“天下为公”通过精心收集,向本站投稿了17篇从二次函数学反思,下面是小编为大家整理后的从二次函数学反思,供大家参考借鉴,希望可以帮助您。

篇1:二次函数学复习题和练习题
二次函数学复习题和练习题
二次函数复习学案
一、导学提纲
1.根据下列表格的对应值,判断方程ax2+bx+c=0(a0)一个解x的取值范围 ( )
x 3.23 3.24 3.25 3.26
y=ax2+bx+c -0.06 -0.02 0.03 0.09
A. 3
2.函数图象y=ax2+(a-3)x+1与x轴只有一个交点,则a的值为( )
A.0,1 B.0,9 C.1,9 D.0,1,9
3.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的函数关系式是 ( )
A.y=2(x+2)2-2 B.y=2(x-2)2+2
C.y=2(x-2)2-2 D.y=2(x+2)2 +2
4.已知二次函数 ( )的图象如图所示,有下列结论:
① ;② ;③ ;④ .
其中,正确结论的个数是( )
A.1 B.2 C.3 D.4
5. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(米2)与x(米)的关系式为
6.某涵洞是抛物线形,它的截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是
7.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明:单价每上涨1元,该商品每月的销量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)件的函数关系式;
(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?
二、展示交流
1.如图是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,求抛物线对应的关系式.
2. 如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大水平高度12米时,球移动的水平距离为9米.已知山坡OA与水平方向OC的夹角为30,O、A两点相距8 米.
(1)求出点A的坐标及直线OA的关系式;
(2)求出球的飞行路线所在抛物线的关系式;
(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点?
3. 长江中下游地区发生了特大早情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
型 号 Ⅰ型 Ⅱ型
投资金额x(万元) x 5 x 2 4
补贴金额y(万元)
2
2.4 3.2
(1)分别求y1和y2的函数关系式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
三、反馈练习
1. 对抛物线:y=-x2+2x-3而言,下列结论正确的是 ( )
A. 与x轴有两个交点 B. 开口向上
C. 与y轴的交点坐标是(0,3) D. 顶点坐标是(1,-2)
2. 若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(3+ ,y3),则y1,y2,y3的大小关系是 ( )
A . y1y3 B . y1y2 C . y2y3 D . y3y2
3.已知二次函数 中,其函数 与自变量 之间的部分对应值如下表所示:
0 1 2 3
5 2 1 2
点A( , )、B( , )在函数的图象上,则当 , 时, 与 的大小关系正确的是( )
A. B.
C. D.
4.在边长为6 cm的正方形中间剪去一个边长为x cm(x6)的小正方形,剩下的四方框形的面积为y,y与x之间的.函数关系是 .
5.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的关系式为 .
6.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为
7.一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是 y= ,铅球运行路线如图.
(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m.
8.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0
(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
(2)求今年这种玩具的每件利润y元与x之间的函数关系式.
(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)年销售量.
9. 如图,在Rt△ABC中,ACB=90,AC、BC的长为方程x2-14x+a=0的两根,且AC-BC=2,D为AB的中点.
(1)求a的值.
(2)动点P从点A出发,以每秒2个单位的速度,沿ADC的路线向点C运动;动点Q从点B出发,以每秒3个单位的速度,沿BC的路线向点C运动,且点Q每运动1秒,就停止2秒,然后再运动1秒若点P、Q同时出发,当其中有一点到达终点时整个运动随之结束.设运动时间为t秒.
①在整个运动过程中,设△PCQ的面积为S,试求S与t之间的函数关系式;并指出自变量t的取值范围;
②是否存在这样的t,使得△PCQ为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
篇2:《二次函数》数学教学反思
《二次函数》数学教学反思
9月23日,我在九年级三班讲授了二次函数y=ax2+k、y=a(x-h)2的图象和性质。
先从复习二次函数y=ax2入手,通过检测学生对于二次函数y=ax2的性质掌握较好。然后结合图象让学生理解二次函数y=ax2+k的图象与二次函数y=ax2的图象的关系,通过观察图象学生很容易地理解了二者之间的关系,在做对应练习时效果也较好。
在学习二次函数y=a(x-h)2的图象和二次函数y=ax2的图象的关系时,由于涉及向左或向右平移引出了加减问题,学生在此容易混淆,尽管让学生结合图象明确地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。先由解析式求出顶点从标,再看平移的问题。但是还是有一部分同学混淆了。这一部分内容学习得不够理想。反思这一节课整个过程中的成功和不足之处,我觉得需要改进的有如下几点:
1、灵活处理教材。教材上是一节课学习两种类型的函数,但是根据学生作图的速度和理解能力,一节课完成两种类型的函数有一定的困难。虽然也想过适当处理,但是想到教材是一节课完成两种函数,所以还是决定两种函数在一节课完成,事实证明一节课完成两种函数效果不是很好。由此可见有时教材上的安排不一定是科学的,所以要根据学生的实际情况进行灵活处理。
2、认真考虑每一个细节。考虑到一节课上学习两种类型的函数时间有些紧张,所以我让学生提前画好了图象,这样在课堂上可以节省时间,由于默认学生已经画好了图象,所以我也没有在黑板上再画出图象,这样让学生在看图象时,有的学生没有画出,有的'同学画错了,这样就给学习新知识带来了困难,这是我没有想到的。所以以后要充分考虑到每一个细节,要想到学生可能会出现什么情况。
3、小组评价要掌握好度。在课堂上我运用了小组评价,学生回答问题非常积极,可是我感到小组评价还有需要改进的地方。学生回答问题后加分比较耽误时间,在以后的教学中我觉得应该更灵活把握好度,使评价为教学服务而不能因评价而耽误教学。
我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。
篇3:二次函数说课课件
二次函数说课课件
教学目标:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图 象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
重点难点:
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。
难点:理解二次函数y=ax2 +b x+c(a≠0)的 性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。
教学过程:
一、提出问题
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
2.函数 y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y= -4x2的图象向右平移2个单位再向上平移1个单位得到的)
3.函数y=-4(x-2)2+1具有哪些性质?
(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增 大而减小;当x=2时,函数取得最大值,最大值y=1)
4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?
5.你能画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质吗?
二、解决问题
由以上第4个问题的解决 ,我们已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;
x…-2-101234…
y…-612
-4-212
-2-212
-4-612
…
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的`值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题 ,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;
当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;
当x=1时,函数取得最大值,最大值y=-2
三、做一做
1.请你按照上面的方法,画出函数y=12x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?
教学要点
(1)在学生画函数图象的同时,教师巡视、指导;
(2)叫一位或两位同学板演,学生自纠,教 师点评。
2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?
教学要点
(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?
以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;
y=ax2 +bx+c=a(x2+bax)+c =a[x2+bax+(b2a)2-(b2a)2]+c =a[x2+bax+(b2a)2]+c-b24a
=a(x+b2a)2+4ac-b24a
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-b2a,4ac-b24a)
四、课堂练习:
练习第1、2、3题。
五、小结: 通过本节课的学习,你学到了什么知识?有何体会?
六、作业:
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;
(2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;
(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;
(4)抛物线y=-12x2+2x+4的对称轴是_______;
(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1 )y=3x2+2x;(2)y=-x 2-2x
( 3)y=-2x2+8x-8(4)y=12x2-4x+3
4.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质
篇4:《二次根式》九年级数学教学反思
在二次根式这一章的学习中,重点是是掌握二次根式的运算,教学的关键是理解二次根式的性质,这块教学内容是在第十二章实数的基础上,着重研究二次根式。在本章教学中,存在以下问题:
1、虽然八(1)班是我从六年级带上来的,对学生的基本情况较为了解,但在教学设计中,仍然存在着对学情分析不足,主要是过高估计学生的学习能力,一方面每节课设计的教学内容过多,经常一节课结束后还有不少内容没有完成,另一方面对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。如对二次根式的性质的应用时,考虑到以前已经学过,自以为学生不存在困难,就没有重点分析,结果导致不少学生在二次根式的化简过程中因此而出错。
2、八年级数学是新教材,在教学过程中,我的教学理念还没有及时更新,有时对新老教材的区别关注不够,从而导致教学不到位。在二次根式的化简中,老教材比较重视对具体数的化简,对字母的要求不高,一般都确保二次根式有意义,而新教材特别要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本章中,其实有许多内容可以进行这方面的尝试。如判断二次根式中字母的取值范围、选取有理化因式、选择不同的运算途径等都可以让学生进行探究和归纳。在二次根式的运算中我就直接告诉学生:加减运算时利用公式,乘除时利用公式和,结果大部分学生并不接受。若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
4、在学生的学习方面,也有值得反思的地方,八(1)班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导。
基于上面的诸多因素,八(1)班学生在第十六章的学习还不够理想,在本章单元测验中,也得到了体现,高分比以往减少,不及格人数明显增加,平均分大幅降低。因此在今后的教学工作中要加强改进,提高教学实效。
篇5:九年级数学《二次函数》教学反思
九年级数学《二次函数》教学反思
课后查看了数学课程标准中对二次函数的要求:
1、通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
2、会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
3、会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
4、会利用二次函数的图象求一元二次方程的近似解。
发现并没有提到用顶点式来求二次函数的解析式,而且在后面的几节课的教学中也没有要求用顶点式来求二次函数的解析式。但是我认为新课标所提出的'要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理。并且从教学的反馈来看,加上了这3个练习学生能较好的理解本课的教学目标,同时也能对前面所学的二次函数顶点的知识加深印象。适应学生的最近发展区。何乐而不为。
篇6:二次函数应用数学教学反思

二次函数应用数学教学反思
因教研组活动的安排需要,本周二我作为初四代表出示研讨课,课题为《二次函数的应用――――――形如抛物线型》,结合老师的评课反思一下:
我的设计思路是:前置补偿(确定二次函数解析式的方法和思路)―――――――探索新知(由前置补偿第四小题过渡到问题一,目的在于体会数学与实际问题的转化,并得出确定实际问题中解析式的关键在于有实际意义得出关键点的坐标;然后过渡到没有坐标系的实际问题中,该怎么处理,有学生探索并分情况展示,然后比较过程与结果,增强优化意识。另一方面由实际问题的解决,体会二次函数应用中的数学思想:第一环节,实际意义―→关键点的坐标―→解析式,注意由实际意义到点的坐标转化时的符号,进一步明确解决问题的第二个环节,解析式―→关键点的坐标―→实际意义,注意由坐标到实际意义转化时要取绝对值。)―――――活学活用(解决一个隧道问题,目的加强对思路的理解与体会,从本节课上也提高一下难度,但因时间关系,没有完成)。
评课整理如下:
优点:
思路比较清晰,过渡比较自然,题后反思比较到位。
缺点:
1、孙老师:对学生的评价比较模糊,比如有错误的情况下还打个对号。
2、郭老师:解题步骤需加以规范和总结:一建二设三解四答。
3、张老师:知识总结有些地方不太到位,比如,三种不同的情况为什么a的取值不变?比较三种的优劣时可以从两个方面进行即确定解析式和解决最后实际问题。这样可以更体会更深刻一些。
4、付主任:本节课有宽度,但缺乏深度,容量比较小,学案可以在浓缩一下,可以将问题一和问题二结合起来。
5、齐主任:课堂模式和反映出来的教学理念比较过时,以学生为主体的教育理念体现的不够突出,如果把这节课放在课改之前可能是一堂好课。
自我反思:
1、从郭老师、张老师和孙老师的建议中,我应该加强对课的精细化要求,授课态度要严谨,对学生的一点一滴都要负责任,同时对教材知识的挖掘面面俱到,引领学生对知识能有一个更全面更深入的理解。
2、受付主任建议的启发,可以尝试删掉问题一,由问题二承担起原问题一和问题二的`双重作用,即:实际意义确定点的坐标;建立适当的坐标系。可以仍有第四小题引入到问题二(建好坐标系,顶点在原点处),然后实际问题中不可能存在现成的坐标系,引发学生思考坐标系的建立情况,然后加以拓展,并结合解决实际问题体会三种情况的优劣。这样应该可以节省一些时间,但我估计不会太多,最多能节省5分钟,但这或许就可以分析活学活用中的题目了。
自己的体会是,因为这是第一课时,很多东西不可能面面俱到,知识的理解还需要有个循序渐进的过程(或许这也是一个托辞,这就是我们与名师的差距)。与名师相比,我们的课堂容量太小,一方面我们平时的课堂对知识中的思想方法挖掘渗透的太少,学生头脑中的知识不系统,形不成知识体系;另一方面,与本人的知识素养有关系,还需要进一步对教材知识进行深入挖掘,对新的教育理念进行学习,只有准备充足了,才能在课堂上游刃有余。
3、结合齐主任的评课,我站在别人的高度试想了如果是云老师或宋老师来评课,会提出什么意见,我隐约感觉到这肯定不是一节好课,有很大的问题,至于是什么问题我也说不清楚,或许就如齐主任所说的教育理念比较陈腐导致课堂没有推陈出新的亮点,并且我觉得可以做大手术,如果真能请云老师或宋老师来评课的话,我或许就会豁然开朗,而不再这般的迷茫。
篇7:八年级数学《二次根式》教学反思
本章的教学目标是经历二次根式的概念的发生过程,了解二次根式的概念,以及二次根式的性质和运算。在概念的教学上采用了问题导入法比较顺利。但对概念有一点疑惑,形如根号a(a>=o)的式子,那根号前面的系数要不是1呢,难道就不是二次根式了吗?本章的难点在利用性质化简。往往不顾条件就往下做,过后才会醒悟,这是一棘手的问题。对于同类二次根式的概念的教学必须强调两点1要最简2被开方数相同。尤其在应用时学生会忽略第一点。
运算方面对加减法主要还是要熟练化简,对一些常用的数进行分解。其次同类要合并,问题不是很大。而在乘除法的运算上,方法用的不当会变的很麻烦。主要要学会细心观察,是先乘除后化简来的比较简单。
篇8:九年级数学二次函数教学反思
1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图象时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图象和性质的影响,在学生画完三个图象后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图象,培养了学生动手动脑的习惯和综合分析归纳的能力。
2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。
3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。
4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。
不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。
篇9:九年级数学二次函数教学反思
这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。通过学生的讨论,解决了自己不能解决的问题,拓展应用题通过学生的展示讲解让大部分学生基本掌握,使学生在原有知识的储备基础上很容易迁移和接受了这些知识.这节课的重点内容放在“经历探索和表示二次函数关系的过程,使学生获得了用二次函数表示变量之间关系的体验。
在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的就上让学生在复习这些知识的过程中体会从函数图像来研究函数性质的。应该说这样设计既让初四同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。第二部分是学习探究,探求活动前先让一名同学读了学习目标,让大家带着目标去探究。
整节课的流程可以这样概括:学生讨论问题——学生展示重点内容——完善训练题讨论实际问题对自变量的限制——课堂的小结,最关键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
篇10:九年级数学二次函数教学反思
前天,教学了《二次函数》的第一课时。课堂上学生活跃的思维、积极的发言、大家争抢着回答问题说明学生的学习是有效的。从中,我感到了教学的魅力,更感到这样的魅力是需要教师尽心准备、创造的。
设计意图:
这节课是在学生学习了一次函数、一元二次方程之后的二次函数的第一节课。从课本的体系来看,这节课的知识目标,学生在原有知识的储备基础上是很容易迁移和接受的。那么这节课还有什么好设计的呢?……重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我意识到这节课的教学重点是“让学生经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”,有了这个认识,一切就变得简单了!
设计流程:
整节课的教学流程概括如下:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结。
这样一气呵成的设计,感觉上无拖沓生硬之处,最关键的是我认为这符合学生的基本认知规律,让学生亲自经历探索和概括的过程,从而形成新知识。
设计说明:
1、对于实际问题的选择,我将4个问题整合于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得很有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
2、对于练习的设计,尽量做到每题针对一个问题,并进行及时小结,也遵循了从开放到封闭的原则,达到了良好的效果。
3、最后讨论题的设计和提出,我设计了一个探索性的问题:假如你是果园的主人,你准备多种几棵?这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题是整节课的一个高潮和精华,对学生的解答,不论对错,不论全面还是有所偏颇,我都给予肯定。事实证明:只要教师给了足够的空间,学生总能从各方面进行思考和解释。
篇11: 《二次根式》初中数学教学反思
《二次根式》初中数学教学反思
本节课采用“自主互助,诱导探究”八环节教学模式。
这是我校经过一年多来的课堂教学实践而摸索出来的教学模式。“激趣导学”激发学生的求知的欲望,让学习进入学习的状态。“明确目标”让学生明确本节课学习的'任务。“指导阅读”让学生带着问题去自学,体现的自主学习。在“自主互助”环节中,我让同组之间的学生相互讨论、互相学习,让学快生教学慢生,从而掌握二次根式的概念与性质。
通过“说一说”、“做一做”“反馈”学习在自学的掌握情况,把课堂还给学生。在“诱导探究”环节中,通过学生看教材,启发诱导学生,解决学生在自学中不能解决的问题,从而突破难点。“当堂训练”检测学生对所学知识的掌握情况。我设计的题目由浅入深,学生可以运用今天所学的知识解决问题。最后在“小结提升”中,让学生说说自己的收获,形成知识体系。
我觉得整堂课下来,不足之处在于花在“说一说”、“做一做”的时间多了些,导致后面的“当堂训练”中的点评少了些,时间上把握不是很到位。以后的教学中我会努力的去改进,让每一个学生都能真正投入到课堂中来。
篇12:八年级数学《二次根式》教学反思
二次根式是代数式的一部分,其运算是有关运算中不可或缺的环节,是后续教学中的基础之一。因此,学好本章内容具有重要意义。而在教学中发现,有很多学生(甚至教师)对这一部分内容相当含糊,特别是积的算术平方根、商的算术平方根公式以及二次根式的乘除法公式的有机应用,更造成了理解上的混乱,运算上的失误。要解决这个问题,就必须明确二次根式的化简、运算目的。通过教学反思,我认为二次根式的教与学必须围绕“小”、“少”、“分母无根号”三步诀。
所谓“小”,是指被开方数化简到最简(即化简成不能再开平方的整数)为止。为此,可以用二次根式的四个性质来实现这个目的:①2=a;②=|a|;③=;④=。
所谓“少”,是指结果中尽量少含根号。要达到这个要求,可以用二次根式的乘法、除法公式来解决:;。在教材中P7例1计算、P9例4等。
所谓“分母无根号”,是指分母中不含有根号。众所周知,开不尽方的数是无理数,要除以一个无限不循环的小数,是很困难的,所以要转化为有理数来解决。一般情况下,利用分式的基本性质,分子、分母同时乘以分母的有理化因式即可。
篇13:八年级数学《二次根式》教学反思
在二次根式的加减运算时,首先需搞清楚什么是同类二次根式,同类二次根式的判断,关键是能熟练准确地化二次根式为最简二次根式,二次根式的加减,首先要化简二次根式,化简之后,就类似整式的加减运算了.整式的加减实质就是去括号和合并同类项.二次根式的加减也是如此.合并同类二次根式与合并同类项类似.在教学中应注意二次根式的加减运算与整式加减运算的类比。
判断两个或多个二次根式是不是同类二次根式,是将它们化简成最简二次根式,再看被开方数是不相同,被开方数相同就是同类二次工,如果被开方数不相同就不是同类二次根式,这与根号的因数或因式无关,合并同类二次根式后,根号前的系数不能是带分数,指导学生根据问题去自学课本。通过自学课本解决问题,从而自己独立学习,结合小组合作学习掌握二次根式的加减运算。
通过我深入小组搜集信息、指导学习,发现学生具备自学能力,独立自学时很肃静,同学们都能够通过翻阅课本自己独立完成问题导读单上的一些问题。合作学习时也很热闹,同学们都能够交流自己的见解,并且能够针对一些见解提出自己的看法让大家评议。总之,本节课我感觉同学们学习的效果非常好,学习气氛浓厚,能够自主合作探究学习。
篇14:八年级数学《二次根式》教学反思
本节课的重点二次根式的两个性质,并会用性质化简一些二次根式。 针对教学目标,本堂课设计了四个主要的教学环节:
第一环节、师生合作,通过复习算术平方根的概念,运用归纳、猜想的思想方法,得出二次根式的第一条性质,随后进行了相关的练习,加强了学生对概念的理解。
第二环节、小组合作学习,运用类比、归纳、猜想的思想方法,得出二次根式的第二条性质。之后,设计了一个“我来考考你的环节”,让学生自己根据性质2,仿照书本课内练习1,给同伴出题,这一简单的举措,激发了学生的学习兴趣,调动了课堂气氛。
第三环节、学生自主完成例1,然后在小组内探讨存在的问题并解决问题。对于例2,在学习过程中,学生对于a是非负数的二次根式没有困难,但是对于根号里面a是负数的二次根式,学习起来还是有困难的,所以在这里应该举例示范,让学生讨论如何解答。这里不要快,要一步步来,等学生都明白其中的道理后,再进行相应的练习,如果出现问题,再进行点评,这样下来,学生就可以掌握二次根式的化简了,但是由于时间关系,我紧紧叫了一个学生上黑板板书,没有做到一题多解,今后多在这方面努力。
第四环节、运用性质化简含有字母的二次根式。这一环节,加深了学生对二次根式两个性质的理解。
课后作业的布置,由于要用到开方,所以,我让学生背会1-30的平方分别等于多少,这样在以后的学习中会用得到,可以提高计算速度。
篇15:八年级数学《二次根式》教学反思
本节课采用“自主互助,诱导探究”八环节教学模式。
这是我校经过一年多来的课堂教学实践而摸索出来的教学模式。“激趣导学”激发学生的求知的欲望,让学习进入学习的状态。“明确目标”让学生明确本节课学习的任务。“指导阅读”让学生带着问题去自学,体现的自主学习。在“自主互助”环节中,我让同组之间的学生相互讨论、互相学习,让学快生教学慢生,从而掌握二次根式的概念与性质。
通过“说一说”、“做一做”“反馈”学习在自学的掌握情况,把课堂还给学生。在“诱导探究”环节中,通过学生看教材,启发诱导学生,解决学生在自学中不能解决的问题,从而突破难点。“当堂训练”检测学生对所学知识的掌握情况。我设计的题目由浅入深,学生可以运用今天所学的知识解决问题。最后在“小结提升”中,让学生说说自己的收获,形成知识体系。
我觉得整堂课下来,不足之处在于花在“说一说”、“做一做”的时间多了些,导致后面的“当堂训练”中的点评少了些,时间上把握不是很到位。以后的教学中我会努力的去改进,让每一个学生都能真正投入到课堂中来。
篇16:八年级数学《二次根式》教学反思
本节课的重点是被开方数相同的二次根式与合并被开方数相同的二次根式。
这节是最简二次根式与合并同类项的知识,所以,最好在课前复习一下最简二次根式的定义,同类项的定义,合并同类项的法则,为这节课的学习作好铺垫。
同类二次根式:几个二次根式化成最简二次根式后,如果它们的被开方数相同,那么这几个二次根式叫做同类二次根式。判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化简成最简二次根式,再观察它们的被开方数是否相同。
其次,同类二次根式必须同时具备两个条件:①根指数是2次;②被开方数相同,与根式的符号和根号外面的因式没有关系。
如何判断几个二次根式是不是同类二次根式,这些题可从课后练习中选取,但要注意书写规范。示范完成后做课后随堂练习与习题中的判断是不是同类二次根式的题目,做到及时巩固。
识别同类二次根式是二次根式的加减法的前提,所以,后面的同类二次根式的加减法就顺理成章了,也是先选一个题目进行板演示范,步骤一定要完整规范,然后就是学生进行模仿性练习,这样处理起来,学生没有困难,整节课节奏紧凑,效果显著。
学生在练习过程中存在的问题:①合并同类二次根式时,二次根式前面的字母因式不加括号,如,应该是;②二次根式的系数是带分数时,没写成假分数的形式,如,应该是。这些错误要注意引导纠正。
篇17:八年级数学《二次根式》教学反思
本课先通过对实际问题的解决来引入二次根式的加减运算,此问题贴近学生生活,易激发学生的学习兴趣。采用分组讨论,由四人一组探索、发现、 解决问题,培养学生用数学方法解决实际问题的能力。.对法则的教学与整式的加减比较学习。再由学生自主讨论并总结二次根式的加减运算法则,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣。
学生在自主探究的过程中发现问题,解决问题,总结规律,加深对所学知识的理解。并向学生传递这样一个信息:二次根式的加减运算并不是孤立的全新的知识,可以将二次根式的加减进行比较学习。
使学生掌握被开方数相同的二次根式合并的方法,注意二次根式加减运算的联系与区别,避免一些常见错误,提高解题的准确程度。4、在二次根式的加减运算时,首先需搞清楚什么是同类二次根式,同类二次根式的判断,关键是能熟练准确地化二次根式为最简二次根式。再由学生自主讨论并总结二次根式的加减运算法则。










