“lovesbug”通过精心收集,向本站投稿了6篇高考理科数学考试大纲,这里小编给大家分享一些高考理科数学考试大纲,方便大家学习。

篇1:高考理科数学考试大纲
Ⅰ 考核目标与要求
根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.
一、知识要求
知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.
对知识的要求依次是了解、理解、掌握三个层次.
1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.
3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.
2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.
抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.
3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.
4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.
运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.
5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.
数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.
6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.
1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.
2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.
3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.
4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.
5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.
数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
Ⅱ 考试范围与要求
本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的 “坐标系与参数方程”“不等式选讲”等2个专题.
必考内容
(一)集合
1.集合的含义与表示
(1)了解集合的含义、元素与集合的属于关系.
(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.
(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用韦恩(Venn)图表达集合的关系及运算.
(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)
1.函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用.
(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.
(5)会运用函数图像理解和研究函数的性质.
2.指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.
(4)知道指数函数是一类重要的函数模型.
3.对数函数
(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.
(3)知道对数函数是一类重要的函数模型.
4.幂函数
(1)了解幂函数的概念.
5.函数与方程
(1)结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
(2)根据具体函数的图像,能够用二分法求相应方程的近似解.
6.函数模型及其应用
(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
(三) 立体几何初步
1.空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).
(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.
2.点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.
? 公理2:过不在同一条直线上的三点,有且只有一个平面.
? 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
? 公理4:平行于同一条直线的两条直线互相平行.
? 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理.
? 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
? 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
? 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.
? 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明.
? 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.
? 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
? 垂直于同一个平面的两条直线平行.
? 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
2.圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.
(3)能用直线和圆的方程解决一些简单的问题.
(4)初步了解用代数方法处理几何问题的思想.
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(2)会推导空间两点间的距离公式.
(五) 算法初步
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
2.基本算法语句
理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(六) 统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差.
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.
3.变量的相关性
(1)会做两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
(七) 概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(八) 基本初等函数Ⅱ(三角函数)
1.任意角的概念、弧度制
(1)了解任意角的概念.
(2)了解弧度制的概念,能进行弧度与角度的互化.
2. 三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义.
(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.
(九)平面向量
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景.
(2)理解平面向量的概念,理解两个向量相等的含义.
(3)理解向量的几何表示.
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
(3)了解向量线性运算的性质及其几何意义.
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义.
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义.
(2)了解平面向量的数量积与向量投影的关系.
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(十) 三角恒等变换
1.和与差的三角函数公式
(1)会用向量的数量积推导出两角差的余弦公式.
(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.
(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
(十一) 解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
(十二) 数列
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类函数.
2.等差数列、等比数列
(1)理解等差数列、等比数列的概念.
(2)掌握等差数列、等比数列的通项公式与前 n项和公式.
(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
(4)了解等差数列与一次函数、等比数列与指数函数的关系.
(十三) 不等式
1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3.二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的最大(小)值问题.
(十四) 常用逻辑用语
1.命题及其关系
(1)理解命题的概念.
(2)了解“若 p则 q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3)理解必要条件、充分条件与充要条件的意义.
2.简单的逻辑联结词
了解逻辑联结词“或”“且”“非”的含义.
3.全称量词与存在量词
(1)理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
(十五) 圆锥曲线与方程
1.圆锥曲线
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.
(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.
(4)了解圆锥曲线的简单应用.
(5)理解数形结合的思想.
2.曲线与方程
了解方程的曲线与曲线的方程的对应关系.
(十六) 空间向量与立体几何
1.空间向量及其运算
(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.
(2)掌握空间向量的线性运算及其坐标表示.
(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.
2.空间向量的应用
(1)理解直线的方向向量与平面的法向量.
(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.
(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).
(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.
(十七) 导数及其应用
1.导数概念及其几何意义
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
2.导数的运算
3.导数在研究函数中的应用
(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
4.生活中的优化问题
会利用导数解决某些实际问题.
5.定积分与微积分基本定理
(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.
(2)了解微积分基本定理的含义.
(十八) 推理与证明
1.合情推理与演绎推理
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
(3)了解合情推理和演绎推理之间的联系和差异.
2.直接证明与间接证明
(1)了解直接证明的两种基本方法――分析法和综合法;了解分析法和综合法的思考过程、特点.
(2)了解间接证明的一种基本方法――反证法;了解反证法的思考过程、特点.
3.数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(十九) 数系的扩充与复数的引入
1.复数的概念
(1)理解复数的基本概念.
(2)理解复数相等的充要条件.
(3)了解复数的代数表示法及其几何意义.
2.复数的四则运算
(1)会进行复数代数形式的四则运算.
(2)了解复数代数形式的加、减运算的几何意义.
(二十) 计数原理
1.分类加法计数原理、分步乘法计数原理
(1)理解分类加法计数原理和分步乘法计数原理.
(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
2.排列与组合
(1)理解排列、组合的概念.
(2)能利用计数原理推导排列数公式、组合数公式.
(3)能解决简单的实际问题.
3.二项式定理
(1)能用计数原理证明二项式定理.
(2)会用二项式定理解决与二项展开式有关的简单问题.
(二十一) 概率与统计
1.概率
(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.
(2)理解超几何分布及其导出过程,并能进行简单的应用.
(3)了解条件概率和两个事件相互独立的概念,理解 n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.
(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.
(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.
2.统计案例
了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.
(1)独立性检验
了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.
(2)回归分析
了解回归分析的基本思想、方法及其简单应用.
选考内容
(一) 坐标系与参数方程
1.坐标系
(1)理解坐标系的作用.
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.
(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.
2.参数方程
(1)了解参数方程,了解参数的意义.
(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.
(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.
(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.
(二) 不等式选讲
1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:
2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.
3.会用参数配方法讨论柯西不等式的一般情形:
4.会用向量递归方法讨论排序不等式.
5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.
6.会用数学归纳法证明伯努利不等式:
了解当n为大于1的实数时伯努利不等式也成立.
7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.
8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.
篇2:高考数学考试大纲
一、考试范围和要求
数学考试旨在测试中等职业学校学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学的数学知识、思想及方法分析问题和解决问题的能力。
考试内容包括代数、三角、平面解析几何、立体几何、概率与统计初步五部分。
考试中允许使用函数型计算器。推荐使用CASIO fx一82MS 函数型计算器、北雁牌CZ-1206H 函数型计算器.
考试内容的知识要求和能力要求作如下说明。
基本技能:掌握计算技能,掌握计算工具使用技能和数据处理技能。
基本方法:掌握待定系数法、配方法、坐标法。
运算能力:理解算理,会根据概念、定义、定理、法则、公式进行正确计算和变形,能正确分析条件,寻求合理、简捷的运算方法。
逻辑思维能力:能依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题有条理地进行思考、判断、推理和求解,并能够准确、清晰、有条理地进行表i针对不同的问题(需求),会选择合适的模型(模式)。
空间想象能力:能依据文字、语言描述或较简单的几何体及其组合,想象相应的空间图形,能够在基本图形中找出基本元素及其位置关系,或根据条件画出正确图形,并能对图形进行分解、组合、变形。
分析问题和解决问题的能力:能阅读、理解对问题进行陈述的材料,能综合应用所学数学知识、数学思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。
第一部分 代 数
1.集合
集合的概念,集合的表示法,集合之间的关系,集合的基本运算,子集与推出的关系。
要求:
(1)理解集合的概念,掌握集合的表示法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算。
(2)理解符号的含义,并能用这些符号表示元素与集合、集合与集合、命题与命题之间的关系。
(3)理解子集与推出的关系,能正确地区分充分、必要、充要条件。
2.方程与不等式
配方法,一元二次方程的解法,实数的大小,不等式的性质与证明,区间,含有绝对值的不等式的解法,一元二次不等式的解法。
要求:
(1)掌握配方法,会用配方法解决有关问题。
(2)会解一元二次方程。
(3)理解不等式的性质,会用比较法证明简单不等式。
(4)会解一元一次不等式(组)。
(5)会解形如 |ax+b| I≥c或|ax+6 l
(6)会解一元二次不等式,会用区间表示不等式的解集。
(7)能利用不等式的知识解决有关的实际问题。
3.函数
函数的概念,函数的表示方法,函数的单调性、奇偶性。
分段函数,一次函数、二次函数的图像和性质。
函数的实际应用。
要求:
(1)理解函数的概念及其表示法,会求一些常见函数的定义域。
(2)理解函数符号厂f(x)的含义,会由厂f(x)的表达式求出厂f(ax+b)的表达式。
(3)理解函数的单调性、奇偶性的定义,掌握增函数、减函数及奇函数、偶函数的图像特征。
(4)理解分段函数的概念。
(5)理解二次函数的概念,掌握二次函数的图像和性质。
(6)会求二次函数的解析式,会求二次函数的最值。
(7)能运用函数知识解决简单的实际问题。
4.指数函数与对数函数
指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。
指数函数的概念,指数函数的图像和性质。
对数的概念,对数的性质与运算法则。
对数函数的概念,对数函数的图像和性质。
要求:
(1)掌握实数指数幂的运算法则,能利用计算器求实数指数幂的值。
(2)理解对数的概念,理解对数的性质和运算法则,能利用计算器求对数值。
(3)理解指数函数、对数函数的概念,掌握其图像和性质。
(4)能运用指数函数、对数函数的知识解决有关问题。
5.数列
数列的概念。
等差数列及其通项公式,等差中项,等差数列前 n 项和公式。
等比数列及其通项公式,等比中项,等比数列前 n 项和公式。
要求:
(1)理解数列概念和数列通项公式的意义。
(2)掌握等差数列和等差中项的概念,掌握等差数列的通项公式及前 n 项和公式
(3)掌握等比数列和等比中项的概念,掌握等比数列的通项公式及前 n 项和公式。
(4)能利用等差数列和等比数列的知识,解决简单的实际问题。
6.平面向量
向量的概念,向量的线性运算。
向量直角坐标的概念,向量坐标与点坐标之间的关系,向量的直角坐标运算,中点式,距离公式。
向量夹角的定义,向量的内积,两向量垂直、平行的条件。
要求:
(1)理解向量的概念,会正确进行向量的线性运算(加法、减法和数乘向量)。
(2)掌握向量的直角坐标及其与点坐标之间的关系,掌握向量的直角坐标运算。
(3)掌握两向量垂直、平行的条件。
(4)掌握线段中点坐标计算公式、两点间的距离公式。
(5)掌握向量夹角的定义,向量内积的定义、性质及其运算,掌握向量内积的直角坐标运算。
(6)能利用向量的知识解决相关问题。
7.逻辑用语
命题、量词、逻辑联结词。
要求:
(1)了解命题的有关概念。
(2)了解量词的有关概念,理解全称量词和存在量词的意义,并会用相应的符号表示。
(3)理解逻辑联结词“且”、“或”、“非”的意义。
(4)理解符号的含义。
8.排列、组合与二项式定理
分类计数原理与分步计数原理。
排列的概念,排列数公式。
组合的概念,组合数公式及性质。
二项式定理,二项式系数的性质。
要求:
(1)掌握分类计数原理及分步计数原理,会用这两个原理解决一些较简单的问题。
(2)理解排列和排列数的意义,会用排列数公式计算简单的排列问题。
(3)理解组合和组合数的意义及组合数的性质,会用组合数公式计算简单的组合问题。
(4)理解二项式定理,理解二项式系数的性质。
第二部分 三 角
角的概念的推广,弧度制。
任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。
三角函数诱导公式。
正弦函数、余弦函数的图像和性质,正弦型函数的图像和性质。
已知三角函数值求指定范围内的角。
和角公式,倍角公式。 。
正弦定理、余弦定理及三角形的面积公式。
三角计算及应用。
要求:
(1)了解终边相同的角的集合。
(2)理解弧度的意义,掌握弧度和角度的互化。
(3)理解任意角三角函数的定义,掌握三角函数在各象限的符号,掌握同角三角函数间的基本关系式。
(4)会用诱导公式化简三角函数式。
(5)掌握正弦函数的图像和性质,理解余弦函数的图像和性质。
(6)掌握正弦型函数的图像和性质(定义域、值域、周期性),会用“五点法”画正弦型函数的简图。
(7)会用计算器求三角函数值,会由三角函数(正弦和余弦)值求出指定范围内的角。
(8)掌握和角公式与倍角公式,会用它们进行计算、化简和证明。
(9)会求函数y=f(sinx)的最值。
(10)掌握正弦定理和余弦定理,会根据已知条件求三角形的边、角及面积。
(11)能综合运用三角知识解决简单的实际应用问题。
第三部分平面解析几何
直线的方向向量与法向量的概念,直线的点向式方程及点法式方程。
直线斜率的概念,直线的点斜式方程及斜截式方程。
直线的一般式方程。
两条直线垂直与平行的条件,点到直线的距离。
线性规划问题的有关概念,二元一次不等式(组)表示的区域。
线性规划问题的图解法。
线性规划问题的实际应用。
圆的标准方程和一般方程。
待定系数法。
椭圆的标准方程和性质。
双曲线的标准方程和性质。
抛物线的标准方程和性质。
要求:
(1)理解直线的方向向量和法向量的概念,掌握直线的点向式方程和点法式方程。
(2)了解直线的倾斜角和斜率的概念,会求直线的斜率,掌握直线的点斜式方程
截式方程以及一般式方程。
(3)会求两曲线的交点坐标。
(4)会求点到直线的距离,掌握两条直线平行与垂直的条件。
(5)了解线性约束条件、目标函数、线性目标函数、线性规划的概念。
(6)掌握二元一次不等式(组)表示的区域。
(7)掌握线性规划问题的图解法,并会解决简单的线性规划应用问题。
(8)掌握圆的标准方程和一般方程以及直线与圆的位置关系,能灵活运用它们解决有
关问题。
(9)了解待定系数法的概念,会用待定系数法解决有关问题。
(10)掌握圆锥曲线(椭圆、双曲线、抛物线)的概念、标准方程和性质,能灵用它们解决有关问题。
第四部分 立体几何
多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。
柱体、锥体、球的表面积和体积公式。
平面的表示法,平面的基本性质。
空间直线与直线、直线与平面、平面与平面的位置关系。
直线与平面。平面与平面的两种位置(平行、垂直)关系的判定与性质。
点到平面的距离、直线到平面的距离、平行平面间的距离的概念。
异面直线所成角、直线与平面所成角、二面角的概念。
要求:
(1)了解多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。
(2)掌握柱体、锥体、球的表面积和体积公式,能用公式计算简单组合体的表面积和体积。
(3)了解平面的基本性质。
(4)理解空间直线与直线、直线与平面、平面与平面的位置关系。
(5)理解直线与直线、直线与平面、平面与平面的两种位置(平行、垂直)关系的判定与性质。
(6)了解点到平面的距离、直线到平面的距离、平行平面间的距离的概念,并会解决相关的距离问题。
(7)了解异面直线所成角、直线与平面所成角、二面角的概念,并会解决相关的简单问题。
第五部分 概率与统计初步
样本空间、随机事件、基本事件、古典概型、古典概率的概念,概率的简单性质。
直方图与频率分布,总体与样本,抽样方法(简单的随机抽样、系统抽样、分层抽样)。
总体均值,标准差,用样本均值、标准差估计总体均值、标准差。
要求:
(1)了解样本空间、随机事件、基本事件、古典概型、古典概率的概念及概率的简单性质,会应用古典概率解决一些简单的实际问题。
(2)了解直方图与频率分布,理解总体与样本,了解抽样方法。
(3)理解总体均值、标准差,会用样本均值、标准差估计总体均值、标准差。
(4)能运用概率、统计初步知识解决简单的实际问题。
二、试卷结构
1. 试题内容比例
代数 约50%
三角 约15%
平面解析几何 约20%
立体几何 约10%
概率与统计初步 约5%
2. 试题题型比例
选择题 约50%
填空题、解答题(包括证明题) 约50%
3. 试题难易程度比例
基础知识 约50%
灵活掌握 约30%
综合运用 约20%
[高考数学考试大纲]

篇3:高考数学考试大纲解读
对应这些变化,数学学科也做了相应调整:
1、增加了数学文化的要求。
2、在能力要求内涵方面,增加了基础性、综合性、应用性、创新性的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。
3、在现行考试大纲三个选考模块中删去《几何证明选讲》,其余2个选考模块的内容和范围都不变,考生从《坐标系与参数方程》、《不等式选讲》2个模块中任选1个作答。
总体上,这些变化对20高考数学考试影响不大。基于两个原因:
一是在这次高考考纲修订基本原则 “坚持整体稳定,推进改革创新;优化考试内容,着力提高质量;提前谋篇布局,体现素养导向”中,将“整体稳定”放在了首位。、全国数学2卷就突出了稳中求变,约有80%的试题是稳定的,只有约20%的试题是创新的,年高考仍然还会沿用这种思路命制试卷。
二是近两年高考试卷已先于2020年高考考纲在命题中渗透了一些变化与创新,全国数学2卷最大的变化点是,突出了社会主义核心价值观,强调了中国传统数学文化精髓。在数学文化方面,20高考全国2卷理科数学第8题、文科数学第9题涉及到了我国南宋著名数学家秦九韶提出的多项式求值的算法,20高考全国2卷文、理科数学的第8题涉及到了我国古代数学名著《九章算术》中的“更相减损术”。
这就是说,今年考纲中所提到的新要求、新变化,在两年前的高考中就已经有所体现了,所以2020年高考对我们而言变化不会很大。而第三项变化是选考题由“三选一”变为“二选一”,这将减轻学生的课业负担。
综上,我们可以得出结论,2020年高考命题形式会有一些变化,但整体难度变化不大。针对上述分析,现就2020年高考备考复习提出以下建议:
回归教材至少解决两件事——
通过回归教材重视基础知识、基本技能和基本数学思想方法,进一步强化数学学科核心素养,聚力共性通法。
通过回归教材阅读教材中各章节后面的“阅读与思考”、“探究与发现”和“实习作业”等材料,使学生对教材里中的秦九韶算法与更相减损术,“阅读与思考”中的中外历史上的方程求解、割圆术、海伦和秦九韶、九连环,“探究与发现”中的“杨辉三角”中的一些秘密及祖暅原理与柱体、锥体、球体的体积等中华传统数学文化经典实例有所理解,从中感悟到中国古代数学文化与高中相关数学知识之间的密切联系。
针对高考数学考纲的变化,高中阶段要重视“数学文化”教学。近两年高考已经考了秦九韶多项式求值算法和《九章算术》中的“更相减损术”,预计今年高考试卷可能会有杨辉三角、祖暅原理、割圆术等相关内容出现。
我们要积极挖掘这方面的数学文化背景与高中数学知识的内在联系。任课教师可以参考《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《夏侯阳算经》、《缀术》、《张丘建算经》、《五曹算经》、《五经算术》、《缉古算经》等算经十书及《四元玉鉴》、《算学启蒙》、《数书九章》、《测圆海镜》等古典数学名著,从中选取与高中数学有密切联系的具有代表性的案例,每周挤出一小节时间,让学生感受中国古代数学文化历史背景,进一步体会中国古代数学文化之精髓。
临近高考99天,适度刷题是非常必要的。
(1)整套试卷刷题
前面两条建议是所有考生在老师指导下都必须完成的必修课,而在这一部分要依学生的知识能力基础有所选择地采用不同的复习对策。
省重点及市重点靠前考生刷题要以成套模拟卷为主,频率为3套/周,且在周末对本周刷题或模考过程中发现的错题及自己本身相对薄弱部分的习题进行专项集中强化训练。切记,在刷题过程中,一定要养成归纳总结的习惯,做到自觉地举一反三,多题一解,一题多解,一题优解。
其他考生刷题要将成套模拟卷拆解进行专题训练,可以将数学试卷中的11、12、16、20(2)、21(2)去掉后进行训练,也可以根据自己的实际情况再将9、10、15、20(1)、21(1)、选考题第二问去掉后进行训练,频率为1-2套/周,在刷题过程中,要做到有意识地举一反三,多题一解,一题优解。
走特长的考生在前面的基础上再去掉7、8和剩余所有主观题(大题)第二问后进行训练,频率为1套/周,在刷题过程中,做到举一反三,一题优解。
(2)专项刷题
根据自己的弱项或需加强的项确定专项训练内容,将若干张模拟试卷中同类试题集中训练,如将2至3张模拟试卷中的立体几何题集中在一个时间训练,做完后立即核对修正答案并总结得失,然后再选2至3张模拟试卷重复前面的操作,在一至二周内,使用10至20套模拟卷(或高考卷)进行专项组合训练,这种 “狂轰滥炸”式的集中刷题会收到非常好的效果,当然前提条件是必须做到举一反三,多题一解,一题优解。
究竟选择哪个选考模块做为选考题?这要因人而异,不能一概而论。
基础好的考生应该两个模块都复习,考试时以分值最大化为选择标准。中等生应在老师指导下确定自己的主打选考题,在模拟考试和平时训练时解答主打选考题,每次模考后把另一个选考题做一做,再看看答案,仅此而已,不牵扯更多精力,这是防止在高考中发生不会做或不能完整地做出自己的主打选考题时的应对措施。
基础弱的同学适合现在就确定选考模块,具体确定选考模块方法是,选择第一问经常得高分的选考模块为高考时的选考题。
在复习中,基础好一些的考生不妨试试另一种解题方式——看题不写题,即用眼睛去阅读习题,用脑袋去思考解题,坚决不动笔写题,这对培养阅读能力、训练思维能力都很有益处。
但这么做是有先决条件的:一是考生必须有比较扎实的学习基础,二是所做的习题是某类习题的衍生题(变式题)。做衍生题的最大好处是对相关类型习题的解法有了更深层次的理解,便于对此类方法的掌握与运用,而且还可以将该解法进一步延伸拓展,达到举一反三之功效。
在同类习题中只要有一道题按高考评分标准进行规范书写,其它衍生题则均可以采用看题方式去做题,这既节省了时间,又锻炼了思维能力。
总之,在落实上述五条复习建议基础上,还要不断夯实“三基”,强化学科核心素养,重理解轻死记,重创新轻模仿,落实一日一梳理,一周一总结的学习习惯。
妙招1 多维审视知识结构
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。
我们要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
妙招2 把答案盖住看例题
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己不一定都理解透彻了。所以,在看例题时,把解答盖住,自己去做,做完或做不出来时再去看,这时要想一想:
①自己的解答与正确答案哪里不同?
②是不是哪方面的内容你没有想到?如果是,以后做这一类题的时候该注意什么?
③哪一种方法更好,更适合自己?
经过上面的训练,自己的思维空间会慢慢扩展开,看问题也会更全面。像这一类能在教材中做例题的题目,一定是必须掌握的基础题,做错了一定要把它记到自己的错题本里,标上重点符号,回头多看!
妙招3 研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。
我们要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;
对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。—道题的价值不在于做对、做会,而在于你明白了这题想考你什么。
妙招4 答题少费时多办事
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。
我们不能仅仅满足于答案正确,还要学会优化解题过程。在做解答题时,书写要简明扼要并规范,不要“小题大做”,只要写出“得分点”即可。
妙招5 错一次反思一次
每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,错题本要做到以下3个方面:
①记下错误是什么,最好用红笔划出
②错误原因是什么
③纠正方法及注意事项:根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。
如果我们能将每次考试或练习中出现的错题记录下来并分析,平时利用闲散的时间看看,考前作为复习内容的一项认真查看,那么在考试时发生同样错误的概率将会大大地减少,定能让你学起数学来事半功倍!
妙招6 分析试卷总结经验
每次考试结束试卷发下来,认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类:
①遗憾之错:明明会做,却也做错了的题
②似非之错:记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整……
③无为之错:不会答、瞎猜,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。
原因找到后就请你尽快消除遗憾、弄懂似非、力争有为!
篇4:宁波成人高考数学考试大纲
宁波成人高考数学考试大纲
总要求
本大纲内容包括“高等数学”及“概率论初步”两部分,考生应按本大纲的要求了解或 理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学和多元函数微分学的基 本概念与基本理论;了解或理解“概率论”中古典概型、离散型随机变量及其数字特征的基 本概念与基本国际要闻 学会、掌握或熟练掌握上述各部分的基本方法,应注意各部分知识 的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用 基本概念、基本理论和基本方法正确地判断和证明,准确地计算;能综合运用所学知识分析 并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方 法和运算分为“会”“掌握”和“熟练”三个层次。 、
复习考试内容
一、极限和连续
(1)极限
1.知识范围 数列极限的概念和性质
(1)数列数列极限的定义唯一性有界性四则运算法则夹逼定理,单调有界数列极限存在定理
(2)函数极限的概念和性质 函数在一点处极限的定义,左、右极限及其与极限的关系 χ趋于无穷(χ→∞,χ→+∞, χ→-∞)时函数的极限函数极限的几何意义 唯一性 四则运算法则 夹逼定理
(3)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较。
(4)两个重要极限
sin x lim x = 1 x →0
1 lim 1 + x = e x →∞x
2.要求
(1)了解极限的概念(对极限定义中“ε―N”“ε―δ”“ε―M”的描述不作要求)。掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系, 会进行无穷小量阶的比较(高阶、低阶、同阶和等价) 。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(2)连续
1.知识范围
(1)函数连续的概念 函数在一点处连续的定义 左连续和右连续 函数在一点处连续的充分必要条件 函数的 间断点
(2)函数在一点处连续的性质 连续函数的四则运算 复合函数的连续性
(3)闭区间上连续函数的性质 有界性定理 最大值与最小值定理 介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1) 理解函数在一点处连续与间断的概念, 理解函数在一点处连续与极限存在之间的关系, 掌握函数(含分段函数)在一点处的连续性的判断方法。
(2)会求函数的间断点。
(3)掌握在闭区间上连续函数的性质,会用它们证明一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用函数的连续性求极限。
二、一元函数微分学
(一)导数与微分
1.知识范围
(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义可导与连续的关系
(2)导数的四则运算法则与导数的基本公式
(3)求导方法 复合函数的求导法 隐函数的求导法 对数求导法
(4)高阶导数 高阶导数的定义 高阶导数的计算
(5)微分 微分的定义 微分与导数的关系 微分法则 一阶微分形式不变性
2.要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点 处的导数。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
(4)掌握隐函数的求导法与对数求导法。会求分段函数的导数。
(5)了解高阶导数的概念,会求简单函数的高阶导数。
(6)理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
(二)导数的应用
1.知识范围
(1) 洛必达(L′Hospital)法则
(2) 函数增减性的判定法
(3) 函数极值与极值点最大值与最小值
(4) 曲线的凹凸性、拐点
(5) 曲线的水平渐近线与铅直渐近线
2.要求
(1)熟练掌握用洛必达法则求“
0 ∞ ” “ ” “0∞” “∞―∞”型未定式的极限的方法。 0 ∞
(2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增 减性证明简单的不等式。
(3)理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法, 会求解简单的应用问题。
(4)会判定曲线凹凸性,会求曲线的拐点。
(5)会求曲线的水平渐近线与铅直渐近线。
三、一元函数积分学
(一)不定积分
1.知识范围
(1)不定积分 原函数与不定积分的定义 不定积分的性质
(2)基本积分公式
(3)换元积分法 第一换元法(凑微分法) 第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限形如
2 2 2 2 。 ∫ a x dx、 a + x dx 的三角代换与简单的根式代换) ∫
(4)熟练掌握不定积分的分部积分法
(5)掌握简单有理函数不定积分的计算。
(二)定积分
1.知识范围
(1)定积分的概念 定积分的定义及其几何意义可积条件
(2)定积分的性质
(3)定积分的计算 变上限的定积分牛顿―莱布尼茨(Newton―Leibniz)公式换元积分法分部积分法
(4)无穷区间的广义积分、收敛、发散、计算方法
(5)定积分的应用平面图形的面积、旋转体的体积
2.要求
(1) 理解定积分的概念与几何意义,了解可积的条件。
(2) 掌握定积分的基本性质
(3) 理解变上限的定积分是上限的函数,掌握对变上限定积分求导数的方法。
(4) 熟练掌握牛顿―莱布尼茨公式
(5) 掌握定积分的换元积分法与分部积分法。
(6) 理解无穷区间广义积分的概念,掌握其计算方法。
(7) 掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成 旋转体的体积。
四、多元函数微分学
1.知识范围
(1)多元函数 多元函数的定义 二元函数的定义域 二元函数的几何意义
(2)二元函数的极限与连续的概念
(3)偏导数与全微分 一阶偏导数 二阶偏导数 全微分
(4)复合函数的偏导数 隐函数的偏导数
(5)二元函数的无条件极值和条件极值
2.要求
(1)了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。
(2)了解二元函数的极限与连续的概念。
(3)理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握 二元函数的二阶偏导数的求法,掌握二元函数全微分的求法。
(4)掌握复合函数与隐函数的一阶偏导数的求法。
(5)会求二元函数的无条件极值和条件极值。
(6)会用二元函数的无条件极值及条件极值求解简单的实际问题。
五、概率论初步
1.知识范围
(1)事件及其概率 随机事件 事件的关系及其运算 概率的古典型定义 概率的性质 条件概率事件的独立性
(2)随机变量及其概率分布 随机变量的概念 随机变量的分布函数 离散型随机变量及其概率分布 (3)随机变量的数字特征 离散型随机变量的数学期望 方差 标准差
2.要求
(1) 了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。
(2) 掌握事件之间的关系:包含关系、相等关系、互不相容(或互斥)关系及对立关系。
(3) 理解事件之间并(和) 、交(积) 、差运算的定义,掌握其运算规律。
(4) 理解概率的古典型定义;掌握事件概率的基本性质及事件概率的计算。
(5) 会求事件的条件概念;掌握概率的乘法公式及事件的独立性。
(6) 了解随机变量的概念及其分布函数。
(7) 理解离散型随机变量的定义及其概率分布,掌握概率分布的计算方法。
(8) 会求离散型随机变量的数学期望、方差和标准差。
考试形式及试卷结构
篇5:考研数学考试大纲三次变动
考研数学考试大纲三次变动
考研(课程)大纲是教育部颁发的,指导命题和考生复习的纲领性文件,是命题的根本性依据。它严格划定了各类专业考生应考的范围和难度要求,这也是考生制定计划的依据。所以我们要充分了解考试大纲的每年变动情况,以此来指定有效的复习计划和第二年可能要考的重点内容。考研网为大家历数考研数学大纲进行的3次大的变动,以供考生掌握命题特点。
第一次,全国硕士研究生入学考试数学考试大纲是在原考试大纲的基础上修订而成。修订的原则是保持考试内容、考试要求和试卷结构的基本稳定。现将修订情况说明如下:
一、删去有关近似计算的考试内容和考试要求。
由于目前大多数高等院校开设了“计算方法”课程,近似计算的内容基本上在此课程中讲授,高等数学已基本不再讲授近似计算的内容。同时考虑到随着计算机的广泛普及和应用,近似计算的问题完全可由计算机解决,对考生近似计算的能力已不是研究生入学考试考核的重点。基于以上考虑,新的数学考试大纲中删除了有关近似计算的所有考试内容和考试要求。
(1)数学一中删去一元函数微分学中关于“微分在近似计算中的应用”以及“方程近似解的二分法和切线法”的考试内容和考试要求;一元函数积分学中“定积分的近似计算法”及相应的考试要求;多元函数微分学中关于“全微分在近似计算中的应用”的考试内容和考试要求;无穷级数中的“幂级数在近似计算中的应用”及相应的考试要求;常微分方程考试内容中的“微分方程的幂级数解法”及相应的考试要求;概率论中“会用有关定理近似计算有关随机事件概率”的要求。
(2)数学二中删去一元函数微分学中关于“微分在近似计算中的应用”以及“方程近似解的二分法和切线法”的考试内容和考试要求以及一元函数积分学中“定积分的近似计算法”及相应的考试要求。
二、数学二考试大纲中增加了部分线性代数考试内容,提高了线性代数在试卷中的占分比例,同时将“线性代数初步”更名为“线性代数”。
自考试大纲修订以来,“线性代数初步”作为考试内容已被高校和考生普遍接受,随着新技术的发展,对线性代数内容的深广度的要求越来越高,原数学二线性代数初步的考试内容过少,增加部分考试内容并提高线性代数在数学二试卷中的占分比例是非常必要的。修订的主要内容包括:
(1)在矩阵的考试内容部分增加了“反对称矩阵”、“方阵的幂”、“初等矩阵”。在考试要求部分增加了“了解反对称矩阵的性质”、“初等矩阵的性质”。
(2)把原“线性方程组”分为“向量”和“线性方程组”两部分。在向量部分的考试内容中增加了“等价向量组”,考试要求部分相应增加了“了解向量组等价的概念以及向量组的秩和矩阵秩的关系”
(3)增加了矩阵特征值与特征向量部分。
-考试内容:
矩阵特征值和特征向量的概念、性质及求法相似矩阵的概念和性质矩阵可对角化的充分必要条件和相似对角矩阵。
-考试要求:
理解矩阵特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
了解相似矩阵的概念、性质及矩阵可对角化的充分必要条件。
(4)调整了试卷结构。高等数学由原来的85%改为80%,降低5个百分点,线性代数部分相应提高5个百分点,由原来的15%提高到20%.
三、对数学一、数学二、数学三和数学四考试内容和考试要求中相同数学概念和术语以及表述作了进一步的规范,适当增减一些知识点,对部分考试要求作了调整,使之更加明确。
(1)数学一线性代数部分考试内容基本不变,仅对个别内容的表述方式和个别内容的考试要求作了适当调整。如将“标准正交基”改为“规范正交基”;将“标准规范化”改为“正交规范化”。降低了对“基变换和坐标变换公式”的要求,提高了对“相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件”的要求。
(2)数学三微积分部分仅是做文字上的修改,内容上基本未动。考试要求中明确了会判断函数间断点的类型。线性代数部分近对个别文字作了改动,内容未变。概率论部分明确提出了几何概率的计算,将“二维随机变量及其概率分布”改为“随机变量及其联合概率分布”,增加了“多个独立随机变量函数的`概率分布”的内容。增加了假设检验可能产生的两类错误的计算。
(3)数学四考试大纲的修订保持了原考试大纲的体系,在保持原考试大纲和考试要求基本稳定的前提下,对个别内容和考试要求的表述方式进行了小的调整。在考试内容中删去了与考试要求相重复的个别词语。例如:多元函数微积分学部分,在考试内容中删去了“最大值和最小值定理”而在考试要求中明确提出“了解有界区间上二元连续函数的性质”。在线性代数矩阵部分,删去“单位矩阵、对角矩阵、数量矩阵、三角矩阵和对称矩阵”,而在考试要求中明确了对这些矩阵的要求,并明确了:“了解对称矩阵、反对称矩阵和正交矩阵”。这样,使考生在复习对称矩阵特征值、特征向量的性质时更容易把握考试复习的内容。在微积分部分部分明确了“会判断函数间断点的类型”。在概率论部分考试内容中明确提出了几何概率。在考试要求中明确提出了“会计算几何概率”,将“二维随机变量及其概率分布”改为“随机变量的联合分布”,删去了大数定理的内容。
四、根据修订后的考试内容和考试要求,重新修订了样卷。
第二次,数学考试大纲的修订说明。
1.数学一试卷中概率与数理统计部分增加了“几何型概率”的考试内容和考试要求;在高等数学部分,删除了“两曲线的交角”及“包含两个未知函数的一阶常系数线性微分方程组”的考试内容和考试要求。
2.数学二试卷中线性代数部分增加了“实对称矩阵的特征值、特征向量及相似对角矩阵”的考试内容和考试要求。
3.数学四试试卷中高等数学适当增加了“常微分方程”的考试内容和考试要求。
4.对数学一、数学二、数学三和数学四部分考试内容和考试要求的表述更进一步明确。
5.对数学一、数学二、数学三和数学四考试内容和考试要求中相同数学概念和术语作了进一步的规范。
6.从20起硕士研究生入学统一考试数学试卷的满分调整为150分,根据这项调整重新制订了各卷种的样卷。
第三次,数学考试大纲的修订说明。教育部决定从20起,将原来的数学三、数学四进行整合。整合后称为“数学三”。
数学一(与去年相比无变化)
与全国硕士研究生入学统一考试数学考试大纲完全一样
数学二(与去年相比可以认为无变化)
高等数学部分
多元函数微积分学:考试要求中4.由“会求解一些简单的应用题”改为“并会解决一些简单的应用问题”
线性代数部分
二次型:考试要求中1.由“了解合同变换和合同矩阵的概念”改为“了解合同变换与合同矩阵的概念”
数学三(原数学三四合并,与原数学三相比降低了难度)
微积分部分
无穷级数:考试要求中2.由“理解级数的基本性质及级数收敛的必要条件”改为“了解级数的基本性质及级数收敛的必要条件”,去掉了“会用根值判别法”;
1.由“掌握交错级数的莱布尼茨判别法”改为“了解交错级数的莱布尼茨判别法”;
2.由“掌握ex,sinx,cosx,ln(1+x),(1+x)a麦克劳林展开式”改为“了解ex,sinx,cosx,ln(1+x),(1+x)a麦克劳林展开式”,去掉了“会用它们将简单函数间接展开成幂级数”。
常微分方程与差分方程:考试内容中由“微分方程与差分方程的简单应用”改为“微分方程的简单应用”;
考试要求中4.由“会解自由项为多项式、指数函数、正弦函数、余弦函数以
篇6:高考数学考试技巧
先易后难,在做题的时候遇到稍难的题,果断跳过,先从自己容易着手的做起,后面再回过头来“啃硬骨头”。
在第一次阅览全卷的时候就会心里有数,小题一般信息量较少,运算少,容易拿分,所以在做卷子的时候一定要小题快速拿分,为大题创造一个宽松的时间。
在做题的时候,如果正面思考的时候受阻,可以用逆向思维的方式去思考,往往能得到突破性的进展,多用分析法,从肯定结论中间分步骤分析,找充分条件来反方向证明。从否定结论入手找条件。
高中数学学习技巧
整理知识,分类收藏
把所有的知识都理清楚以后,就可以系统的、逻辑的进行分类,在面对考试的时候思维自然清晰明了,这里建议不要按照课本的章节进行简单的分类。自己先按照自己脑海中的知识点,把自己掌握的的东西梳理出来,最大限度的写出来。然后在对照课本的知识进行补充。添加各种知识点的明细。这样在区分知识点以后还能找到相关联系。知识的连贯性和逻辑性就有了。
分节点来熟记知识,也就说有计划的学习,一口吃不成大胖子,在学习上也是这样,可以把攻克知识点看成一个任务,任务里面量化细节,比如这个知识点在哪个时间里必须掌握,这样在做的时候就有小压力。我始终把握一点,就是发现知识之间的联系并加以运用。
在每类知识点里面发现规律,总结规律,例如:学习函数,我们总结后发现,函数有函数3要素、函数3性质、函数解析3方法,初等函数3模型。原来他们这么整理的存在3特点。那好了,通过对比发现,他们都存在3个特征,那么我们就对函数有了快速了解,马上了然于胸。对每一版块,都总结数字,333或444等,轻松记忆,方便理解。
然后在学习完每章节的时候要及时鼓励自己。努力过,奋斗过,成长过。不要时刻想着高考给自己带来莫须有的压力。真正体会数学带来的其妙逻辑。












