“可乐多”通过精心收集,向本站投稿了18篇积的近似数教案,下面是小编整理后的积的近似数教案,欢迎大家阅读分享借鉴,希望对大家有所帮助。

积的近似数教案

篇1:积的近似数教案

教学目标:

1.使学生掌握求小数乘法的积的近似数的方法。

2.使学生经历求小数乘法的积的近似数的过程。

3.使学生在解决实际问题中,进一步体会数学与生活的密切联系,培养实践能力的灵活性。

教学重点:

掌握求小数乘法的积的近似数的方法。

教学难点:

根据要求与实际需要取积的近似数。

教学准备:

多媒体课件。

教学过程:

一、基础训练

1.436保留整数、一位小数、两位小数分别是多少?

15.7394精确到个位、十分位、百分位、千分位分别是多少?

一般用什么方法取近似数?怎样用四舍五入法求出这些近似数?

二、导入新课

师:同学们你们知道什么单位的嗅觉最灵敏吗?

生:狗,人们用狗来做侦探,看家。

三、进入新课

师出示教材11页情境图

师:从图上你都看到了什么?

生:描述画面内容。

师:是呀,狗狗使用它灵敏的嗅觉发现坏人的。

投影出示例6

生:读题,理解题意。题中得知生活中和多地方不需要准确值,要近似数。

1.尝试题

师:怎样计算狗的嗅觉约有多少亿个嗅觉细胞呢?(求0.049的45倍是多少。)

2.自学课本

有困难的同学借助课本来学习

3.尝试练习

生:独立完成在练习本上。指名学生板演。

0.049×45≈2.2(亿个)

4.学生讨论

师:充分展示学生出现的情况,组织学生讨论,探究。

强调:横式后面写的是近似数所以要用约等号而不用等号。

明确:保留一位小数,看哪位,根据什么保留?(看百分位,满5舍去后向前一位进一;小于5就直接舍去)保留两位小数呢?

生:看千分位是几,千分位上是5舍去后向前一位进一。

讨论:怎样求积的近似数?

5.教师讲解

小结:先求积,看保留小数的后一位,用“四舍五入法”取近似数,横式得数要用约等号。

四、巩固练习

1.11页做一做第1题.

求近似数要注意什么?(计算准确,看清题目要求几位小数,积中小数点的位置)

2.11页做一做第2题.

明确为什么保留两位小数?(生活中没有比分更小的钱币)

五、课堂作业

练习三1~3题。

六、小结:谈谈收获。

练习题

1.计算下面各题。

0.8×0.9(得数保留一位小数)

1.7×0.45(得数保留两位小数)

2.一种大米的价格是每千克3.85元,买2.5千克应付多少钱?

练习三

1.按要求保留小数数位

(1)保留一位小数

1.2×1.40.37×8.43.14×3.9

(2)保留两位小数

0.86×1.22.34×0.151.05×0.26

2.一幢大楼有21层,每层高2.84米。这幢大楼约高多少米?(得数保留整数)

3.世界上的一台电子计算机很大,它的质量相当于6头5.85吨重的大象。这台计算机有多重?(得数保留整数)

篇2:积的近似数教案

教学目标

1进一步巩固小数乘法计算

2根据题目要求,会应用“四舍五入”法取积的近似数

3体会“四舍五入”法是解决实际问题的重要工具

知识重点

应用“四舍五入”法取积的近似数

教学难点

要根据哪个数位来进行四舍五入

教学用具

电子幻灯PPT

教学过程

教学方法和手段

引入

幻灯片出示几个语句,你知道哪些句子表述的是准确数,哪些是近似数,你是根据句子中的哪些字、词来判断的呢?

(1)我们班有52人

(2)仙岳小学现有学生数约600人

(3)小明的身高是172厘米,体重大约60千克

通过一些语句,让学生回顾准确数和近似数以及判断方法

概念分析

我们生活中有时候需要很精准的数字,比如:

但有些时候又往往不需要知道很精准的数字,只需要知道它们的近似值就可以了。那我们一般用什么方法来取近似数呢?

让学生体会生活中有时候只需要近似数,回顾四舍五入

例题讲解

一、小数四舍五入的练习

保留一位小数

0.5964≈1.025≈1.9937≈

保留两位小数

12.038≈12.3045≈

是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于大于5。

二、P10例6

现在公安警察在捉拿坏人的时候经常要携带一种嗅觉非常灵敏的动物,你们知道是什么动物吗?幻灯片出示《狗抓坏人》情境图以及问题

(1)让学生自读主题、读图,用自己的话讲述题意。

(a)题目的条件(b)条件的之间关系(c)题目求什么,有什么地方需要注意

(2)独立列横式和竖式求解

(3)根据题目问题要求,如何用四舍五入求积的近似数。

四舍五入的练习是让学生判断根据哪一位来进行四舍五入。

因为题目要求保留一位小数,这时候四舍五入要看哪一位?

(百分位,百分位上是0,小于5,舍去0和5,保留一位小数)

课堂练习

(1)P10做一做(2)P13第1、2题

篇3:《积的近似数》数学教案设计

教学目标

1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。

2、培养学生根据具体情况解决实际问题的能力。

教学重点

用“四舍五人法”截取积是小数的近似值的一般方法。

教学难点

根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。

教学工具

多媒体课件

教学过程

一、激发兴趣

1、口算

1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5

1-0.82、.3+0.74、1.25×8、0.25×0.4

2、用“四舍五入法”求出每个小数的近似数。(投影出示)

2.095、4.307、1.8642

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

(2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、尝试

谈话引出例题:同学们你们知道什么动物的.嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、列式,板书:0.049×45。

4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。

5、引导学生观察、思考:

(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

6、专项练习(根据下面算式填空)

3.4×0.91=3.094积保留一位小数是,保留两位小数是()。

7、计算下面各题。

0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)

三、运用

一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)

课后小结

谁来小结一下今天所学的内容?

课后习题

1、根据下面算式填空。

3.4×0.91=3.094

积保留一位小数是( )积保留两位小数是( )

2、两个因数的积保留两位小数的近似数是3.58,准确值(三位数)可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。

板书

积的近似数

2.45×2.5≈6.13(元)

竖式

答:

篇4:《积的近似数》数学教案设计

教学目标

知识与技能:使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

能力目标用“四舍五人法”截取积是小数的近似值的一般方法。

情感目标情感态度与价值观:培养学生解决实际问题的能力。

教学重难点

根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

教学过程

一、激发:

1、口算。 0.8×2= 6×0.9= 5×0.5 = 40×0.2= 7×0.8= 25×4 = 300×0.4= 1.5×0.8=

2、用“四舍五人法”求出每个小数的近似数。(投影出示)

保留一位小数保留两位小数保留三位小数

4.51692

328.9604

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五人法”将这些小数保留一位小数或两位小数,取它们的近似值? (2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、合作探究

谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?

2、读题,找出已知所求。

3、生列式,板书:0.049×45

4、生独立计算出结果,指名板演并集体订正。

5、引导学生观察、思考:

(1)积的小数位数这么多!可以根据需要保留一定的小数位数。

(2)保留一位小数,看哪一位?根据什么保留?

(3)横式中的结果应该怎样写?

6、专项练习:

得数保留一位小数0.8×0.9 ≈

得数保留两位小数1.7×0.45≈

三、拓展应用

1、按要求完成下面各题

2、小刚的体重是21.5千克,

他爸爸的体重是他的3.3倍。

小刚的爸爸的体重大约是多少千克?

(得数精确到十分位)

3、两个因数的积保留两位小数的近似数是3.58,准确数可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

四、总结

谁来小结一下今天所学的内容?

五、作业布置

P.13页2题

篇5:积的近似数练习题

积的近似数练习题

一、计算题

积的近似数教案(共18篇)25.2-5×0.42 20.7+72×0.35

4.2×3.8+15.6 7.34×1.5×0.3

8.31×2.4-6.05 4.01+72×0.81

6.08×2.5-5.7 12.5×6.4×1.7

二、解答题

1、从53.4中减去13个1.6得多少?

列式:_______________________

2、甲数是乙数的`5倍,乙数是丙数的2.4倍,丙数是1.5,甲数是多少?

列式:_______________________()

3、有一个三位小数,四舍五入后是8.40,原来这个三位小数可能会是哪些数?

篇6:近似数教案

教材分析

“准确数和近似数”是义务教育课程标准实验教科书,浙教版七年册第二章的内容。教材通过一则科技报道引入准确数和近似数的概念,在学生已有的运算能力的基础上,给出近似数的精确度的两种表示方式,及近似值的取法。准确数和近似数是运用有理数进行实际计算所必需的,本节课也培养了学生用所学的数学知识解决,生活中的数学问题的能力,让学生体验到生活中无处不存在准确数和近似数。

学生分析

学生往往存在着一些生活经验,这些生活经验是学生学习的基础,但其中也有一些是错误的,必须让学生在正确区分准确数和近似数的基础上,明确近似数的角度有两种表示方式以及学会近似值的取法。教学中要及时了解学生的认知程度,以便调整教学。

教学目标

通过实例经历近似数和准确数概念的产生过程。

了解近似数的精确度的两种表示方式。

能说出由四舍五入得到的有理数的精确位数和有效数字。

会根据预定精确度取近似值。

教学重点

近似数的两种表示方式及近似值的取法

教学难点

近似数所表示范围及有效数字如何表示近似数的精确度

教辅工具

投影仪、卷尺、“神舟五号飞船”图片、投影片6张

教学设计思路

本节课首先从学生熟悉的生活情境出发引入数学概念。通过近似数在生活中的应用,激发学生主动学习的欲望,然后通过老师讲解、学生练习,使学生学会近似数的两种表示方式及近似值的取法,最后再配以练习巩固,让学生很自然地接受这一部分知识。

教学流程

一、实践操作,引入课题

问:我想知道我们教室里有多少张课桌?黑板长为多少?

20xx年我国人口总数为多少?你们能帮老师解答吗?

(学生分小组进行合作操作、讨论)

[设计说明:通过学生亲自操作,引起学生的兴趣]

问:上面所出现的数据中,哪些跟实际完全符合,哪些跟实际是接近的?

(学生回答)

板书:像这样与实际完全符合的数称为准确数

像这样与实际接近的数称为近似数

通过测量或估计得到的都是近似数

板书课题:准确数和近似数

[设计说明:通过实例使学生充分体验准确数和近似数的概念的产生是由于人们生活和生产实践的需要]

二、导入新知

师:21世纪进入太空是很多人的梦想,同学们有想过吗?

(学生开心的各抒己见)

展示:“神舟五号飞船”图片

投影片A:“神舟五号飞船总长9.2米,总质量为7790千克,装有52台发动机,在太空中,该飞船大约每90分绕地球一圈,其间要经受180℃的温差考验。

[设计说明:跟时尚接轨活跃课堂气氛,加深对概念的理解]

问:上面叙术中的各数,哪些是准确数?哪些是近似数?并说明你的理由。

(只要学生根据准确数和近似数的概念和自身的经验说出理由,均可以认为正确)

投影片B:(快速口答)下列叙述中的各数,哪些是准确数?哪些是近似数?

(1)月球与地球之间的平均距离大约是38万公里

(2)某本书的定价是4.50元

(3)小明身高为1.57米

(4)美国一家猫粮制作公司称:“在美国共有8500万只猫,22%的猫主人都选择猫爱看的频道”。

[设计说明:通过练习,加以巩固]

师:生活中用到近似数的情况很多,有时是因为客观条件无法或难以得到精确数据,如:“20xx年我国人口总数约为12.9533亿”,有时是实际问题无需得到精确数据,如“校长在会上说,这次学校包场看电影,买票大约需2500元”

三、展开过程,师生互动

对近似数,我们常需知道它的精确度,一个近似数的精确度通常有两种表示方式:

板书:1、一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位

如:身高1.57米是千分位数字四舍五入到百分位的结果,它精确到百分位(或精确到0.01)

近似数38万是千位数字四舍五入到万位的结果,它精确到万位

问:身高1.57米表示小明实际身高在什么范围内呢?

(学生思考、讨论,教师给予指导)

近似数38万表示的范围为 ?

(学生举手回答,教师鼓励,每位同学都发表自己的见解,最后指出正确答案)

投影片C:例1、下列由四舍五入法得到的近似数各精确到哪一位?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

(学生起立回答,教师和其余学生一起进行评判)

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的精确位数]

注:①以百、千、万、十万、百万等做单位的近似数的精确位数

②小数点后面的零

板书:2、用有效数字的个数来表述一个近似数的精确度,由四舍五入得到的近似数从左边第一个不是零的数字起,到末位数字为止的所有数字,都叫做这个数的有效数字。

如:1.57有 3个有效数字:1、5、7

38万 有2个有效数字:3、8

0.03070 有4个有效数字:3、0、7、0

注:近似数中越在左边的数字就越重要,有效数字越多,精确度越大

投影片D:例2、(口答)例1中各数有几个有效数字?分别是什么?

(1)11亿 (2)36.8 (3)1.2万 (4)1.20万

[设计说明:让学生学会辨认一个由四舍五入得到的近似数的有效数字及个数]

四、知识应用

投影片E:例3、用四舍五入法,按括号内的要求对下列各数取近似值

(1)0.33448(精确到千分位)

(2)64.8(精确到个位)

(3)1.5952(精确到0.01)

(4)0.05069(保留2个有效数字)

(5)84960(保留3个有效数字)

(学生练习上独立完成,教师巡视进行辅导对于(5)教师不急于指出,先让学生思考,发现问题提出来,如没有学生提出,教师可直接指出)

[设计说明:让学生学会如何根据预定精确度取近似值]

注:按预定要求取近似值时,不要遗漏小数点后面的零,对较大数取近似值最好用科学记数法表示

投影片F:例4、(1)计算:-22×11÷7(结果保留4个有效数字)

(2)一根木棒长4.4米,均匀截成6段,每段长多少米?(精确到0.01米)

[设计说明:这里安排练习,使学生体会到数学知识来源于实际,又应用于实际问题中]

五、小结:引导学生进行总结

六、作业:

教材P57课内练习、P58作业题A组、B组、C组

篇7:近似数教案

设计说明

学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

1.创设生活情境,感受数学与实际生活的联系。

《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

2.注重类推,让学生经历知识迁移的过程。

求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

3.注重引导,让学生在探究中学习。

在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

课前准备

教师准备 多媒体课件 卡片

教学过程

⊙复习导入

1.复习旧知。

(1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

986534 58741 31200

50047 398010 14870

(2)下面的□里可以填哪些数字?

32□645≈32万 47□905≈47万

学生填完后,引导学生说一说是怎么想的。

2.导入新课。

师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

⊙探究新知

1.课件出示教材例1情境图。

从图中你获得了哪些数学信息?

(豆豆的身高是0.984 m)

2.探究求近似数的方法。

(1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

(2)你是怎样得出豆豆身高的近似数的?

生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

教师板书: 0.984≈0.98

小于5,舍去

(3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

教师板书:0.984≈1.0

大于5,向前一位进1

篇8:近似数教案

教学目的:

●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重点:能正确的求一个小数的近似数。

教学难点:怎样准确的求一个小数的近似数。

教学过程:

一、导入新课

师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

986534 58741 31200

50047 398010 14870

2、下面的□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的。

[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

二、探究新知

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

你是怎样得出豆豆身高的进似数的?

师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

生:

(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

(3)保留整数部分应怎样思考,注意什么问题呢?

师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

(4)小结:

问:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

三、练习

(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

(5)出示租车说明,判断租多少辆车去出游?

师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

篇9:积的近似数教学反思

数学课程标准指出:“人人能获得良好的素质教育,不同的人在数学上得到不同的发展。”要使不同的学生在每一节数学课上有不同的收获,感受到数学的乐趣,从而激发学生学习的原动力。因此在本课程的研磨过程中,我发现以下这几个环节尤为必要:

1.复习数位顺序表

求积的近似数的方法所用的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习,复习工作主要有以下两大亮点:

(1)我首先考虑到学困生学习基础较弱,他们连小数点左右两边的数位都不了解,如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位呢?学生回答时,可见中等生和学困生一时还反映不过来。最后通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。

(2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识,建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说,是有利的。

2.设计多种形式的巩固练习。

不同形式的练习有助于学生从各个角度去理解知识,学会用适当的策略去解决问题。同时练习的难易程度也能在一定程度上让学习层次不同的学生得到有效的发展,增强学生的应用意识,激发学生积极学习数学的情感。

3.让学生在合作交流中,学会清晰地表达自己的见解。

本节课在学完例6的时候,就让学生对积的近似数的求法进行总结,发现很多学生虽掌握了知识,但却无法用语言清晰地表述出来。因此通过巩固练习后,我让学生进行小组讨论和交流,学生在尝试总结的过程中互相学习,互相促进,第二次进行表达时,可见大部分学生能大胆而且准确地对积的近似数的求法进行总结。大大激发了学生成功的体验。

教无定法,贵在得法。作为一名一线教师,我们总是经常要面对不同的学生个体与群体,因此这就要求教师要随时根据学生的实际情况,设计出符合学生学情水平的教学流程,真正让学生学有所感,学有所获。

篇10:积的近似数教学反思

学生在四年级已掌握了求数的近似值的知识和小数乘法,因此这节课的重点是让学生在求出积之后,能够根据题目要求或者现实需要,把积保留若干位小数,所以这节课更多的是让学生了解根据客观生活需要对于乘积进行位数保留。

由于之前已经学习了相关的近似值的知识,所以计算问题我列在了次位,在计算过程中,我注重让学生培养审题能力,尤其是应用题的审题。只有拥有良好的思考问题的能力才能更好的解决问题,能力比问题的对错更有意义。

在上交作业的时候,我发现部分同学不能及时完成作业,于是我分析了原因。经过我的调查我发现,一部分同学是因为基础较差,在计算过程中耗时较长,因此不能及时完成作业,为此,我为其安排了成绩较好的同学为其提供辅导,这种一帮一的做法还是有一定效果的。另一部分同学则是属于比较懒惰,贪玩,自制力较差。对于此类同学,我安排其四周同学轮流对其进行监督,如果不能及时完成作业则不允许其随便出去玩耍,通过一段时间的监督,这部分同学的表现也有了很大改善。对于每位同学只有不放弃,才能让他们得到更好的发展。

篇11:积的近似数教学设计

积的近似数教学设计

教学内容:义务教育课程标准实验教科书人教版数学五年级上册第10页例6及练习二相关练习。

教学目标:

1懂得求积的近似数的必要性,掌握用“四舍五入”法取积的近似数。

2利用已有知识经验,学会根据题目要求与实际需要求积的近似数;培养自主探索和迁移类推能力。

3感受数学与实际生活的联系,逐步养成在生活中发现数学问题的意识和习惯;渗透人类与动物和谐相处的育人理念。

教学过程:

一、复习旧知,导入新课

1复习求一个小数的近似数。

师:同学们已经学过求一个小数的近似数,请大家按要求写出下表中小数的近似数。

小结:求小数的近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。

2导入新课。

师:在现实生活中,许多小数并不一定都要知道它们的准确数,而只需要知道它们的近似数就可以了。同样,在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,只要根据需要求出积的近似数就可以了。今天,我们一起来学习求积的近似数。(板书课题:积的近似数)

(设计意图:由于求积的近似数所用的方法同求一个小数的近似数的方法完全相同,因此在教学新知前,组织学生复习、练习,让他们回忆求一个小数的近似数的方法,目的是为自主探索求积的近似数做好准备。所以,从求一个小数的近似数引出求积的近似数,过渡自然、顺理成章。)

二、自主探索,学习新知

1创设情境。

投影课本例6主题图,教师讲述故事:一天晚上,一个商店里的钱物被盗窃,为了侦破这起盗窃案,抓获犯罪嫌疑人,某县公安干警随即带了一只警犬前往犯罪嫌疑人躲藏的地点。到达后警犬仔细搜索,突然,警犬大声叫喊:“坏蛋,看你往哪儿跑!”警犬飞速扑向草丛里躲藏的犯罪嫌疑人。结果,公安干警很快就抓到了这起盗窃案的犯罪嫌疑人。

2问题质疑。

师:同学们,为什么警犬能很快帮助警察抓获犯罪嫌疑人?你们知道吗?谁来说一说。

根据学生的回答,教师指出:因为狗的嗅觉很灵敏,狗的嗅觉细胞数量比人多得多,狗能利用它十分灵敏的嗅觉闻出坏蛋身上的气味。在现实生活中,动物是人类的好朋友,我们要保护动物,保护动物生存的环境。

3教学例6。

(1)呈现信息:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。

(2)引导提问。

根据学生的提问,教师板书:狗的嗅觉细胞约有多少亿个?(得数保留一位小数。)

(3)引导列算式。求0.049亿的45倍,就是求45个0.049亿是多少,用乘法计算(教师板书):0.049×45。

(4)学生独立完成求积的近似数。

当学生算出“0.049×45=2.205”后,提问:“题目要求保留一位小数,如何求积的近似数呢?”先让每个学生独立求出2205的近似数(指名板演),然后组织小组讨论交流:怎样保留积的一位小数?最后请板演的学生解释取近似数的过程和理由,全体学生对他的板演过程和解释作出评价。正确的计算过程如下:

0.049×45=22.05≈2.2(亿个)

(5)反馈、评价。引导学生反馈、评价自己的计算过程、结果是否正确,更正自己做错的地方。

(6)小结:求2.205这个积保留一位小数的近似数,要看小数点后第二位,因为积的十分位上的数是0,0<5,所以要舍去小数部分的0和5,积的近似数约是2.2。由于求得的结果是近似数,所以在横式中要用约等号“≈”。

(设计意图:教材主题图设计“警犬抓坏蛋”的情节对学生很有吸引力。创设警犬侦破盗窃案的`故事情境,激活学生的求知欲。通过引导质疑,引出人和狗的嗅觉细胞的有关信息,让学生提出问题、列式计算,自主探索求积的近似数的方法。通过交流研讨、反馈、评价、更正错误,提升学生的认知能力。同时渗透人类与动物和谐相处的思想教育。)

4拓展延伸。

师:同学们,有些应用问题取近似数时,还要联系实际想一想。下面这道题的答案没有要求保留几位小数,应保留几位小数才合理呢?

出示:小丽家上个月的用水量是1685吨,每吨水的价格是25元。小丽家上个月应付水费多少元?

(1)学生独立列式计算。1685×25=42125≈4213(元)

(2)讨论交流:这道题为什么要保留两位小数?

(3)小结:由于是计算钱数,人民币最小的单位是分,应精确到分(百分位),所以将计算结果保留两位小数是合理的。根据“四舍五入”法把百分位后面的数省略,千分位上的数是5,向百分位进1,得到近似数4213。

5总结求积的近似数的方法。

在实际应用中,小数乘得的积往往不需要保留很多的小数位数,这时可以根据需要或题目要求取积的近似数。取近似数的一般方法是:保留整数,就看第一位小数是几;保留一位小数,就看第二位小数是几;保留两位小数,就看第三位小数是几……然后按“四舍五入”法保留小数位数。

三、巩固练习,提高能力

1、按要求完成下面各题

准确得数

保留整数

保留一位

小 数

保留二位

小 数

5.25x4.28

0.26x5.9

2计算下面各题。

(1)0.8×0.9(得数保留一位小数)

(2)0.56×1.4(得数保留两位小数)

3解答下面各题。

(1)一幢大楼有26层,每层高284米。这幢大楼约高多少米?(得数保留整数)

(2)一块长方形菜地,长124米,宽56米。这块菜地的面积是多少平方米?(得数保留一位小数)

篇12:《积的近似数》教学反思

《 积的近似数》教学反思

学生对本课的知识点并不陌生,但是,“积的近似数”这节课的内容虽然简单,但比较枯燥,我首先从与学生的谈话中抓住他们的心理,并通过计算机播放的动画片吸引学生的注意力,调动他们的学习兴趣,自然引出“四舍五入”。

在接下来的教学中,我始终以数学学习的组织者、引导者和合作者的角色出现在教学活动中,给学生提供充分探索的空间和时间,多注意让学生互相交流,多让学生想想“为什么?”说说“为什么?”,培养他们的思维能力和表达能力。

在练习的设计中,我注意了习题的形式多样,难易适当,既巩固了本课所学知识,又培养了学生的`学习能力,进一步体现了数学来源于生活,又应用于生活的教育理念。

篇13:积的近似数教学反思

这一课是在学生四年级已掌握了求数的近似值的知识和前面学习了小数乘法之后进行的,因此这节课的重点不是如何用四舍五入求一个数的近似数,而是让学生在求出积之后,能够根据题目要求或者现实需要,把积保留若干位小数,所以这节课我想应该体现数学“源于生活,用于生活”的'思想,让学生结合数学情景,明白“求《积的近似数》”是生活实际的需要,在生活中有着广泛地应用。

本节课关注了学生已有的知识基础,通过唤醒环节使学生忆起“四舍五入”是什么。并在此基础上开始了新的学习。然后通过学生的自主读题、读图,并用自己的话讲述题意、图意,自主找到解决问题的方法算出积,并从中了解到狗的嗅觉很敏锐。再让学生运用自己以往的知识基础根据题目要求,独立的求出,并解释取近似数的过程和理由。在这个解决问题的情境中,学生始终是问题情境的主动参与者,我做到只是根据学生随时出现的问题加以针对性的指导,在计算过程中注重让学生自主思考,先尝试自己解决,并进而在交流中加深理解、达成共识(积应保留几位小数),讨论的焦点始终关注 “积应该保留几位小数”上,再进而能正确运用于实际生活中。这样,学生便在交流互动中,自主掌握求积的近似数的方法。

篇14:《积的近似数》教学反思

上周五学生放学后,老师们坐在一起针对“先学后教”的教学模式在操作过程中的困惑与困难进行了探讨,牛主任的话给了我很大的启发――不能完全抛开情境,教学模式也要针对各种不同课型有所改变,不要完全被导学案范例框住。只要本着“学生是课堂的主体,学生能学会的老师不教”的原则,就可以了。

昨天我们学习《积的近似数》,我觉得这节内容很简单,所以课前没有做任何准备。上课伊始,我问孩子们:“孩子们,你们认为,是人的嗅觉灵敏,还是狗的嗅觉灵敏呢?”“狗的嗅觉灵敏”孩子们异口同声。然后我在黑板上写下了“人的嗅觉细胞有0.049亿个,狗的嗅觉细胞是人的嗅觉细胞的45倍。”并随口问道,“你知道狗的嗅觉细胞有多少亿个吗?”孩子们马上动笔算起来,我让两名后进生来黑板板演。孩子们计算很准,速度也很快。全班只有5个孩子算错。然后我在问题里加了“大约”两个字,题后加了括号,要求保留一位小数。大约三分之二的学生马上就有了结果,兴奋地举起了小手。我找了一名没有举手的孩子说出了结果,孩子们都赞同这个结果。然后我又组织孩子们在小组内说说,该怎么求积的近似数。不足2分钟,孩子们都美滋滋地坐好了。又找了几个后进生汇报,虽然语言组织不太好,但大家也都能听明白她的意思,看来学习效果还不错。接着让学生总结本节课的内容,板书课题,然后做练习巩固。课后反思有以下几点:

(1) 学习内容比较简单,学起来比较轻松。

(2)课前的情境也起到了激趣作用,调动了学习的积极性与主动性。

(3) 评级机制跟得上,小组评比不仅调动了学生的学习积极性,而且促使优等生主动帮助组内的学困生,(我给他们讲过短板效应,并且经常提醒她们记住短板效应)学习的氛围浓厚,学习效果也好。开学一周以来,这节课是学生合作学习(主要是优等生帮助学困生)面积最大的,效果最好的。我已经将各组评比表张贴上墙,希望它能起到应有的作用,促进良好学风的形成。

篇15:五年级《积的近似数》练习题

五年级《积的近似数》练习题

一、填空。

1.5.9628保留整数是;保留到十分位是();保留两位小数是();保留三位小数是()。

2.求一个小数的近似数,如果保留三位小数,要看小数第()位。

3.7.5×0.83的`积是(),保留两位小数后约是()。

4.一个两位小数用四舍五入法保留一位小数后得到4.0,这个数最大可能是(),最小可能是()。

二、判断题。(对的打√,错的打×)

1.8.985精确到百分位是8.98。()

2.近似值1.0和1不但大小相等,精确度也一样。()

3.一个自然数乘小数,积一定比这个自然数小。()

4.两个数的积保留两位小数的近似值是2.16,这个准确数可能是2.156()

三、计算

1.得数保留一位小数。

4.58×30.9×0.50.37×2.4

2.得数保留两位小数。

55.5×0.5057.728×3.334.3×0.23

四、解决问题

1.蒙古牛一般体重约320千克,草原红牛体重约是蒙古牛体重的1.32倍,草原红牛的体重约是多少千克?(得数保留整数)

2.小王、小林两人共同生产一批零件,小王每小时生产48.5个,小林每小时生产45个,小王在路中因为修理机器耽误了一小时,6小时后,这批零件全部生产完,这批零件共约有多少个?

篇16:积的近似数教学反思

在准备《积的`近似数》这节课中,我设计了以下这几个环节:

1、复习数位顺序表

求积的近似数的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习:

(1)我首先考虑到学困生学习基础较弱,他们可能忘记小数点左右两边的数位,这样如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位吗?通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。

(2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识。建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说是有利的。

2、设计多种形式的巩固练习。

不同形式的练习有助于学生从各个角度去理解知识,学会用适当的策略去解决问题。同时练习的难易程度也能在一定程度上让学习层次不同的学生得到有效的发展,增强学生的应用意识,激发学生积极学习数学的情感。

3、让学生在合作交流中,学会清晰地表达自己的见解。

本节课在学完例6的时候,就让学生对积的近似数的求法进行总结,发现很多学生虽掌握了知识,但却无法用语言清晰地表述出来。因此通过巩固练习后,我让学生进行小组讨论和交流,学生在尝试总结的过程中互相学习,互相促进。第二次进行表达时,可见大部分学生能大胆而且准确地对积的近似数的求法进行总结,大大激发了学生成功的体验。

教无定法,贵在得法。作为一名一线教师,我们总是经常要面对不同的学生个体与群体,因此这就要求教师要随时根据学生的实际情况,设计出符合学生学情水平的教学流程,真正让学生学有所感,学有所获。

篇17:四年级近似数教案

关于四年级近似数教案

一、设计理念: 培养学生收集数据、归纳总结知识和解决实际问题的能力。

二、教学内容: 北师大版11——12页《近似数》

三、学情与教材分析

近似数是在学生学习了本单元亿以内数的认识、读写和大数的比较和改写的基础上进行学习的,使学生进一步体会什么是近似数以及怎样求一个数的近似数,在本节知识学习中学生最容易出问题的环节是近似数的求法(位数的确定,是舍还是入),特别是需要进位时,前面是“9“的连续进位,应重视数位的确定和数字的入舍的教学。

四、教学目标:

1、结合具体情境使学生理解近似数在实际生活中的作用,能用四舍五入法求一个数的近似数。

2、提高学生收集信息的能力和解决实际问题的能力。

3、培养学生的数感,感受数学与生活的密切联系。

五、教学重点、难点:

1、掌握用“四舍五入“法求一个数的近似数的方法。

2、正确进行近似数的改写。

六、教学关键: 找准数位,看清入舍,注意约等号。

七、教学准备: 课前收集的数据资料

八、教学过程:

(一)、复习:

读出下面各数,并把它们改写成以“万”或“亿”为单位的数。20500000 1000000

(二)引入新课:

同学们,在生活中我们经常遇到和使用近似数。你注意过吗?今天我们就来学习习近平似数。

(三)教学流程:

1、认识近似数:

(1)明确准确数和近似数。

师:同学们说一说你家里有几口人?我们这个班一共有多少同学?你们小组又有几个同学呢?这些数都是准确数吗?

师:那么我们伟大的祖国幅员辽阔,人口众多,哪位同学知道我国现在的`人口有多少呢?我国的国土面积是多少呢?(生答)

师: 13亿是一个准确数吗?960万平方千米呢?

这样的数又是什么数呢?

点拨:像你家里有多少人,班里有多少同学等这样的数就是准确数。

像我国人口大约有13亿,我国国土面积大约有960万平方千米,这样的数就是近似数,一般来说近似数前面都要带上“大约”两个字。

(2)准确数与近似数的判别。

①学生以小组为单位把自己收集的数据按照准确数和近似数进行分类,并讨论这些数据所表示的实际意义。

②小组汇报,交流。

2、求一个数的近似数:

提问:我们找到了这么多近似数,在生活中,人们经常使用哪些方法得到一个数的近似数呢?(学生根据生活经验思考、发言)同学们提到用四舍五入法可以得到一个数的近似数,那么我们怎样理解四舍五入呢?怎样用四舍五入法求一个数的近似数呢?你愿意尝试一下吗?

请同学们打开课本11页看“填一填 说一说”

出示:某市在校学生今年共植树148264棵。

(1)四舍五入到十位:约148260棵;

(2)四舍五入到百位:约148300棵;

观察第一组数据小组讨论:①原数的个位是几?四舍五入后是几?它的十位有变化吗?说明什么?

观察第二组数据小组讨论:②原数的十位是几?四舍五入后十位是几?它的百位发生了什么变化?说明什么?

篇18:积的近似数教学设计人教版

教学内容:人教版教材P10页例6及P13页练习二第1、2、3题

教学目标:

知识与技能:理解积的近似值,掌握求小数乘法的积的近似值的方法。

过程与方法:经历求小数乘法的积的近似值的过程,体验迁移学习的方法。

情感态度与价值观:在学习活动中,激发学生的学习兴趣,体验知识源于实际生活的思想

教学重点:用“四舍五入”法取积是小数的近似值的一般方法。

教学难点:根据题目要求与实际需要取积的近似值。

教法与学法:

教法:创设情境,质疑引导

学法:小组合作,运用旧知迁移

教学准备:口算卡

教学过程:

一、复习引入

(1)口算。

1.2×0.3= 0.7×0.5= 0.21×0.8= 1-0.82= 1.3+0.74=

(2)用“四舍五入”法求出每个小数的近似数。(多媒体出示)

保留整数

保留一位小数

保留两位小数

1.436

0.835

6.574

1.994

思考并回答:(根据学生的回答填空)

怎样用“四舍五入”法将这些小数保留整数、一位小数或两位小数,取它们的近似值?

小结:求小数的近似数,可以用“四舍五入”法。即要看精确数位的下一位是几,如果是4或比4小,就把尾数舍去,如果是5或比5大,就把尾数舍去,然后在精确的数位上加上1。

(3)揭题谈话:在实际应用中,小数乘法得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五入”法保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二.探究新知

(1)创设情境。

教师:同学们,你们知道什么动物和嗅觉最灵敏吗?(学生回答:狗)所以人们常用狗来帮助侦探、看家。

教师出示教材第10页的例6的主题图。

教师:这幅图画上,你看到了什么?学生描述图画上的内容。

教师:是啊!你看狗是多么勇敢的动物,它敢把持刀的坏人抓住,我们也要有这种敢于与坏人作斗争的精神。它是怎么发现坏人的呢?

(2)教师投影出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍。狗约有多少亿个嗅觉细胞?(得数保留一位小数)

学生读题,理解题意。

①怎样计算狗约有多少亿个嗅觉细胞呢?(提示:实际是要求0.049的45倍是多少)

学生思考后,在练习本上独立列式解答,教师指名学生板演。

0.049×45

0 . 0 4 9

× 4 5

2 4 5

1 9 6

2. 2 0 5

②学生思考:保留一位小数应该怎么做?

组织学生在小组中讨论,说一说取积的近似值的方法,然后指名汇报。

学生汇报时可能会说出:要保留一位小数,看百分位上是几,如果满5就舍去后向前一位进1,如果比5小,就直接舍去,2.205的百分位是0,比5小,所以舍去后面的0和5,保留一拉小数,约等于2.2.

③教师根据学生的汇报,完成板书答题。

0.049×45≈2.2(亿个)

(4)拓展:

教师:如果题目要求保留两位小数,怎样取它的近似值?

学生在小组中议一议,相互说说保留两位小数取近似值的方法:看千分位上是几,千分位上是5,所以舍去后要向前一位进1,结果是2.21。

三、巩固应用

(1)教材第10页“做一做”及P13页练习二第1题

学生独立练习后,在小组中相互交流。教师点名学生演板,集体更正。

(2)教师出示:如果两个因数的积保留两位小数的近似值是3.58,准确的值可能是下面哪个数?

3.059 3.578 3.574 3.583 3.585

学生独立思考后,在小组中讨论,使学生明确:准确值可能在3.575到3.584之间。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。