“MainePHG”通过精心收集,向本站投稿了5篇新人教版初一数学复习,下面就是小编给大家分享的新人教版初一数学复习,希望大家喜欢!

新人教版初一数学复习

篇1:新人教版初一数学复习

有理数

一、正数和负数

1、大于0的数叫做正数,在正数前面加一个“—”的数叫做负数,0既不是正数,也不是负数;

2、表示相反意义的量:

盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等

3、正、负数所表示的实际意义:

例题:北京冬季里某天的温度为—3°C~3°C,它的确切含义是什么?这一天北京的温差是多少?吐鲁番盆海拔—155米,世界最高峰珠穆朗玛海拔8848.13米

二、有理数

2.1有理数的分类

2.2数轴

1、定义:用一条直线上的点表示数,这条直线就叫做数轴。

2、满足的条件:

(1)在直线上取一个点表示数0,这个点叫做原点;

(2)通常规定直线从原点向右(或上)为正方向,从原点向左(或下)为负方向;

(3)选取适当的长度为单位长度。

2.3相反数

定义:只有符号不相同的两个数叫做相反数

一般地:a和互为相反数,0的相反数仍然是0。

在正数的前面添加负号,就得到这个正数的相反数;在分数的前面添加负号,就得到这个数的相反数。

2.4绝对值

1、定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣

由定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

(1)当a是正数时,∣a∣=;(2)当a是负数时,∣a∣=;(3)当a=0时,∣a∣=。

2.5比较两个数的大小

(1)正数大于0,0大于负数,正数大于负数;

(2)两个负数,绝对值大的反而小。

三、有理数的加减法

1、加法法则:(1)同号两数相加:取相同的符号,并把绝对值相加;

(2)异号两数相加:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

(3)一个数和零相加:任何数和零相加都等于它本身。

2、加法交换律、结合律

(1)有理数的加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a

(2)有理数的加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)

3、有理数的减法法则:减去一个数,等于加上这个数的相反数:a-b=a+(-b)

四、有理数的乘除法

有理数的乘法法则:

1.两数相乘,同号得正,异号得负,并把它们的绝对值相乘。

2.任何数同0相乘,都得0。

3.几个不等于0的数相乘,积的符号由负因数的个数决定,

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

4.乘法的:交换律、结合律、分配律

有理数的除法法则:

1、除以一个不等于0的数,等于乘上这个数的倒数;

2、两数相除,同号得正,异号得负,并把绝对值相除;

3、0除以任何一个不等于0的数,都是0.

篇2:新人教版初一数学复习

一元方程

3.1 一元方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元方程(linear equation with one unknown)。

注意判断一个方程是否是一元方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;

3)经整理后方程中未知数的次数是1.

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).

2)等式两边同时乘以或除以同一个不为零的数,等式不变.

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

3.2 解一元方程(一)----合并同类项与移项

一般步骤:移项→合并同类项→系数化1;(可以省略部分)

了解无限循环小数化分数的方法,从而证明它是分数,也就是有理数。

3.3 解一元方程(二)----去括号与去分母

一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;

以上是解一元方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用. 因此,解方程时,要根据方程的特点,灵活选择方法. 在解方程时还要注意以下几点:

①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;

②去括号遵从先去小括号,再去中括号,最后去大括号 不要漏乘括号的项;不要弄错符号;

③移项 把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;

④不要丢项合并同类项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.

⑤把方程化成ax=b(a≠0)的形式 字母及其指数不变系数化成1 在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒

3.4 实际问题与一元方程

篇3:新人教版初一数学总复习资料

初一数学总复习资料

第一章 有理数

1.1正数和负数

新人教版初一数学复习以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。

括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。

括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a·(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

初一数学复习方法

一、注重预习,指导自学。

我个人认为,预习应该来说在初中阶段还是占有比较重要的地位的,而在小学阶段一般不那么重视,因此,到了初一大多数学生不会预习,即使预习了,也只是将课文从头到尾读一遍。在指导学生预习时应要求学生做到:一粗读,首先大致浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,多问些“为什么”,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。课堂上带着自己的问题听老师讲课,这样可以有目的的学习,提高课堂的有效时间。

二、认真听讲,会记笔记

课堂听讲很重要,认真听课可以事半功倍。由于课前进行了充分复习,对本节课还有不理解的地方,那么在老师的讲课过程中,看老师是如何讲解这个知识点的,对比一下自己在预习过程自己存在的障碍。

对于自己已经理解的知识点也要认真听课,加深记忆,看老师有什么独到之处,对老师强调的地方更应该引起自己的注意。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”

代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在作笔记时注意:记笔记服从听讲,要掌握记录时机;记要点、记疑问、记解题思路和方法;记小结、记课后思考题。记笔记是为了更好地总结和复习,切忌在课堂上一味抄写老师的板书。

三、先复习后做作业

首先应树立正确的作业观,不要为完成作业而完成作业,作业是为了学生更好地掌握知识,让老师了解学生存在的问题。而许多同学做作业时,通常是拿起题就做,一旦遇到困难了,才又回过头来翻书、查笔记,这是一种不良的习惯。做作业的第一步应是先复习有关的知识。复习时可以采取“过电影”的方式,在头脑中搜索一下课堂上老师所讲解的知识,努力将所学知识回忆起来。若实在回忆不起来,再翻开课本

或笔记阅读对照,通过这种方式将所学知识温习一遍,做到心中有数后再去做作业。做完题后,应该从头到尾仔细浏览一遍,检查一下解题的步骤、思路是否正

初一数学学习方法

一、课前预习方法的指导

初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。在学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,了解新课的重点和难点。二细读,对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便带着问题去听课。通过课前预习能够使学生知道那些地方容易,哪些地方难,使听课变得更有针对性,注意力更集中,从而提高了听课的效率。方法上可采用随课预习或单元预习。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。

二、听课方法的指导

在听课方法的指导方面要处理好“看”、“听”、“思”、“记”的关系。

“看”就是上课要注意观察,观察教师的板书的过程、内容、理解老师所讲的内容。

“听”是学生直接用感官接受知识,应让学生在听的过程中明确:(1)听每节课的学习目的和学习要求;(2)听新知识的引入及知识的形成过程;(3)理解教师对新课的重点、难点的剖析(尤其是预习中的疑问);(4)听例题解法的思路和数学思想方法的体现;

“思”是指学生思考问题。没有思考,就发挥不了学生的主体作用。古人说的好“学而不思则罔。”学生是学习的主人,在课堂上对于老师的讲解,学生不仅仅只是会做,而且要经常思考;在思考方法指导时,应使学生明确:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,要善于大胆提出问题,如:本节课教师为什么要这样讲?这道题为什么要这样做?等等;(3)善思,由听和观察去联想、猜想、归纳;如:23*27=62138*32=121646*44=202473*77=5821上述这些数的计算有什么规律?应如何计算?怎样表征规律?又如何验证呢?(4)树立辩证意识,学会反思。如:73*33=2409又有怎样的规律?可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习。

“记”是指学生记课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要结合教材来记,要掌握记录时机;(2)记要点、记疑问、记易错点、记解题思路和方法、记老师所补充的内容;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。记笔记有助于将知识简化、深化、系统化。

三、完成作业方法的指导

初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的巩固、深化、理解知识的作用。为此在这个环节的学法指导上要求学生每天先浏览教材中所要学习的内容及笔记,回顾课堂讲授的知识、方法,同时熟记公式、定理。然后独立完成作业,解题后再反思。有能力的学生可以适当地进行一题多解,提高自己的发散思维能力。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。作业的书写在一定程度反映了学生的思维水平。经过多年的初一教学,发现初一的学生做到这点很困难,指导时应教会学生(1)如何将文字语言转化为符号语言;(2)如何将推理思考的解题过程用文字书写表达出来;(3)正确地由条件画出图形。刚开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对培养学生的思维能力和学生今后的学习都十分重要。

篇4:新人教版初一下册英语复习知识点

Don’t eat in class.

◆短语归纳

1. on time 准时,按时

2. listen to… 听……

3. in class 在课上

4. be late for 做……迟到

5. have to 不得不

6. be quiet 安静

7. go out 外出

8. do the dishes 清洗餐具

9. make breakfast 做早饭

10. make (one’s) bed 铺床

11. be noisy 吵闹

12. keep one’s hair short 留短发

13. play with sb. 和某人一起玩

14. play the piano 弹钢琴

15. have fun 玩得高兴

16. make rules 制订规则

◆用法集萃

1. Don’t + 动词原形+其他。 不要做某事。

2. help sb. (to) do sth. 帮助某人做某事

3. too many + 可数名词复数 太多的……

4. practice doing sth. 练习做某事

5. be strict with sb. 对某人要求严格

6. be strict in sth. 对某事要求严格

7. leave sth sp. 把某物落在某地

8. keep+宾语+形容词 使……保持某种状态

9. learn to do sth. 学会做某事

10. have to do sth. 不得不做某事

◆典句必背

1. Don’t arrive late for class. 上课不要迟到。

2. Can we bring music players to school? 我们可以带音乐播放器到学校吗?

3. And we always have to wear the school uniform. 并且我们总是不得不穿校服。

4. There are too many rules! 有太多的规则!

5. Don’t leave the dirty dishes in the kitchen! 不要把脏盘子留在厨房里!

6. I have to keep my hair short. 我不得不留短发。

◆话题写作

主题:规则

Dear Tom,

Thanks for your last letter. You want to know the rules in our school. Now let me tell you about them.

We can’t arrive late for class. We can’t talk loudly in class. We should keep quiet. When we meet our teachers on our way, we should say hello to them. We can’t eat or drink in class, and we can’t listen to music or play games in class.

I think we have too many rules. What about yours? Please write and tell me.

Yours,

Li Ming

篇5:初一如何复习数学

一、适当多做题

要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。

二、细心地挖掘概念和公式

很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

三、总结相似的类型题目

当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

四、收集自己的典型错误和不会的题目

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。