次通信。一个通信包由起始字、命令字、地址字和数据字组成。因为DSP内部寄存器数量有限,在执行完上次命令之前,不会再接收任何其他控制命令。该过程被称为“通信禁止周期”,并且此时,芯片返回一个确认数据,该数据可能是写应答信号、读取数据或者通信错误代码。它的片选信号、时钟信号和输入/输出信号格式如图3所示。

图3 通信协议格式

3.6 MCU与DSP的接口在不同硬件接口之间进行数据通信时必须保证其逻辑电平一致,不然通信过程中将出现各种不可预料的错误。该设计中, CXD3172AR主供电电源VDD是3.3 V,其逻辑高电平大于等于0.7VDD,逻辑低电平小于等于0.2VDD,它们属于LVTTL电平。通用MCU管脚一般是TTL电平,所以两者之间的通信必须经过电平转换,这里选择SN74ALVC164245作为电平转换器。SN74ALVC164245有2组独立电源端口,分别将其与MCU和DSP各自的主供电电源相连。这样,就能通过电平转换器将3.3 V系统和5 V系统连接起来。

4 仿真和调试

图4是软件仿真图,输入数据是低位先传,每个字节有8位,字节之间延迟1个时钟周期,DSP在时钟上升沿采样输入数据,在时钟下降沿输出数据。选通信号XCS为低电平有效,为了满足系统的一定时序冗量,在DSP处理时间内(即通信禁止周期)强制将XCS置高。

由于是软件仿真的原因,DO没有波形。但是为了能够测试通信是否成功,在程序里添加回读显示功能,通过4个7端数码显示管显示2个16进制回读数据,判断是否通信成功。

图4 程序仿真图

同时,参考DSP的几个基本功能,将其控制参数保存在程序代码中,通过外部开关的选择,MCU的P1端口读出其电平,实现各种功能的控制,其功能见表1。

表1 功能列表

Interface FunctionP1.0~P1.2 AWB ModeP1.3 Color Rolling ControlP1.4 Black Light CompensationP1.5 AE SwitchingP1.6 Flickerless SwitchingP1.7 AGC Switching完成电路板中各部分的设计以及调试后进行实验,其结果表明,MCU-DSP通信正常,可满足时序及功能要求。

5 结 语

采用专业信号处理芯片及单片机实现了可控成像系统设计,完成了电路板的调试和功能实验,为后续数字信号处理提供了源图像信号。该系统具有电路实现简单可靠,功能控制方便,能够输出多种视频格式信号,具有简易灵活性。目前,将该系统已使用于低照度环境下的帧间滤波技术采集系统中,效果很好。

参 考 文 献

[1]薛旭成,李云飞,郭永飞.CCD成像系统中模拟前端设计[J].光学精密工程,,15(8):1191-1195.

[2] WHITE M, Lampe D. Characterization of surface channelCCD image arrays at low light levels [J]. IEEE Solid-stateCircuits, 1974, 9 (1): 1-13.

[3]金湘亮.一种低功耗低噪声相关双取样电路的研究[J].电路与系统学报,,8(3):23-26.

[4] JAKOBSON C, BLOOM I, NEMIROVSKY Y. I/f Noisein CMOS transistors for analog applications from subthre-shod to saturation[J]. Solid-state Electronics, , 42(10): 1807-1817.

[5] TIAN Hui, FOWLER Boyd, GAMAL Abbas El. Analysisof temporal noise in CMOS photodiode active pixel sensor[J]. IEEE Solid-state Circuit, , 36( 1 ): 92-101.

[6] OHSAWA Shinji, SASAKI Michio, MIYAGAWA Ryohei,et al. Analysis of low fixed pattern noise cell structures forphotoconversion layer overlaid CCD or CMOS image sensors[J]. IEEE Trans. on Electron. Devices, , 44(10):667-671.

[7] Sony.CXA2096N datasheet [M].Japan:Sony, .

[8] Sony.CXD3172AR datasheet [M].Japan:Sony,2004[9]赵声衡.石英晶体振荡器[M].长沙:湖南大学出版社,1997.

篇15:一种基于CAN总线的温度控制系统设计论文

一种基于CAN总线的温度控制系统设计论文

摘要:

根据温度控制系统的需要,本文设计了一种基于CAN总线的温度控制系统,该系统观测节点采用80C552单片机作为主控制器,控制并处理采集到的温度数据,并通过CAN控制器SJA1000将数据送至上位机。该系统结构简单、可靠性高,便于扩展及维护。

关键词:CAN总线80C552SJA1000温度控制系统

温度是工业对象中主要的被控参数之一,随着微机和电子技术的飞速发展,微机测控技术在温度测量与控制中广泛使用,该控制简单方便,测量精度高,测量范围广。

由于CAN总线广泛应用于从高速网络到低成本的多线路网络,实现控制系统中的各检测和执行机构之间的数据通信。所以本文设计了一种基于CAN总线的温度测量和控制装置,能够对加热炉中的温度进行测量,并根据温度设定值给出的调节量,驱动控制电路,对炉温进行控制。

1、系统总体结构。

基于CAN总线的温度控制系统总体结构如图1所示。在该系统中,被控对象是加热炉,被控参数是加热炉内的炉温,该系统主要由上位机和各个CAN总线智能测控节点组成,上位机主要采用传统的PC机,并通过CAN总线智能适配卡PCCAN与分布在CAN总线上的各个智能测控节点进行通信,并接受下位机采集的数据,下位机主要是采集各个测控节点观测加热炉内的温度参数。

2、CAN总线智能测控节点硬件结构。

下位机的CAN总线智能观测节点在系统中主要作用是对现场温度数据进行采集和控制以及与CAN总线进行通信。

下位机CAN智能观测节点采用Philips公司生产的80C51系列单片机80C552作为主控制器,该控制器以80C51为内核,指令系统与MCS―51系列单片机完全兼容。使用80C552控制器进行设计,可以简化硬件装置,从而使系统的稳定性和可靠性显着提高。通信接口部分采用Philips公司生产的CAN通信控制器SJA1000和CAN总线驱动器PCA82C250,实现与CAN总线的数据通信。

3、CAN通信接口硬件电路设计。

CAN总线控制器SJA1000由微控制器80C552通过P0口的8位地址数据复用总线和读写控制信号进行控制。SJA1000的中断请求信号INT接80C552的外部中断输入INT0,CAN总线控制器可以通过中断方式与微控制器进行数据传输。

SJA1000的片选信号CS由微控制器80C552的P2。1提供,在访问SJA1000时,只要P2。1引脚输出低电平即可。SJA1000的Tx0和Rx0与82C250的TxD和RxD相连,82C250的'CANH和CANL引脚各自提供一个5Ω电阻与CAN总线相连,起限流电阻作用,保护82C250免受过流冲击。另外两根CAN总线输入端和地之间分别接一个防雷二极管,CAN总线两端接有120Ω电阻,起匹配总线阻抗,提高数据通信的抗干扰性和可靠性。

4、系统软件设计。

系统软件设计包括智能测控节点软件设计和测控节点与上位机通信设计两部分。

(1)智能测控节点的软件设计。

测控节点软件设计包括三大部分:80C552单片机与CAN总线初始化、温度数据采集与处理及数据的发送与接收。设计中采用模块化设计思路。

80C552单片机初始化包括I/O口初始化、A/D转换初始化和为传感器接口分配合适的存储单元,SJA1000初始化包括主要是设置CAN的通信参数:波特率、发送通道、接收通道、标识符码等信息。

初始化结束之后,80C552单片机开始启动数据采集通道,调用A/D转换子程序及数据采集与处理子程序,数据经过处理后单片机将数据送至数据存储区,同时送往LCD进行显示,当单片机接收到上位机要求发送数据请求时,启动发送子程序,将数据传送至上位机。

(2)上位机与智能测控节点的通信设计。

上位机与80C552单片机之间的通信设计主要有:通信协议的设定、SJA1000初始化及报文的发送与接收,SJA1000初始化已经在80C552单片机初始化阶段完成,根据所设计的温度控制系统需要,报文格式采用标准帧格式。

发送子程序过程如下:发送子程序将数据存储区待发送的数据取出,加上标识符等信息,组成信息帧,待发送缓冲区数据清空后,将信息帧发送至SJA1000的发送缓冲区。在接收到上位机发送的控制命令后,启动发送子程序,将信息数据发送出去。

相反,接收过程如下:信息从CAN总线送至SJA1000的接收缓冲区,接收程序从接收缓冲区读取信息,并将其存入数据缓冲区,接收方式采用中断接收。

5、结语。

本文主要介绍了一种基于CAN总线的温度控制系统,重点介绍了系统总体设计方案及CAN总线通信系统,采集的温度数据通过CAN总线传送至上位机,方便后期的数据分析,上位机通过软件查询方式,可以实现CAN总线接口的即插即用,使多个温度测控节点构成一个完整的控制系统,降低了成本,同时方便于后期性能的扩展和系统维护。

参考文献:

[1] 江志红。51单片机技术与应用系统开发案例精选[M]。北京:清华大学出版社,:355―378。

[2] 邬宽明。CAN总线原理和应用系统设计。北京:北京航空航天大学出版社,.20―34。

[3] 叶小岭,杨大红,周金兰。基于CAN总线的自动气象观测系统设计[J]。自动化与仪表,,24(9):19―21,49。

篇16:一种基于SH7145的电力线通信数据集中器的设计论文

0引言

电力线通信(PowerLineCommunication)技术是指在1.6M到30M频带范围内,将电力线作为通信媒介,传输数据、语音、视频信号的一种通信方式。在发送时,利用GMSK或OFDM调制技术先将数据调制成载波信号或扩频信号,通过耦合器耦合到220V或其他交/直流电力线上,然后在电力线上进行传输,在接收端,先经过滤波器将调制信号滤出,再经过解调,就可以得到原信号。电力线通信技术不需要重新布线,直接使用现有的电力网实现对数据、语音、视频等信息的传递,具有易维护、易推广、易使用、低成本等优点,显示出了良好的前景和巨大的市场潜力。

1、系统原理及结构

在远程电力自动抄表系统中,PLC技术根据命令或设置自动读出电表数据并自动上传,提高抄表速率,通常速率在2400bps。电力自动抄表系统一般由主站、集中器、采集器(或模块)等构件组成,可以对用户终端的.用电状态进行采集、控制。采集器(或模块)实现用户终端电表的脉冲计数,集中器则根据主站发出的指令(如抄收、窃电检测等)循环查询采集器(或模块)的计数值(或状态),主站由PC机构成,负责供电所所属用户终端用电的管理和监控。集中器是整个系统的通信桥梁,它接收主站命令,并按指令要求将用户端的用电状态(如用电量、用电异常等)送到上位机或对用户终端执行控制(如切断用户供电等)。

在同一电力传输线路中,数字电表和集中器通过R422/488接口与PLC接入控制器相连接,这样就可以将整个电网变为一个数据传输网络,集中器就可以收集各个节点的数据。

由于采用电力线作通信信道,不必另外架设通信电缆,节省了投资,为实现用户电能表网络化管理,以及“一户一表,抄表到户”制度提供了高效、科学的手段。数据集中器按照设定的抄表时间,每天自动采集各用户电能表的累计电量,并根据设定的抄表日自动生成各用户电能表的累计电量,系统软硬件采用模块化、多冗余设计,这样既保证了设备工作的可靠性,又使系统易于扩充和软件升级。

2、数据集中器的硬件设计

数据集中器是以嵌入式微控制器SH7145为核心的软硬件系统。SH7145是日本瑞萨科技生产的SH系列开发板中一款。SH7145板无MMI,无DSP核,使用实时地址,属于低端产品,适用于初学者。SH7145板上有:蜂鸣器,LCD,键盘,A/D转换,2个马达,BIP开关,SH7145芯片,串口插槽,E10A仿真器插口等。

3、系统软件设计

3.1引入T-Kernel嵌入式实时操作系统随着应用的复杂化,采用传统前后台设计方法,会显得过于复杂,实时性得不到保证,而且容易发生死锁。解决这些问题的最好方法就是采用实时操作系统。

T-Kernel是T-Engine的实时核心,它充分利用了在嵌入式设备领域中拥有众多业绩的ITRON成果,并引入子系统等功能,是一种实现从小型嵌入式设备到大型高级系统开发的大规模化OS。它包含了时间管理、任务间通信同步(信号量、邮箱、事件标志)、扩展同步通信和内存池管理等功能;采用T-Kernel实时操作系统可以有效地对任务进行调度;对各任务赋予不同的优先级可以保证任务及时响应,而且采用实时操作系统,降低了程序的复杂度,方便程序的开发。

3.2任务的划分及调度要完成实时多任务的各种功能,必须对任务进行划分。本程序根据各个任务的重要性和实时性,把程序分成六个具有不同优先级的任务,包括管理各个任务的启动、休眠;接收串口中断,唤醒UPDATE_TASK任务;用系统时钟模拟RTC;读取各个电表的数据自;动加入新节点;接收SHELL指令并执行。

通常多任务操作系统的任务不同于一般的函数,它是一个无限循环,而且没有返回值。如果没有更高优先级的任务进入就绪态,当前任务是不会放弃对CPU的使用权。为了实现操作系统的正常运行和有关事件的同步,必须正确处理任务间的通信和事件标志的设置。

4、结语

T-Kernel实时操作系统在嵌入式硬件平台的基础上,用T-Kernel实时操作系统开发应用程序有其独到之处,用户可以直接利用系统的接口函数编写自己的应用程序,不需另行开发,大大方便了用户编程,缩短了软件的开发周期,提高了开发效率。

参考文献:

[1]坂村健.源码开放的嵌入式实时操作系统T-Kernel[M].周立功等,译.北京:北京航空航天大学出版社,2005.

[2]周耀义,鲍滨寿.低压电力用户远程自动抄表系统[J].电力自动化设备,1999,19(2):64-65.

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。