“清脑颗粒”通过精心收集,向本站投稿了11篇初中勾股定理课件,下面是小编为大家整理后的初中勾股定理课件,供大家参考借鉴,希望可以帮助您。

初中勾股定理课件

篇1:初中勾股定理课件

初中勾股定理课件

初中勾股定理课件已经为大家准备好啦,老师们,大家可以参考以下内容,准备好教学思路哦!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的.伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏20国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.

问题2:教师板书课题,介绍直角三角形各边的名称。提问:你知道哪些勾股定理的知识?

视学生回答情况确定下步的教学

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点板书:勾三股四弦五等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

布置作业.教材70页2、8题。

六、目标检测设计

1.在等边三角形中边长为10,则该三角形的面积是多少?

【设计意图】综合题,考查等边三角形的三线合一、30度角所对的直角边等于斜边的一半、勾股定理、三角形面积知识;培养学生的转化意识。

2.在一个直角三角形中两边的长为3、4,则第三条边长度是多少?

【设计意图】分类讨论。考查直角三角形的斜边最长及勾股定理。

3、湖中直立一荷花,花朵高水1m整,忽然一阵风吹来,荷花吹离2m处,斜于水面齐,问湖水几许深?

【设计意图】诗情画意的情景呈现数学问题增强美的感受,在愉悦、放松的氛围中感受数学在生活中的作用,体验数学是一门基础学科,增强学好学生的决心。培养学生的数学建模意识,提高解决问题的能力。

篇2:勾股定理免费课件

教材分析:

这节课是九年制义务教育课程标准实验教科书(苏科版),八年级上册第三

章第一节“勾股定理”的第一课时、勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的重要性质,它把三角形有一个直角“形”的特点转化为三边之间的“数”的关系,它是数形结合的典范,它可以解决许多直角三角形中的计算问题、学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解、

教学目标:

1、让学生经历从数到形再由形到数的转化过程,从探求三个正方形面积间的关系转化为三边数量关系的过程、培养学生主动探究意识,发展合理推理能力,体会数形结合思想、

2、能说出勾股定理,并能用勾股定理解决简单问题、

3、在经历数学知识的形成与应用过程中培养学生学习数学的兴趣;感受勾股定理的文化价值、

教学重点:

探索勾股定理的过程,会利用两边长求直角三角形的另一边长、

教学难点:

用割、补法求面积探索勾股定理、

教学方法与教学手段:

采用探究发现式教学,提供适当的问题情境、给学生自主探究交流的空间,引导学生有方向地探索、

教学过程:

(一)创设情境  提出问题

1、同学们,我们已经学过三角形的一些基本知识,如果一个三角形的两条边分别长6和8,你能确定第三边的长吗?你能确定第三边的长的范围吗?

2、如果这两边所夹的角确定了,那么第三边的长确定吗?第三边的长是多少?

3、直角三角形两边长确定了,第三边的长确定吗?如何求第三边的长呢?这节课就让我们一起来探讨这个问题、板书:直角三角形三边数量关系、

(这是对三角形三边的不等关系和三角形全等的判定的回顾,从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标、当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究)

(二)实践探索  猜想归纳

1、(几何画板出示),观察图形,我们以直角三角形ABC三边为边向形外作三个正方形、若将图形①②③④⑤剪下,用它们可以拼一个与正方形ABDE大小一样的正方形吗?

(同桌同学合作拼图)通过拼图,你有什么发现?

(以BC为边的正方形面积与以AC为边的正方形面积的和等于以AB为边的正方形面积)

(拼图活动,引发了学生的猜想,增加了研究的趣味性,锻炼了学生的空间思维能力和动手能力,体现了活动——数学)

2、拼图活动引发我们的灵感,运算推演证实我们的猜想、为了计算面积方便,我们可将这幅图形放在方格纸中、如果每一个小方格的边长记作“1”,请你求出此时三个正方形的面积(SP=9,SQ=16)

你是如何得到的?(可以数,也可以通过正方形面积公式计算得到)

如何求SR?(SR的求法是这节课的难点,这时可让学生先在学案上独立分析,再通过小组交流,最后由小组代表到台前展示)

学生可能提出割、补、平移、旋转四种方法

(旋转这种方法只适用于斜边为整数的情况,没有一般性,而且此时斜边的长还不能求出来.若有学生提出,应提醒学生)

肯定学生的研究成果,进而让学生打开书回顾课本上的提示、从小明、小丽的方法中你能得到什么启发?

(把图形进行“割”和“补“,即把不能利用网格线直接计算面积的图形转化成可以利用网格线直接计算面积的图形、这种思想方法,称为化归思想)

3、变化直角三角形,仿照以上方法计算直角边为5和3的直角三角形中以斜边为边的正方形面积

(这是“割”和“补”思想的再一次应用、让学生感受所学即所用,体验成功的乐趣)

4、通过计算,你发现这三个正方形面积间有什么关系吗?

(SP+SQ=SR,要给学生留有思考时间)

5、利用方格纸,我们方便计算直角边为整数的情况,若直角边为小数时,所得到的正方形面积间也有如上关系吗?

将网格线去掉,利用几何画板中的度量工具可以看到SP+SQ=SR

(利用几何画板的高效性、动态性反映这一过程,让学生体会到更多一般的情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻)

6、我们这节课是探索直角三角形三边数量关系、至此,你对直角三角形三边的数量关系有什么发现?

(面积是边长的平方,面积间的等量关系转化为边长间的等量关系,即直角三角形三边的等量关系:两直角边的平方和等于斜边的平方)

(这一问题的结论是本节课的点睛之笔,应充分让学生总结、交流、表达)

7、用弯曲的手臂形象地表示勾、股、弦的概念,再给出勾股定理,进而给出字母表达式、一段紧张的探索过程之后,播放一段有关勾股历史的录音

(这样既活跃了课堂气氛,又展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感)

(三)学以致用  体验成功

1、完成课本第79-80页练习1、2

(1)求下列直角三角形中未知边的长:

(2)求下列图中未知数x、y、z的值:

在学生回答的基础上,老师规范板书一题、

(在对勾股定理基本应用的基础上,让学生体会知道直角三角形三边中的任意两边,可以求第三边)

(四)课堂小结

学生可以谈本节课的收获,也可以提出本节课的疑问、教师引导学生思考特殊的三角形直角三角形三边有特殊的等量关系,一般三角形三边是否也存在一种等量关系呢?这是我们今后将要探讨的内容、

(学生总结本堂课的收获,从内容、应用,到数学思想方法,获取知识的途径等方面,给学生自由的空间,鼓励学生多说、这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力、最后提及的问题与引入首尾呼应,激发了学生深入研究的兴趣)

(五)布置作业

P82习题3.1第1、2题

篇3:勾股定理免费课件

一、教学内容分析

这节课是人教版九年义务教育课程标准实验教材八年级第十八章勾股定理第一课时,是在前面学习了直角三角形一些性质的基础上学习的。它是几何的重要定理之一,它揭示了直角三角形三边的数量关系,它将形与数密切联系起来,在数学的发展中起着非常重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,对直角三角形有进一步的认识和理解,为今后学习解直角三角形打下基础。

二、教学目标

【知识与技能目标】

能说出勾股定理的内容,并能进行简单的计算和实际应用.

【能力与方法目标】

经历探索—猜想—归纳—验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.

【情感与态度目标】

1、使学生了解勾股定理的历史,感受数学文化,激发学生的学习热情和民族自豪感;

2、在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。

三、教学重点与难点

【教学重点】

1、探索和证明勾股定理;2、运用勾股定理进行简单的计算。

【教学难点】

利用拼图的方法验证勾股定理、

四、教学准备

①自制学习卡;

②自制教学工具:四个全等的直角三角板(两直角边分别为 ,斜边为 )、一块模板(将一块矩形板材中间挖出一个边长为 的正方形,再将其背面衬一块底板)。

五、教学过程设计

(一)创设情境,引入课题

问题1:在七年级我们学习了三角形的有关知识,如果已知一个三角形的两条边长分别为3和4,第三边的长度确定吗?

问题2:如果这两边的夹角为90°,第三边的长度确定吗?如何求第三边的长度呢?

问题呈现后给学生适当思考时间,然后揭示课题:这一节课我们一起来研究直角三角形这一类特殊三角形中三边的数量关系——勾股定理。

设计意图:从数学问题出发,激活原有知识(三角形的任意两边之和大于第三边,任意两边之差小于第三边),将学生的原有认知作为新知的生长点,自然地引出本节课要探究的问题。

(二)实践探索,猜想结论

活动1(学习卡):(1)请你用三角板画出一个直角三角形(为减小误差,把直角边取为整数)

(2)量出这个三角形三边的长度为(斜边精确到0.1㎝)

(3)算出三边长度数的平方为

你发现这些数据之间有什么关系吗?

(4)你能猜想直角三角形的三边的平方在数量上有什么关系吗?

设计意图:①此活动采取小组合作的方式,互相交流,共同分享,培养学生的分工和合作交流的意识;②通过让学生动手操作,自主探究直角三角形三边的数量关系,激发学生的学习热情,增进数学学习的信心,同时发展合情推理的能力,体会由特殊到一般的数学思想.

(三)动手验证,形成定理

活动2:(1)你能用所给的四个全等的直角三角形在正方形模板中拼出两个空白的正方形吗?

(2)你能用所给的四个全等的直角三角形在正方形模板中拼出一个空白的大正方形吗?

问题3:以上拼出的两个图形的空白部分面积分别是多少?它们相等吗?

由此我们可以得到一个什么关系式?

设计说明:①通过拼图活动,以动手操作代替枯燥、单一的讲解,把学习的主动权交给学生。在活动中,让学生体会到成功的喜悦,进一步激发学生的学习热情,使学生对定理的理解更加深刻,体会数学中的数形结合思想;②此活动过程是在毕达哥拉斯的'证法的基础上加以改造,使拼图方法和定理的演绎推理过程得以简化,有效地突破了定理的证明这一难点。

(四)介绍历史,激发热情

1、介绍定理命名的含义:在中国古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”。

2、在西方一般认为这个定理是由古希腊数学家毕达哥拉斯发现的,所以人们称这个定理为“毕达哥拉斯”定理。而实际上据我国著名《周髀算经》记载:约公元1千多年前,我国就已经发现了勾股定理。这比毕达哥拉斯的发现要早了几百年。

3、世界上许多数学家,先后用400多种方法证明了这一定理。同学们在课后可以通过查阅资料或上网了解勾股定理的其它证法。

设计意图:通过介绍勾股定理的历史背景,感受数学文化,增加学生的数学史知识,从而体会到祖国数学历史的悠久,对学生进行爱国主义教育,增强民族自豪感。

(五)应用定理,解决问题(学习卡)

【例题讲解】已知在Rt△ABC中,∠C=90°,

AB=10,BC=6,求AC的长度

设计意图:给出范例,让学生了解用勾股定理进行计算的过程性要求,规范解题步骤,培养学生有条理地表达的能力。

设计意图:采用合作探究的教学方式组织教学。在这个探究过程中,要求学生在独立思考的基础上进行合作交流,然后小组汇报,让学生经历和体验如何将生活实际问题抽象成数学问题进而得以解决,激发学生应用数学的意识和能力。

【能力提升】

7、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?

设计意图:①进一步熟悉和掌握勾股定理,培养学生从实际问题中抽象出几何模型的能力;②学会建立方程解决几何问题,体会数形结合思想的运用,拓展学生综合运用知识的能力,激发学生的学习潜能。

(六)课堂小结,归纳提升

通过本节课的学习你有哪些收获?

设计意图:通过小结为学生创设交流、反思的空间,调动学生的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

(七)布置作业,课后延伸

1、巩固型作业(略);

2、通过翻阅资料或上网查找有关证明勾股定理的方法,选择你喜欢的两种方法整理并打印出来(两天内在组内交互,一周内小组交互,选择不同的证明方法在班级展出)。

设计意图:这个作业活动是开放的,它不仅为每个学生搭建了进一步探索和思考数学活动的平台,而且给了他们施展自我才能的舞台,有助于学生综合素质的全面发展。

篇4:初中勾股定理教案

初中勾股定理课件(通用11篇)

教学目标 1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题

教学重点:平行四边形的判定方法及应用

教学难点:平行四边形的判定定理与性质定理的灵活应用

小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

二.探

阅读教材P44至P45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

证一证

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2 一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)

三.结

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用

【例题】

例、已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.

【练习】

1、已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,

需要增加条件 .(只需填上一个你认为正确的即可).

2、如图所示,在ABCD中,E,F分别是对角线BD上的两点,

且BE=DF,要证明四边形AECF是平行四边形,最简单的方法

是根据 来证明.

作业P46练习1、2题

板书设计

平行四边形的性质

定理:平行四边形的性质 例题 练习

教学反思

篇5:初中勾股定理教案

教学目标:

1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。

2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。

教学重点:

引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。

教学难点:

用面积法方法证明勾股定理

课前准备:

多媒体ppt,相关图片

教学过程:

(一)情境导入

1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。

2、多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

已知一直角三角形的两边,如何求第三边?

学习了今天的这节课后,同学们就会有办法解决了

(二)学习新课

问题一是等腰直角三角形的情形(通过多媒体给出图形),判断外围三个正方形面积有何关系?相传25前,毕达哥拉斯(古希腊著名的哲学家、数学家、天文学家)有一次在朋友家做客时,发现朋友家里用砖铺成的地面中反映了直角三角形三边的某种数量关系。你能观察图中的地面,看看能发现什么?

篇6:初中勾股定理练习题

一、你能填对吗

1. 的两边分别为5,12,另边c为奇数,且a + b + c是3的倍数,则c应为_________,此三角形为________.

2.三角形中两条较短的边为a + b,a - b(ab),则当第三条边为_______时,此三角形为直角三角形.

3.若 的三边a,b,c满足a2+b2+c2+50=6a+8b+l0c,则此三角形是_______三角形,面积为______.

4.已知在 中,BC=6,BC边上的高为7,若AC=5,则AC边上的高为 _________.

5.已知一个三角形的三边分别为3k,4k,5k(k为自然数),则这个三角形为______,理由是_______.

6.一个三角形的三边分别为7cm,24 cm,25 cm,则此三角形的面积为_________。

二、选一选

7.给出下列几组数:①;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m0).其中定能组成直角三角形三边长的是( ).

A.①②

B.③④

C.①③④

D.④

8.下列各组数能构成直角三角形三边长的是( ).

A.1,2,3

B.4,5,6

C.12,13,14

D.9,40,41

9.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).

A.8个

B.10个

C.11个

D.12个

10.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是( );

A.锐角三角形

B.直角三角形

C.钝角三角形

D.等腰三角形

三、解答题

11.如图18-2-5,在 中,D为BC上的一点,若AC=l7,AD=8,CD=15,AB=10,求 的周长和面积.

12.已知 中,AB=17 cm,BC=30 cm,BC上的中线AD=8 cm,请你判断 的形状,并说明理由 .

13.一种机器零件的形状如图18-2-6,规定这个零件中的 A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?

14.如图18-2-7,四边形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.

15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会.詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的'子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁.请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)

16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。

四、思维拓展

17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,

(1)你能发现关于上述式子的一些规律吗?

(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子.

18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.

(1)请你根据上述四组勾股数的规律,写出第六组勾股数;

(2)试用数学等式描述上述勾股数组的规律;

(3)请证明你所发现的规律.

五、中考热身

19.(福州市)如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.

篇7:初中勾股定理练习题

1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2

7.D 8.D 9.D 10.B

11.周长为48,面积为84. 提示:根据勾股定理的逆定理可知 为直角三角形,故AD BC,再根据勾股定理可得BD=6,从而可求解.

12. 为等腰三角形.

理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,

AB2=AD2+BD2

为直角三角形.

在 中,AC2=AD2+CD2=82+152=172cm2

AC=17 cm,

为等腰三角形.

13.符合.

14.连接AC,得 ,由勾股定理知AC=5,

AC2+CD2=52+122=169=132=AD2, ACD=S四边形ABCD=S ABC+S ACD== 6+30=36.

15.詹克21岁,凯丽20岁,现在共有11个子女.

16.如图,由题意知AB=3 m,CD=14-l=13 m,BD=24 m.过A作AE CD于E,则CE=13-3=10 m,AE=BD=24 m.在中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 265=5.2 s, 它至少需要5.2 s才能赶回巢中.

17.(1)①每个等式中的三个底数都正好组成一组勾股数;

②每个等式中的最小的底数恰好是连续的奇数;

③最大的底数比第二大的底数大1;

④第二大的底数是偶数,最大的底数是奇数;

⑤这些等式中的底数都是代数式m2-n2,2mn,m2+n2,当m和n取不同正整数时得到的数.

(2)第五个式子应当是m=6,n=5时,所得的三个底数的平方和,即112+602=612.

18.(1)(48,14,50).

(2)设n2,且n为整数,勾股数组的规律为 (n2-l,n2,n2+1).

(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,

以n2-1,2n,n2+l为三边长的三角形为直角三角形.

篇8:初中数学说课稿:勾股定理

一、教材分析:

(一)本节内容在全书和章节的地位

这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(二)三维教学目标:

1.【知识与能力目标】

⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

2.【过程与方法目标】

在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:

【教学重点】勾股定理的证明与运用

【教学难点】用面积法等方法证明勾股定理

【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

【突破措施】:

⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价,

这样既保证讨论的有效性,也调动了学生的学习积极性。

二、教法与学法分析

【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的.引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

三、教学过程设计

(一)创设情景

多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

(二)动手操作

⒈课件出示课本P99图19.2.1:

观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

篇9:初中数学《勾股定理》说课稿

一、说教材分析:

(一)本节内容在全书和章节的地位

这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

(二)三维教学目标:

1、理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

2、通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

(三)教学重点、难点:

勾股定理的证明与运用

用面积法等方法证明勾股定理

对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

1、创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

2、自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

3、张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

二、说教法与学法分析

数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景—动手操作—归纳验证—问题解决—课堂小结—布置作业”六个方面。

新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

三、说教学过程设计

(一)创设情景

多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6、5米长的云梯,如果梯子的底部离墙基的距离是2、5米,请问消防队员能否进入三楼灭火?

问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

(二)动手操作

1、课件出示课本P99图19.2.1:

观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的'平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

2、紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

3、再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

(三)归纳验证

通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

(四)问题解决

1、让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

2、自学课本P101例1,然后完成P102练习。

(五)课堂小结

1、小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。2、教师用多媒体介绍“勾股定理史话”

①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

目的是对学生进行爱国主义教育,激励学生奋发向上。

(六)布置作业:

课本P104习题19、2中的第1、2、3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

篇10:初中数学《勾股定理》教案

教学目标

1、知识与技能目标

用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用。

2、过程与方法

让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系。

3、情感态度与价值观

在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习。

教学重点:了结勾股定理的由,并能用它解决一些简单的问题。

教学难点:勾股定理的发现

教学准备:多媒体

教学过程:

第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

内容:世界数学家大会在我国北京召开,

投影显示本届世界数学家大会的会标:

会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

的图作为与“外星人”联系的信号。今天我们就一同探索勾股定理。(板书 题)

第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

1。探究活动一:

内容:(1)投影显示如下地板砖示意图,让学生初步观察:

(2)引导学生从面积角度观察图形:

问:你能发现各图中三个正 方形的面 积之间有何关系吗?

学生通过观察,归纳发现:

结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

2。探究 活动二:

由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A 的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流。(学生可能会做出多种方法,教师应给予充分肯定。)

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

3。议一议:

内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?

勾股定理(gou-gu theorem):

如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名。

第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

内容:

例 如图所示,一棵大树在一次强烈台风中于离

地面10m处折断倒下,

树顶落在离树根24m处. 大树在折断之前高多少?

(教师板演解题过程)

第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

1、列图形中未知正方形的面积或未知边的长度:

2、生活中的应用:

小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?

第五环节:堂小结(3分钟,师生对答,共同总结)

内容:教师提问:

1。这一节我们一起学习了哪些知识和思想方法?

2。对这些内容你有什么体会?请与你的同伴交流。

在学生自由发言的基础上,师生共同总结:

1。知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .

2。方法:① 观察—探索—猜想—验证—归纳—应用;

② 面积法;

③ “割、补、拼、接”法.

3。思想:① 特殊—一般—特殊;

② 数形结合思想。

第六 环节:布置作业(2分钟,学生分别记录)

内容:

作业:1。教科书习题1.1;

2。《读一读》——勾股世界;

3。观察下图,探究图中三角形的三边长是否满足 .

要求:A组(学优生):1、2、3

B组(中等生):1、2

C组(后三分之一生):1

板书设计:见电子屏幕

教学反思:

篇11:初中数学《勾股定理》教案

一、例题的意图分析

例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

二、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

三、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

四、课堂练习

1。小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

2。如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

3。如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。