“Akjhghjb”通过精心收集,向本站投稿了13篇《实际问题与方程二》教学反思,今天小编就给大家整理后的《实际问题与方程二》教学反思,希望对大家的工作和学习有所帮助,欢迎阅读!

《实际问题与方程二》教学反思

篇1:《实际问题与方程二》教学反思

学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”

解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

篇2:《实际问题与方程》教学反思

实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。

例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。

例1的教学,我是按照“求谁设谁”的思路来讲的。

第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。

第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的`原纪录+超出部分=小明的成绩。

最后列式,则把具体的数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21.

将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。

例如做一做中的“我们拿桶接了半小时,共接了1.8kg的水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。

这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的知识去寻找关系,具体设置的题目有这样差不多的几个:

1、长方形的长是6m,面积是24平方米,宽是多少?

2、小明走了半个小时,走了120m,小明每分钟走多少m?

3、小红买了5只钢笔,花了24元,每支钢笔多少元?

像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。

1、考验的是面积的计算公式

2、考验的是速度=路程÷时间

3、考验的是单价=总价÷数量

而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。

用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。

所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。

篇3:《实际问题与方程》教学反思

利用二元一次方程组解实际问题是在教学了解二元一次方程的基础上,开展的教学,通过这一节知识的学习进一步培养学生分析问题、解决问题的能力,培养学生的方程思想,养成仔细读题、认真审题、细心解答的良好习惯。

一、教学方法

主要通过学生课前自学,小组合作学习,课上小组合作交流学习,小组展示学习成果,教师结合学生自学及交流情况适当引导,并归纳总结解答方法。课堂当堂巩固练习+课后个别辅导讲解。

二、教学感受及存在问题

教学时注重了学生的课前预习,绝大部分学生都能按要求自习学习内容,但仍有部分学生没有按要求自学,有一部分理解能力较低,甚至读不懂句子包含的含义,更谈不上提取其中的有用数学信息。还有少数学生将两个未知数设出来后没有找出适当的数量关系,甚至把两个关系笼统的套在一起列出一个象二元一次的方程,但根本没法解,还有个别同学在解方程时解答出错,有部分学生没有按要求检验,甚至没有养成答题的良好习惯。

三、改进措施

1、强调读题的重要性,反复读题,直到读懂为止,找出题有已知条件和所求问题。

2、找准等量关系式,找象“;。.”这样的标点符号,从中间划开,符号前为一个等量关系式,符号后面为一个等量关系式。

3、解设未知数时根据题意设两个未知数,根据等量关系式表示出相关的量并列方程组解答。

4、解完题后用大括号表示结果,并在稿纸上检验,一看方程解答是否正确,二看结果是否符合题意。

反思:学生在解题过程中出错很正常,做的题多了,就会知道自己容易在什么地方出错,改正即可。但作为老师必须要有训练意识,培养学生严谨的思路和方法,同时提供足够的练习时间和练习量。

5、检验并写出答案。

6、配套问题学生较难理解,应结合题意,表示出相关量,根据物件配套比例,适当配平,并列方程。

篇4:《实际问题与方程》教学反思

《实际问题与方程》教学反思本节课教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例3若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。

1、从学生喜闻乐见的事物入手,降低问题的难度。解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。

2、放手让学生思考、解答,选择解题最佳方案。让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后我让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。

3、教会学生学习方法,比教会知识更重要。应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,我敢于大胆放手,让学生观察图画,了解画面信息,,然后指导学生根据图意,分析数量之间的关系,讨论交流解决问题的方法,让学生成为学习的主人,参与到教学的全过程中去。

篇5:《实际问题与方程》教学反思

用方程解决问题的关键是找到题目中的等量关系,而对于班级中理解能力一直较差的那部分学生来说确实是一大挑战,学生又是刚接触用方程来解决问题,虽然连着几个课时的学习与练习,解题步骤与规范的书写都有了极大的改观,但分析题意、找等量关系还是个尚需努力提升的大问题。于是,这几个课时的例题我都处理得很慢,先把前一节课学生在作业中出现的易错点、薄弱环节作简要的补充复习,再设计一些较简单的题目为新知的学习创设一个奠基与梯子,让他们的思路更顺一些。

比如说今天的这堂课,我参照教参建议,将本节课的例题以三个层次呈现:

一、数学源于生活又用于生活,比如说今天我们去市场买水果,(出示苹果和梨子的图片),该付多少钱的问题?你们能列出等量关系式吗?大多数学生们快速准确地说出:苹果的总价+梨的总价=要付的水果总价。这个简单的等量关系式将是今天解决问题的'重要依据,看似简单,但进入方程解决问题中,那些学习有困难的学生便慌了阵脚,不知如何下手,所以今天我们先来一些铺垫,让他们的思想少走弯路。接着,孩子们的思维打开了,补充了苹果的总价和梨的总价分别怎么计算,还主动向老师寻求条件来解决问题。这个主动解决问题的意识是好的开端;

二、在解决基础题:已知苹果、梨的单价、数量,求出总价后,将条件与问题调整,已知苹果、梨的数量、梨的单价、要付的总钱数,求苹果的单价。题目一出,孩子们自信满满:“这两题都是一样的呀!”“一样中还有不一样,细心的同学一定会发现并解决它!”对呀,这两题的等量关系是一样的,数据是一样的,但要求的问题却不一样了,这道题用方程怎么解决?学生们主动拿起笔,回忆上节课所学所内容后开始解决问题:

1、解:设未知数;

2、根据第一个环节中的等量关系列出方程;

他们都习惯了捉笔便完整答题,这种急切、主动的学习态度令我满意。不过,课堂上我们可以轻松一些,暂时休息一下,让我们来个解方程男女生P赛。古灵精怪的他们为对方选取了他们认为实力不太强的选手,其实不然,同学们都很有集体荣誉感,乐于参与、自信满满。而台下的孩子们则比台上的更是激动,在心里为同伴呐喊加油。“有些同学不仅在观战,还在看他们写得怎么样,还在思考、可能等下还有评价!”这时,原本有些躁动的课堂安静了,一个个手举了起来。他们的评价动听、到位、详细,也让参与者乐意接受。

三、老师就是个“变题龙”,总喜欢把一道题变来变去。瞧!我把其中的一个数字改了,方法还是一样吗?把3千克梨变成“2千克梨”了。学生们纷纷点头,我顺着他们的意思将黑板上方程中的3改成了2,改好后转过身看看满脸挂着自信与成功喜悦的娃娃们。不!有人摇头了,还有人兴奋地举手了,静静地等待后有人有思考了!还有人没忍住说出了“乘法分配律”。我依旧选择了一个一直保持端正坐姿的孩子,并告诉大家我选她的理由,新一道方程便出来了,“能看懂吗?”其实这两道方程是一样的;其实这是乘法分配律。“这条算式中的每个数表示什么?每一步求的是什么?”依次解读后再来场解方程赛,这次让我们一起动手算,动静结合也让你们不觉得重复吧。

三个环节,孩子们始终投入,而我也觉得欣慰,这样的学习状态挺好!你们今天在数学课堂上的表现我很满意,进步喜人!不过练习的时间却已不太多了。课堂时间有限,我们终有取舍,重了分析与理解的铺设,可能尾就略草了,有一些遗憾也好,说明我们还有进步的空间!希望这样的学习能让你们有收获!

篇6:《实际问题与方程例二》的教学反思

《实际问题与方程例二》的教学反思

列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,运用所学的知识去解决实际生活中的问题的过程。经过第一课时的教学后,我发现大部分学生摆脱了格式上的困扰,新表现出来的列方程解决简单实际问题的难点是:根据实际问题找出等量关系式,再根据等量关系列出方程。因此我们又上了一节巩固练习课,帮助学生汇总、整理自己脑中千头万绪的“等量关系”:

首先,我们可以根据常用的数量关系确定等量关系。例如:一辆汽车每小时行70千米,多少小时能行560千米?这道题中蕴藏的'是我们常用的数量关系,列出等量关系式:速度×时间=路程,路程÷时间=速度,由此可以列出方程:70X=560,560÷X=70

其次,我们还可以根据常见的公式确定等量关系。例如:一块长方形的地长32米,面积是800平方米,它的宽是多少米?这就用到了我们的长方形面积公式,可以列出等量关系式:长×宽=面积,面积÷宽=长由此可列出方程:32X=800,800÷X=32

最后,如果我们实在没有现成的数量关系去用,还可以根据题目中有比较意义的关键句确定等量关系。如:小华有邮票45枚,小华的邮票数比东东多5枚,东东有多少枚邮票?我们先找出题目中有比较意义的关键句:小华比东东多5枚,那么在东东的基础上再加6枚就是小华的邮票数,由此的到等量关系:东东的邮票数+5=小华的邮票数,列出方程:X+5=45。

数学题一道题可以变化出许多道题,我们每一道题都去做,是做不完的,效果也不一定好。所以我认为数学老师有一项很重要的任务就是,帮助学生整理头脑中的千头万绪,找出其中的关键点和共同的地方,能举一反三,这样我们的学习才能轻松起来。

篇7:《实际问题与方程》教学设计与反思

教学内容:书本74页例2

教学目标:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。

教学重难点:找等量关系式列方程。

教学过程:

一、忆旧引新

说说下面各题的等量关系:

如:①、红花是黄花的3倍

②、红花比黄花的3倍多2朵。(等)

二、兴趣谈话引入新例(74页例2),后出示情景图。

1、让生说说从图中知道了哪些信息?要解决什么问题?

2、让生根据信息和问题列出题中的等量关系式,列出方程并解方程。

板书:黑色皮的块数×2-4=白色皮的块数

解:设共有x 块黑色皮。

2x -4=20

2x=20+4

2x =24

x=24÷2

x =12

答:-----------------。

3、引导生用不同方法列方程。

4、小结:列方程解决问题的主要步骤:①弄清题意,设未知量为x 。②分析题意,找等量关系。③根据等量关系列出方程。④解方程。⑤检验。

三、巩固拓展:

1、1.根据方程列出等量关系式。

粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据( ),列方程:3x +12=72

根据( ),列方程:72-3x =12

2.先说说下列各题的数量关系,再列方程解决问题。

花布每米35元,比黄布的3倍少12元。黄布每米多少元?(提示取值)

四、作业:书本第75~76页第5、6、9题。

教学反思:

本节课是用方程解稍复杂的应用题,是在学生已有知识经验的基础上进行学习的,都是抓住解题关键,即先找出题里的等量关系,再根据等量关系列出方程并解答,再而检验。学生知道了用方程解答应用题的步骤。只是部分学生未会找题里等量关系,所以仍需多练。

篇8:数学《实际问题与方程》教学设计

数学《实际问题与方程》教学设计

教学内容:人教版五年级上册第五单元第七课实际问题与方程(二)

教学目标:

知识与技能:

1、结合具体的情景,使学生掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。

2、学生通过学习两积之和的数量关系来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。

过程与方法:

培养学生的比较、分析能力和类比学习的`能力。

情感态度与价值观:

学生在利用迁移、类推的方法,在解决问题的过程中,体会数学与现实生活的密切联系。

教学重难点:

分析数量关系,列出含有小括号的方程并解答。

教学准备:

教具准备:多媒体

学具准备:答题纸

教学过程:

一、联系生活、导入新课:

师:秋天是收获的季节,天气慢慢变凉,而且比较干燥,同学可以多吃些水果缓解干燥,你喜欢吃什么水果呢?(引入准备题)

生自由发言(三人左右)

师结合东营气候的实际情况作出评价。

二、合作交流、探究新知:

(一)1、师:我们看看妈妈买了些什么水果?仔细观察,你能得到那些信息?

(出示 P77例3 图片)

2、观察图片你能提出什么样的问题?

(生:苹果每千克多少钱?)

师:你能根据其中的条件找出数量间相等的关系吗?组内互相议一议,派代表发言。

3、生独立列方程,说说为什么这样列,并求解。(一生上台演板)

师:请你把思考方法给大家讲讲,其他同学可以互相补充、纠正。

方法一:

方法二: 还可以这样列方程:

师:请同学认真观察这个方程怎么解?小组内先讨论,再派代表发言。

师:把(2.8+X)看作一个整体,两边同时除以2,先求出2.8+X是多少,再算X等于多少。

4、同学把这个方程解完,学生演板后,教师组织讲评。

5、同桌互相说一说第二种等量关系和解这个方程的方法。

说一说列方程解应用题的一般步骤

6、练习:解方程

(二)教学例4

1.引入例题。出示例4的条件:

地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。

教师:现在又能提出哪些数学问题?

引出例题。

2.比较例题与求地球表面积的复习题,有什么区别。

引导学生回答:数量关系相同,条件与问题交换了位置。

请学生说出数量关系,教师板书:

陆地面积+海洋面积=地球的表面积5.1亿平方千米

陆地面积×2.4

3.讨论:有两个未知数,怎么办?

①怎样设未知数?

②怎样列方程?

学生分组讨论,教师巡视,酌情参与讨论。

4.交流各种解法。

引导学生从便于思考、便于解方程两方面进行比较。

5.重点讨论下列解法。

解:设陆地面积为x亿平方千米。(设海洋面积为x可以吗?哪个更方便?)

那么海洋面积为2.4x亿平方千米。(这是用了哪个条件?)

x+2.4x=5.1 (这是用了哪个条件?)

(1+2.4)x=5.1 (这是用了什么运算定律?)

让学生自己把方程解完,得x=1.5。

提问:另一个未知数怎样求?根据是什么?

5.1-1.5=3.6(利用和的关系)

2.4x=1.5×2.4=3.6(利用倍数关系)

6.引导学生进行检验。

提问:除了代入方程检验之外,还可以怎样验算?

验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米:

1.5+3.6=5.1

验算海洋面积与陆地面积的倍数关系是否等于2.4:

3.6÷1.5=2.4

《实际问题与方程二》教学反思

(三)用同样的方法教学例5

三、巩固应用

1.你会解下列方程吗?

5+ 1.5×5 = 17.5

(-3 ) ÷2 = 8.5

2. 两辆汽车同时从相距237千米的两个车站相向开出,经过3小时辆车相遇。一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?

3. 你能根据给出的方程编应用题吗?

(26+) ×3=150

四、课堂总结

通过本节课的学习你有什么收获?

板书设计:

篇9: 数学《实际问题与方程》教学设计

一、教学内容:

人教版五年级上册数学第五单元《实际问题与方程》例4,第78页

二、教学目标:

1、会根据两个未知量的关系,列出含有两个未知数的方程,理解和掌握列方程解这类问题的等量关系和解题方法。

2、学生在观察、分析、抽象,概括和交流的过程中,进一步体会方程的思想。

3、通过不同方法的渗透,培养学生的类推和迁移的思想,激发学生学习数学的兴趣。

三、教学重点:

列方程解答含有两个未知数的实际问题。

四、教学难点:

准确地找出等量关系,列出方程。

五、教学准备:

微课视频,懿文德软件课件

六、教学过程:

(一)激趣导入

播放爸爸去哪儿主题曲,师提问:同学们都看过爸爸去哪儿么?好看么?你们最喜欢哪位小朋友啊?

预设:1、看过,很好看,我最喜欢

2、没看过

师:今天啊,老师给你们请来了一位特殊的朋友,她要教我们学习用方程解决实际问题,你们欢迎么?

预设:欢迎。

(二)探究新知

1、微课讲解

将一道跟例题相关的题目以微课的形式进行分析和讲解。

师:请大家认真地听这位朋友讲解,她有任务要交给你们呢。

出示题目:果园里种着桃树和杏树一共180棵,桃树的棵树是杏树的3倍,桃树和杏树各有多少棵?

进行讲解:这道题目和我们之前学的不太一样,要求两个未知量。我可以设杏树的棵树为180棵,那么桃树的棵树可以表示为3x棵。分析题目,得到等量关系为:杏树棵树+桃树棵树=总棵树,列出方程为x+3x=180,运用乘法分配律,(1+3)x=180,4x=180,根据等式的性质4x÷4=180÷4,x=45,将x=45代入方程左边=45+3×45=45+135=180=方程右边,所以x=45是方程的解。杏树的棵树已经求出来了,那么桃树的棵树可以用总棵树-杏树棵树=180-45=135(棵),再根据问题将答话写完整,这道题目就完整的算完了。接下来,请大家积极地开动你的小脑筋,完成我接下来给你们出的题目,看谁的方法又好又多,那谁就获得优先选取大礼包的权利。小朋友们,你们听懂了么?(将这个过程录成微课的形式,使同学们能够认真地听,并积极地动脑思考)

师:同学们听懂这位朋友讲解的了。

预设:1、听懂了。

2、没听懂。

师:这道题目跟我们之前学习的不太一样,不是求谁设谁,而是有两个未知量,我们要根据题目具体分析怎么设未知量。接下来,请同学完成下面这道题目,自己先进行独立思考,然后小组内进行讨论和交流,我们看看哪个小组的方法又多又好。

2、新知探究

(1)出示例题:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍,地球上的海洋面积和陆地面积分别是多少亿平方千米?

(2)师:同学们你们知道地球表面积是由什么组成的么?播放地球动态图,使学生认识到地球表面积由海洋面积和陆地面积组成。

(3)师:请同学们根据刚才视频讲解的例题,开动自己的小脑筋,想想这道题可以怎么做?做完之后,小组之间进行交流。(师巡视指导)

(4)下面哪个小组来和大家交流一下做法呢?

预设1:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。

海洋面积+陆地面积=地球表面积

2.4x+x=5.1

(2.4+1)x=5.1

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

预设2:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。

地球表面积-陆地面积=海洋面积

5.1-x=2.4x

5.1-x+x=2.4x+x

5.1=(2.4+1)x

5.1=3.4x

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

预设3:

解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。

地球表面积-海洋面积=陆地面积

5.1-2.4x=x

5.1-2.4x+2.4x=x+2.4x

5.1=(1+2.4)x

5.1=3.4x

3.4x=5.1

3.4x÷3.4=5.1÷3.4

x=1.5

5.1-1.5=3.6(亿平方千米)

答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。

预设4:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

海洋面积+陆地面积=地球表面积

x+实际问题与方程教学设计=5.1

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积

5.1-x=实际问题与方程教学设计

师:同学们都积极的开动了自己的小脑筋,也都做的`很棒,下面请大家比较一下这几种方法,你们认为哪种方法最好呢?

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法

1、设(找出未知数,用字母x表示)

2、找(找出题目中的等量关系)

3、列(根据等量关系列出方程)

4、解(运用等式的性质解方程)

5、验(将解出的结果代入方程检验)

6、答(完整地写好答话)

师:是的,用方程解决实际问题我们常用的就是你这六个步骤,请同学们要牢记哦。接下来,老师考考大家,看看你们掌握的怎么样,你们有没有信心接受我的挑战呢?

三、巩固练习

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是

A、解:设梨树为x棵,则苹果树为5x棵。

B、解:设苹果树为x棵,则梨树为5x棵。

C、解:设苹果树为x棵,则梨树为实际问题与方程教学设计棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系

(1)小红和小军一共存了235元,小红存的钱数是小军的1.5倍,小红和小军分别存了多少元?

实际问题与方程教学设计等量关系:

(2)植物园里种着松树和柏树,松树的棵树是柏树的2.5倍,柏树比松树少84棵,松树和柏树分别有多少棵?

实际问题与方程教学设计等量关系:

本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。

3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。

(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?

(2)白兔比黑兔多138只,白兔和黑兔各有多少只?

请同学们先独立完成第一问,然后我们进行交流。

第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。

四、课堂小结

通过本节课的学习:

实际问题与方程教学设计收获是

实际问题与方程教学设计遇到的困惑是

五、作业布置

请同学们完成一份关于保护地球的手抄报

篇10: 《实际问题与方程例》的教后反思

《实际问题与方程例》的教后反思

该上用方程解决实际问题了,根据以往的经验,孩子们会在格式上出各种各样的问题:有不写解、设的;有写了“设”可是设的X不带单位,反而在方程式子里带单位的等等。

我分析,这是因为关于用方程来解决问题,对孩子们来说是一个比较新的内容,那么如何让孩子把用方程解决问题的这些步骤由强行记忆变成自身的“本能”呢?我可不愿意在他们做题的时候一遍又一遍的'在他们耳边说,在教室里一遍又一遍的转着查看。我想偷个懒。

于是在本堂课上,在与学生一起分析了例题中的数量关系后,我请学生自己自学例题,用一分钟时间看例题中的解题步骤,一分钟后,全班的数学书都合上,根据自己记忆中的解题步骤来解决问题。同时,我请了三个同学上台板演。之后我们进行了一场“全班来找茬”,以黑板上的板书为例,找出方程解题步骤、书写格式上的问题,大家伙儿找的兴高采烈,黑板上的圈错误的圈多一个,孩子们心里的圈圈就少一个。

今天如果我讲得太多,学生被迫去记忆,可能反而事与愿违记不了多少。让孩子自己去学,自己去找,自己去反思,自己去找的“食”有时反而更香。所以我们应学会适时的偷懒,让学生自己去学,把自己从繁琐的讲解中解放出来。

篇11:《简易方程――与复习二》教学反思

本节课的主要目标是帮助学生比较系统地理解用字母表示数的意义和作用,正确理解方程的意义,会熟练地解一些简易方程,能自觉进行检验; 在整理与反思的过程中,让学生自我构建知识网络图,发展学生的数学思维。 数学的知识体系就象一张网,每个知识都不是孤立存在的,知识之间有着这样或那样的联系。学生往往也能够凭借已有的知识经验进行生成或迁移,但从学生的发展来看,学生在漫长的学习生涯中,掌握整理、归纳知识的方法是非常关键的。在复习过程中,只要相信学生,给学生足够的空间和时间,让学生自主梳理,探索知识之间的内在联系,加以针对性的'点拨和多层练习,就能促使他们创造性地完成知识结构与认知结构的构建。具体从下面两方面谈谈:

一. 面向全体,复习内容具体明确,促进知识的系统化 复习课应根据知识的重点,学习的难点和学生的薄弱环节,引导学生按照一定的标准把已学的知识进行梳理、分类、整理、弄清它的来胧去脉,沟通其纵横联系,从整体上把握知识。 让学生对“方程的意义”、“等式的基本性质”、“解方程和方程的解的区别”、“解方程的步骤”、“列方程解应用题的方法”等知 识进行了回顾。

二 、自主整理,合作交流。温故而知新 复习课的目的不仅是要使知识系统化,还要对所学知识有新的认识、提高。本节课在数量关系的认识上正是想突破这点。在小学阶段计数量关系往往只注重了数量关系间的相等关系。

篇12:《实际问题与方程》数学教案设计

教学目标

知识与技能:

使学生初步理解和掌握列方程解决一些简单的实际问题的步骤,掌握bx -a等这一类型的简易方程的解法,提高解简易方程的能力。

过程与方法:

让学生借助直观图自主探究,分析数量之间的等量关系,并正确地列出方程解决实际问题,培养学生的主体意识、创新意识以及分析、观察和表达能力。

情感、态度与价值观:

使学生感受数学与现实生活的密切联系,体会数学在生活中的应用价值和学习数学的乐趣。

教学重难点

教学重点:

正确设未知数,找出题目中的等量关系,会列方程,并会解方程。

教学难点:

根据题意分析数量间的相等关系。

教学工具

课件、多媒体.

教学过程

教学过程设计

1 谈话引入

1、解下列方程:

x +0.06=4.21 x+0.08=1.53 2x -4=20

2x +2.8×2=10.4 x +2.4x=5.1 0.25x +0.2x=4.5

2、分析数量关系并写出来:

(1)我们班男生比女生多8人。

(2)小明跳远超过原记录0.08米。

(3)小明身高比去年高了200px。

(4)足球上白色皮比黑色皮的2倍少4块。

(5)地球上海洋面积为陆地面积的2.4倍。

学习方程的目的是为了利用方程解决生活中的问题,这节课我们就来一起学习如何用方程解决问题。

板书课题:实际问题与方程

2 探究新知

一、学习例1:

1、教师多媒体出示教材第73页例1的情境图。

小明破纪录了,成绩为4.21米,超过原纪录0.06米,学校原纪录是多少米?

2、教师讲解如何列方程解答。

①题目中的等量关系是什么?

(学校原记录+0.06米=4.21,写出所有的等量关系)

②如何列方程?

(x+0.06=4.21)

③解方程。 (x=4.15)

④检验,写出答语。

(如何检验?把结果代入原方程,看看左右两边是否相等。)

3、学生小组讨论列方程的步骤、关键,汇报交流

引导学生总结列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示。

②分析、找出数量之间的相等关系,列方程。

③解方程。

④检验,写出答语。

4、完成教材第73页“做一做”的第(1)小题,第(2)小题。。

同桌左边同学完成1题,右边同学完成2题。

小小提醒:①单位要统一;②解方程要检验。

(1. 200px=0.08m 设小明去年身高x m. x+0.08=1.53 x=1.45 )

(2. 半小时=30分 设平均每分钟浪费x kg水 30x=1.8 x=0.06 )

5、全班讲评,订正。

二、学习例2、例3、例4

1、教师多媒体出示教材第74页例2的情境图。

仿照例1,按照刚才的解题步骤完成:(1名同学黑板上板演,其他同学做一做)

等量关系:黑色皮的块数×2-4=白色皮的块数

设共有x块黑色皮。

2x-4=20 x=12

2、评定

解方程时,先把

看做一个整体

3、试一试,独立完成72页第5题。

等量关系:每筒网球的个数×筒数+3=网球总数

方程:5x+3=1428 想一想:这里为什么要加3?

x=285

4、教师多媒体出示教材第77页例3的情境图。

仿照例1和例2,自学例3

小小提醒:根据不同的等量关系,可以列出不同的方程:

苹果的总价+梨的总价=总价钱

两种水果的单价之和×2=总价钱

①设苹果每千克x元。 2x+2.8×2=10.4

②设苹果每千克x元。 (2.8+x)×2=10.4

5、评定

两种等量关系,列两种不同的方程,都可以。

解决同一个问题,我们列出了不同的方程。如果让你选择一个方程,你会选择哪个?说说你的想法。

解这个方程时,应把

看做一个整体?

6、教师多媒体出示教材第78页例4的情境图。

提醒:题目中2个未知数,怎样设呢?

列出不同方程:x+2.4x=5.1 x÷2.4+x=5.1

比较两种设法优劣

解答本题 x=1.5

7、独立完成77页和78页做一做,列出方程,选择其中的1个做一做。

77页做一做,可以有两种列方程法:

2x+2×4=11 (x+4)×2=11

78页做一做,可以有两种列方程法:

设桃树x棵,或者杏树x课

8、全班评定

解方程时,应把 看做一个整体?

选择简便的方法

三、学习例5:

1、教师多媒体出示教材第79页例5的情境图。

同学们小组内讨论:

①题目中的数量有哪些?含义分别是什么?

理解意思(两地 同时 相向 相遇)

②画出线段图

(为什么画线段图呢? 可以清楚地分析数量之间的相等关系)

③找出相等关系,列出方程

这里要用到速度、时间和路程的数量关系来列方程

路程=速度×时间

本题等量关系是:小林骑的路程+小云骑的路程=总路程

0.25x+0.2x=4.5 x=10

④解方程,检验,写出答语。

2、各小组展示,评定

3、做一做,组内完成82页第13题。

设乙队每天开凿x米。 (12.6+x)×25=675 x=14.4

4、全班评定。

3 巩固练习,实践应用

1、第76页练习十六,第8题、第10题。

学生独立完成,老师巡视,完成后小组内讨论,最后老师公布答案 。

2、第82页练习十七,第14题。

学生独立完成,老师巡视,完成后小组内讨论,最后由老师讲解、确定答案。

课后小结

1、这节课学习了什么?方程解应用题的步骤是什么?用方程解决问题应注意哪些问题?小组汇报,教师总结板书:

列方程解决问题的步骤:

①弄清题意,找出未知数,用x表示。

②分析、找出数量之间的相等关系,列方程。

③解方程。

④检验,写出答语。

2、列方程解决问题的关键点是:

①弄清题意,找出未知数,用x表示。

②分析、找出数量之间的相等关系,列方程。

③检验可以在练习本上完成,不必写出步骤

3、本节课易错点是:

①没有设未知数为x,或者明确那个未知数为x。

②列方程错误或解方程错误,没有检验,未能检查错误。

板书

实际问题与方程(1)

解:设学校原跳远纪录是x m。 解题的一般步骤是:

x +0.06=4.21 ①弄清题意,找出未知数,用x表示。

x +0.06-0.06=4.21-0.06 ②分析、找出数量之间的相等关系,列方程。

x =4.15 ③解方程。 检验:…… ④检验,写出答案。

答:学校原跳远纪录是4.15m。

篇13:《实际问题与方程》数学教案设计

教学目标

1、知识与技能:让学生掌握形如ax±bx=c的方程,掌握设未知数的方法,并会正确地解答。

2、过程与方法:让学生通过乘法分配律来解答形如ax±bx=c的方程。

3、情感、态度与价值观:通过观察、分析、比较的方法,提高学生逻辑思维能力。

教学重难点

教学重点: 教会学生用方程解决实际问题。

教学难点: 分析、找出数量间的相等关系,正确列出方程 。

教学过程

一、复习。

1、解方程。 4X+5=54 3×2.1+2X=13.4 0.3X÷2=9 4(X+8)=20

2、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?

(1)分析:本题有两种什么树?它们的数量关系是什么?

(2)独立解答。

二、新授。

教学例4。地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?

问题:从图中你得到了哪些数学信息?

活动要求:读读例题→思考问题→小组讨论→分享展示

1、分析题目的已知条件和问题。今天的题目有2个未知数。为了解答方便,通常设一倍数为X。

2、列方程并解答。

数量关系:陆地面积+海洋面积=地球表面积

方法一:解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

x+2.4x=5.1

方法二:解:设陆地的面积为x亿平方千米。那么海洋面积为(5.1-x) 亿平方千米。

x+(5.1-x)=5.1

方法三:解:设海洋面积为x亿平方千米,那么陆地面积为2.4 ÷x亿平方千米。

(x÷2.4)+ x=5.1

海洋面积÷陆地面积=2.4

方法四: 解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

(5.1-x)÷x=2.4 2.4x=5.1-x

方法五:解:设陆地的面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

2.4x÷x=2.4

解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1

(这是用了什么运算定律?)乘法分配律 让学生自己把方程解完,得X=1.5。

提问:另一个求知数怎样求?根据是什么? 5.1-1.5=3.6

(利用和的关系) 2.4X=1.5×2.4=3.6

(利用倍数的关系) 引导学生进行检验。

提问:除了代入方程检验之外,还可以怎样验算?

验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米。 1.5+3.6=5.1 验算海洋面积与陆地面积的倍数关系是否等于2.4。 3.6÷5.1=2.4

答:......

3、练习:将题目中的“地球的表面积为5.1亿平方千米”改为“海洋面积比陆地面积多2.1亿平方千米” 学生独立列方程解答。

数量关系:陆地面积+海洋面积=地球表面积

解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。。

2.4X -X=2.1

(2.4-1)X=2.1

4、比较两道题有哪些相同?哪些不同?

5、小结:今天学习的应用题,是已知两种数量的倍数关系,以及它们的和或差,求这两种数量各是多少?列方程时,通常根据倍数关系,设一倍数为X,另一个数用含有字母的式子表示,再根据这两种数量的和或差,找出数量之间的等量关系,就可列出方程,并解答方程,求出得数。

三、学生独立完成例5 妈妈今年的年龄是我的3倍,妈妈说,我比你大24岁。

问题:能读懂他的想法吗?从题目中他找到了怎样的等量关系?

独立完成, 然后订正,课件出示。

四、完成课本78-79页的做一做

五、小结:

这节课学习了什么?还有什么问题?

六、作业:

P80练习十七中的第5--10题。

板书设计:

稍复杂的方程(三) 数量关系:陆地面积+海洋面积=地球表面积

解:设陆地面积为X亿平方千米,那么海洋面积可以表示为2.4X亿平方千米。。 X+2.4X=5.1 (1+2.4)X=5.1 3.4X=5.1 3.4X÷3.4=5.1÷3.4 X=1.5

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。