“翔谭从不迟到”通过精心收集,向本站投稿了10篇五年级下册轴对称图形课件,以下是小编整理后的五年级下册轴对称图形课件,希望能够帮助到大家。

五年级下册轴对称图形课件

篇1:五年级下册轴对称图形课件

教学目标

1、通过画、剪、观察、想象、分类、找对称轴等一系列的活动,使学生正确认识轴对称图形的意义及特征。

2、掌握已学过的平面图形的'轴对称情况,能正确地找出其对称轴。

3、培养和发展学生的实验操作能力,发现美和创造美的能力。

教学重难点

掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。

教学工具

课件

教学过程

一、引入新课:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生相互交流

你们还见过哪些轴对称图形?

(3)轴对称图形的概念:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

例题1:

同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你可以发现什么规律。

学生交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

二、课内练习。

1。判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。

三、教学画对称图形。

例题2:

(1)引导学生思考:

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

(2)在研究的基础上,让学生用铅笔试画。

(3)通过课件演示画的全过程,帮助学生纠正不足。

四、练习:

课内练习一—————第1、2题。

课后习题

完成课后练习题相关作业。

篇2:五年级轴对称图形课件

姓名

年级

5

学科

数学

时间

教学

课题

信息窗1--轴对称图形

教材

分析

学生在三年级已初步认识了简单的轴对称现象,会判断简单的图形是否是轴对称图形并找出其一条对称轴。在此基础上教材通过一组具有轴对称图形特点的旗帜唤起学生对已有知识的回忆,进一步教学较复杂的轴对称图形及对称轴的含义,并能找出轴对称图形的所有的对称轴,从而引导学生画出图形的另一半并使它成为轴对称图形。

教学

目标

1、通过生活中的实例进一步认识“轴对称”的现象,也进一步理解“轴对称图形”和“对称轴”的含义。2、能识别较复杂的轴对称图形并能确定其对称轴;能画出图形的另一半并使它成为轴对称图形。3、在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创作等数学活动过程,逐步发展学生的空间观念。4、在活动中培养学生合作、探究、交流、反思的意识。体会数学与现实生活的密切联系,进一步感受数学的美。

重点

难点

理解“轴对称图形”和“对称轴”的含义。

能画出图形的另一半并使它成为轴对称图形。

学情

分析

学生已经初步感知了生活中的对称现象初步认识了轴对称图形。学生完全可以通过观察、想象、分析推理独立探究出来。

一、创设情境,导入新课

1、师启发谈话:同学们,一提到,你首先会想到什么?在奥运会上你最想看到什么?

师述:当五星红旗缓缓升起的时候,每一个中国人都会感到无比的骄傲和自豪。因为国旗就是一个国家的象征。

2、出示图片:信息窗1的部分图片和一些不属于轴对称特点的图片

提问:你能把它们按图形的特点分成两类吗?(学生可以自己动脑分类、有困难的也可以在小组中交流)

讨论:为什么这样分?(学生动脑思考,并回答)

对于古巴的国旗是否是对称图形,意见可能不一致。说明我们需要进一步去研究对称图形的特征。

3、揭示课题:今天我们就来共同进一步研究对称图形。对称图形也分好几类,小学阶段只研究其中的一类——轴对称图形。(板书课题)

前面我们已确认的对称的旗帜图片,都可以看作是轴对称图形。

二、探究新知

(一) 动手操作,理解概念

1、尝试用剪刀创作一个轴对称图形,动手前先想一想,用什么方法能使你剪得又快又能保证得到的肯定是一个轴对称图形。(学生尝试动手剪,教师巡视。)

互相欣赏剪出的作品。

交流剪的方法。(先将纸对折,然后再剪。)

为什么这样做?

【设计意图:让学生通过动手剪轴对称图形,感知轴对称图形的特点,加深对对称轴的理解。】

2、小组探究:先判断一组交通图标是否是轴对称图形,再结合自己前面的动手剪与交流的结论,小组合作研究轴对称图形有什么特征?

预设:

①它们的左右两部分是完全一样的。

②它们都是轴对称图形。

小组汇报交流,帮助学生理解概念。(理解对折、完全重合;在交流中指认对称轴。)

3、总结概念:

什么是轴对称图形?什么叫对称轴?(明确:轴对称图形要求图形内部的小的图形或图案也应是对称的;对称轴是一条直线)

教师板演对称轴的画法,强调画对称轴要用点画线。

在信息窗所呈现的轴对称旗帜中任选一行,画出它们的对称轴。

前面同学们在判断古巴的国旗是否是对称图形,大家的意见不一致,现在你们的意见是什么?(学生回答,并说明理由。)

4、研究平面图形

我们学过的哪些图形是轴对称图形?(学生回答,说出长方形、正方形比较容易。说三角形、梯形时注意引导是什么三角形、什么梯形,表述要准确。也有可能把平行四边形当成轴对称图形,引导学生动手验证一下,明确结论。)

找出对称的平面图形的对称轴。(借助准备好的图形纸片动手者看看。)

追问:每个轴对称图形都是只有一条对称轴吗?

交流答案,说说你是怎样得到的?

预设:学生说长方形有两条对称轴;正方形有四条对称轴;等边三角形有三条对称轴。圆有无数条对称轴。(注意让每个学生都动手,进一步明确这个结论,才能印象深刻。)

【设计意图:在小组中去探讨轴对称图形的特点,这样的安排有利于学生对关键词的理解,如对折、完全重合,从而把握对称图形的特征,并能用自己的话恰当的总结特征。】

(二) 画出图形的另一半,使它成为轴对称图形。

打开课本第19页,自己动脑想一想,动笔画一画(只完成左边一题即可),然后在小组中交流画图的方法。

集体交流,总结方法:

预设:

①找关键转折点;

②点出其对应点(对应的.一组点到对称轴的格数相等);

③连线(对应线所占格数相等)。

按照我们总结的方法完成右边一题。

(三) 看书质疑

今天我们所学内容是课本第17-19页,看一看,有什么疑问写到问题口袋处,然后小组内研究解决,解决不了的可以提出来,我们大家共同解决。

三、拓展应用

完成自主练习1——5题。

第1题:下面哪些图形是轴对称图形?(增加一部分:中国银行标志、联通标志、汽车徽标标志等的判断练习)

学生独立完成。

第2题:在方格纸上画出下面图形的对称轴。

学生独立完成。要求尽可能的画出所有的对称轴。

预设:学生说图形1有两条对称轴,图形2有三条对称轴,图形3有无数条对称轴。

第3题:想一想、连一连。

学生独立完成。订正时问:本题就像是在做什么?(照镜子)

第4题:画出下面图形的对称轴。(在前面的新授中已随机完成。)

第5题:画出下面每个图形的另一半,使它成为轴对称图形。

学生独立完成。

订正时指生说说是怎样画的。

【设计意图:画出图形的另一半,使它成为轴对称图形这又是一个难点,从独立完成到小组内交流方法,集体总结方法,有利于学生自主学习,开展合作交流。也进一步把握轴对称图形的特征,体会对称轴两边的图形与对称轴的关系。】

四、欣赏轴对称图片

生活中的轴对称图形很多,你在哪见过轴对称图形?(学生举例)

老师这儿也收集了一些生活中的具有轴对称特征的图片,请大家欣赏。

五、总结通过这节课的学习,

你有什么收获或感受?

调节与反思:

板书

设计

篇3:五年级轴对称图形课件

将图形沿着一条直线对折,如果直线两边的部分能够完全重合,这样的图形叫做轴对称图形。折很所在的这条直线叫做他的对称轴。

五年级下册轴对称图形课件

注重学生已有的知识基础,轴对称图形的性质,注重联系实际,让学生在具体情境中认识图形的对称,通过看折画等实践活动让学生真正地充分的进行探究。

篇4:《轴对称图形》课件

教学目标:

1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。

3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

教学重点:

篇5:《轴对称图形》课件

教学难点:

掌握并能准确辨别较为复杂的轴对称图形。

教学过程:

一、活动导入

谈话:同学们,老师今天带来了一个美丽的朋友,大家看!

(出示只有一个触角的蝴蝶的图片。)

提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?

学生回答。

教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。

板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)

二、识轴对称图形

1、课件出示天安门、飞机、奖杯图片。引导学生观察图片上的物体,说说它们有什么共同特征。

教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?

(先小组讨论,再汇报)

引导学生用手摸一摸对折后的两边,说说有什么样的感觉。得出结论:这些图形对折后“两部分完全重合”。

介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。(板书轴对称图形定义)。中间这条折痕就是轴对称图形的对称轴。(板书:对称轴)

谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?

(学生交流并回答)

2、试一试

谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?

引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?

汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

3、判断轴对称图形

谈话:下面我们一起到“轴对称图形博物馆”去看看。

小组派代表汇报合作过程中发现的.问题和解决的方法以及判断的结果及理由。

4、摆对称的姿势

谈话:同学们有些累了吧。下面跟老师一起来做个身体对称的游戏吧。指名学生上台摆一个有轴对称性质的姿势。

(注意强调要左右两边的动作幅度要相同,否则就不对称了)

三、制作轴对称图形

1、谈话:刚才同学们学会了用身体做轴对称图形的游戏了,你们还想用别的工具做轴对称图形吗?

引导学生小组自主合作,选择钉子板、剪纸、方格纸等工具和材料制作轴对称图形。(展示学生的作品)

学生画好后,请画得快的学生介绍自己的方法。

教师介绍:为了快速的画出图形的另一半使它成为轴对称图形,可以先找出对称点,在连接对称点就好了。

四、感受轴对称美

谈话:生活中有那么多轴对称图形和具有轴对称性质的物体,是因为轴对称图形本身就是一种美。

电脑播放一组世界著名的具有轴对称性质的建筑物。

谈话:类似的建筑在我们的身边也有许多,你们想看吗?。

电脑播放一组合肥市具有轴对称性质的建筑物。

五、小结

谈话:同学们看你们今天学的那么带劲,谁能说说自己今天有什么收获?你认为谁今天表现的最有进步呢?(学生之间评价推选)

谈话:现在老师要送他一件小礼物,可是老师还没来得及完工,谁能帮我把它修剪好呢?出示一张边缘不齐的贺卡。请学生说说修剪的办法和依据并修剪。打开贺卡,出示其中具有轴对称性质的的剪纸图案,让学生感受轴对称图形的广泛,轴对称图形的美.

篇6:轴对称图形课件

人教版轴对称图形课件

教学目标:

1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念

2、探索并了解角的平分线、线段垂直平分线的有关性质.

教学重点:

1、角、线段是轴对称图形

2、角的平分线、线段垂直平分线的有关性质

教学难点:

角的平分线、线段垂直平分线的有关性质

准备活动:

准备一个三角形、一张画好一条线段的纸张

教学过程:

先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.

教师示范:(按以下步骤折纸)

1、在准备好的三角形的每个顶点上标好字母;A、B、C.把角A对折,使得这个角的两边重合.

2、在折痕(即平分线)上任意找一点C,

3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的.交点,即垂足.

4、将纸打开,新的折痕与OB边交点为E.

教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的概念.

学生通过思考应该大部分都能明白角是轴对称图形这个结论.

问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?

学生应该很快就找到相等的线段.

下面用我们学过的知识证明发现:

如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.

巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?

(1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.

(2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.

内容二:线段是轴对称图形吗?

做一做:按下面步骤做:

1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.

2、在折痕上任取一点C,沿CA将纸折叠;

3、把纸展开,得到折痕CA和CB.

观察自己手中的图形,回答下列问题:

(1)CO与AB有什么样的位置关系?

(2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?

在折痕上另取一点,再试一试,你又有什么发现?

学生会得到下面的结论:

(1)线段是轴对称图形.

(2)它的对称轴垂直于这条线段并且平分它.

(3)对称轴上的点到这条线段的距离相等.

应用:

(1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.

(2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.

小结:

(1)角是轴对称图形.

(2)角平分线上的点到这个角的两边的距离相等.

(3)线段是轴对称图形.

(4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.

(5)线段垂直平分线上的点到这条线段的两个端点距离相等.

篇7:五年级下册轴对称课件

五年级下册轴对称课件

【教学目标】

知识与技能

1、能理解平面直角坐标系中,与已知点关于x轴或轴对称的点的坐标的规律。

2、能作出与一个形关于x轴或轴对称的形。

过程与方法

1、通过作提高学生的实践能力。

2、通过现实情境的创设,使学生体验到数学就在我们身边,从而培养审美情趣。

情感、态度与价值观

1、通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

2、在作过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

【重点难点】

重点:用坐标表示点关于坐标轴对称的点的坐标。

难点:找对称点的坐标之间的关系、规律。

【自主学习】

一、复习:

1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个形叫轴对称形,这条直线叫____。

2、经过线段的___并且___于这条线段的直线叫做线段的垂直平分线,又叫做线段的中垂线。一条__的中垂线是它的对称轴。

3、如果两个形关于某直线对称,那么对称轴是任何一对对应点所连线段的_____;反过来,如果两个形各对对应点的连线被同一条直线____,那么这两个形关于这条直线对称。

4、在平面直角坐标系中,点 P(1,-1)关于 x 轴对称的.点的坐标是___;点 P1(1,2) 关于  轴对称的点的坐标是____。

二、思考:

分别写出下列各点关于 x 轴、轴对称的点的坐标:

一般地,已知点 P (a,b):

⑴ 点 P 关于x 轴对称的点的坐标为P1(__,__),

⑵ 点 P 关于  轴对称的点的坐标为 P2(__,__)。

关于 x 轴对称的点,横坐标_______,纵坐标_______,关于  轴对称的点,横坐标_______,纵坐标_______。

四、例题:

⑴ 如上,写出四边形 ABCD 的 4 个顶点的坐标;

⑵ 画出四边形 ABCD 关于  轴的对称形 A1B1C1D1;

⑶ 写出点 A1,B1,C1,D1 的坐标。

五、巩固练习:

1、分别写出下列各点关于 x 轴、轴对称的点的坐标:

A(-2,4) , B(3,-2) ,

C(-1,-2) , D(4,0) 。

2、作出中多边形 ABCD 关于 x 轴、轴的对称形。 (上“五-2”)

3、已知长方形 ABCD 的顶点坐标为 A(2,4),B(6,4),C(6,2),D(2,2) 。

⑴ 在⑴中画出长方形 ABCD 向下平移 6 个单位得到的长方形 A1B1C1D1,写出点 A1,B1,C1,D1 的坐标;

⑵ 在⑵中画出长方形 ABCD 关于 x 轴对称的长方形 A2B2C2D2,写出 A2,B2,C2,D2 的坐标;

⑶ 你认为上述两题变换所得的结果是否一样?为什么?

4、△ ABC 在平面直角坐标系中的位置如所示。

⑴ 作出△ABC 关于  轴对称的△A1B1C1,并写出点 A1,B1,C1,的坐标;

⑵ 将△ABC 向右平移 6 个单位,作出平移后的△A2B2C2,写出点 A2,B2,C2,的坐标;

⑶ 观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在上画出这条对称轴。

六、习题:

1、若点 P 在第三象限,则点 P 关于  轴的对称点在第__象限,点 P 关于 x 轴的对称点在第__象限。

2、点 P (-2,3) 关于 x 轴的对称点坐标是______。

3、已知点 P (3,-1) 关于  轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=__。

4、已知点 A (2,a) 关于 x 轴的对称点是 B ( b,-3 ) ,则 ab=__。

5、若点 (10-a,5+b) 与点 (2,-5) 关于  轴对称,则 a+b=___。

6、在平面直角坐标系中,若点P(3,a) 和点Q(b,-4) 关于x轴对称,则a+b=__。

篇8:三年级轴对称图形课件

教学目标:

1、使学生初步认识生活中的对称现象,认识轴对称图形和对称轴;知道轴对称图形的含义,能判断一个图形是否是轴对称图形。

2、会根据轴对称图形的特点,找出相应的对称轴。

3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。

4、培养学生的观察能力和动手操作能力。

教学重点:

掌握轴对称图形的特点,能判断一个图形是否是轴对称图形。

教学难点:

会找出轴对称图形的对称轴。

教学准备:

多媒体课件,剪纸

学具准备:

长方形纸一张、剪刀、

教学过程:

一.情景欣赏:

师:同学们,老师今天给大家带来了一些的图片,请大家欣赏,在欣赏的同时观察这些图片有什么特点。

1.屏幕出现图片

(1)自然景观图片

师:这景色美吗?

生:美

师:大自然的景色很美,而且还很有特点,聪明的设计师和能工巧匠利用大自然的特点设计和建造了一些美丽的建筑。

(2)轴对称建筑图片

师:你看到的图形有什么特点?

生:有,有的左右一样,有的上下一样。两边一样

师:我们的生活中经常也可以看到具有这种特点的物体和图形。

(3)生活中的轴对称图片

师:剪纸是我国的民间艺术,历史悠久,流传广泛,它最能体现这种特点。

(4)剪纸图片

2、对图形进行概括:

师:你们所看到的这些图形都有什么特点?

生:有的左右一样,有的上下一样。两边一样,有一种对称美。

师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题 :轴对称图形 )轴对称这种特点在我们日常生活中,应用很广泛,到底什么样的图形是轴对称图形呢?这就是我们今天要研究的问题。

二.动手操作发现新知:

1、师:我们来做个实验,先看大屏幕老师怎么做

(演示课件。折纸------画图-----剪纸-----打开)

师:现在请大家拿出你手中的长方形纸和剪刀,向老师这样也剪出一个简单的图形。

2、学生操作(教师巡视指导)

师:通过剪纸,你发现了什么?

生:我发现了我这个图形的两边一样,中间还有一条折痕,

师:那你知道它是什么图形吗?

生:轴对称图形。

师:能用你的话说一说什么是轴对称图形?

3、揭示特征。

师:老师给大家再演示一下

演示课件,概括轴对称图形的概念。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。 折痕所在的这条直线叫做对称轴

4、举例:

师:你能说一说生活中你见过哪些轴对称图形?

生:举例,师点评

师:同学们对什么是轴对称图形理解的非常好,现在我们在来研究一下我们学过的一些图形,看他们是不是轴对称图形。

三. 合作研讨探究(轴对称图形的探索与提高)(四人小组)

1.、把下面的图形剪下来折一折,看一看那些是轴对称图形?并画出他们的对称轴。

2,结论:课件演示

通过刚才剪一剪 ,折一折,画一画,你们又发现了什么?

师:通过合作研究,我们知道了这些图形中有的是轴对称图形,有的不是;有的轴对称图形只有一条对称轴,有的有两条,三条,四条,还有的有无数条对称轴。

四.巩固练习。

1、考考你的眼力

(1)下面的图形那些是轴对称图形?找出它们的对称轴。

师:不光这些几何图形是轴对称图形,我们学过的字母、数字、汉字有些也是轴对称图形。

(2)下面的字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?

A C D E F T G H U

1 2 3 4 5 6 7 8 9

王 上 田 大 中 日 人 朋 两

2、.填一填

(1)、如果一个图形沿着( )对折,两侧的图形能够( )这个图形就是轴对称图形。折痕所在的这条直线叫做( )。

(2)、圆是( )图形,在同一圆里任何一条( )都是圆的对称轴。

(3)、等边三角形有( )条对称轴

3.、.判断

(1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。 ( )

(2)平行四边形可分成两个完全一样的三角形,所以,平行四边形也有两条对称轴。( )

(3)圆上任意两点间的线段都是圆的对称轴。( )

(4)有两条对称轴的图形只有长方形。( )

5. 画出下面每组图形的对称轴.各能画几条?

五. 课堂小结:

1.通过这节课的学习你有什么收获?

2、结束语:

师:对称是一种美,是数学美在生活中的`具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们的合作,再见。

六.、板书设计:

轴对称图形

对折后能完全重合的图形是轴对称图形。

篇9:三年级轴对称图形课件

学习内容:教材P39-42

学习目标:1、能够作轴对称图形。

2、能够用轴对称的知识解决相应的数学问题。

学习重点:作轴对称图形。

学习难点:用轴对称知识解决相应的数学问题。

学习方法:操作、归纳、交流、练习

学习过程:

一、学习新知:

(一)探究轴对称前后两个图形的性质

1、阅读教材P39的四辐图

2、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?

3、归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的、完全相同。

(2)新图形上一个点,都是原图形上的某一点关于直线l的点。

(3)连接任意一对对应点的线段被对称轴

(二)、作轴对称图形

1、如图,已知△ABC和直线l,你能作出△ABC关于直线l对称的图形。

二、巩固提高

1、把下列图形补成关于L对称的图形。

2.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?

3、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。

三、反思归纳

1、本节课学习的内容:

2、数学思想方法归纳:

篇10:轴对称图形的课件

教材简析:

本课的教学对象是小学三年级的学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,以多媒体课件为学习媒体,让学生自主探索,在探索中发现,在探索中学习。在教学中,我通过让学生找生活中的对称物体,欣赏图片,加强了知识与生活之间的联系。同时,学生通过动手、折一折、画一画、猜一猜、剪一剪等活动,建立起了轴对称图形的概念,探索出了轴对称图形的特征以及判断轴对称图形的方法。

教学目标:

1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。

2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

教学重点:

使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

教学难点:

引导学生自己发现和认识轴对称图形的一些基本特征。

教学准备:

多媒体课件一套,每小组有不同的图形一套,小剪刀等。

教学过程:

一、创设情境,引入新课

情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”

1、请你猜一猜,他们分别是什么?

2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)

小结:像这些昆虫的两边是一模一样,我们就说它是对称的。

【设计意图:从学生熟悉的'事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】

师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。

生:左右两边一模一样。

二、合作交流,感悟新知

1、初步感知

过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?

生:蝴蝶,裤子,鞋子,七星瓢虫等。

师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。今天老师也要给你们露一手,看看我要表演什么啊?(剪纸)嗯,不过,你能猜出我剪的是什么吗?

学生回答:(剪一棵松树)。

提问:那么仔细观察这两个图形,看看它们有什么相同的地方?

引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。

继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。

引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。

小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。

揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)

同桌互相说一说什么是轴对称图形。

【设计意图:通过折音符图形,得出音符图形只有部分重合,在与松树、爱心图形的比较中,感受部分重合与完全重合的区别,学生对“完全重合”的认知已经非常地清晰,从而深刻理解轴对称图形的特征。】

2、加深理解

过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。

(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?

(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?

小结:对称轴可以有不同的方向。

(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成

轴对称图形吗?(添柄、去柄)

小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。

【设计意图:通过不同角度的杯子照片,让学生明白可以横着画对称轴,也可以竖着画对称轴,也可以斜着画对称轴,对称轴可以有不同的方向。】

三、动手操作,巩固新知

1、折一折

过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。

(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?

(2)生折交流汇报。

平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)

能不能折一次就好了?

小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。

(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?

生演示并说明理由

等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。

小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。

2、判断

过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。

出图生判断,说说对称轴在哪?

【设计意图:练习设计体现生活化、多样化、层次分明,同时也让学生再一次感受到数学与生活的密切联系。即让学生巩固理解轴对称图形的特征,同时又突出轴对称图形的重要性。】

四、再次探索,掌握画图方法

过渡:刚才我们是根据一半的图形猜出另一半,那如果告诉你轴对称图形的一半,你能画出它的另一半吗?

(1)生尝试画一个,汇报交流

你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?

(2)方法小结:第一步找对称点,第二步依次连线。

说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。

(3)用这种方法完成其他两幅图并汇报交流。

五、全课总结,分享收获

今天,我们学习了轴对称图形,你有哪些收获呢?

六、欣赏图片,拓展知识

留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多著名的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。

[资料链接]脸谱是我国的国粹,京剧脸谱是我国戏剧中独有的化妆艺术,具有很高的欣赏价值,从数学角度看,这些脸谱在设计绘画中采用的就是轴对称的方式。还有造型奇巧的剪纸艺术作品都是我们民间艺术家利用轴对称的原理制作的。另外,在标志建筑,服装、国旗、体育、运输、航天等很多地方都设计应用了对称方式。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。