“zhuzh”通过精心收集,向本站投稿了9篇一种用VHDL设计嵌入式Web Server的方案,以下是小编整理后的一种用VHDL设计嵌入式Web Server的方案,欢迎阅读分享,希望对您有所帮助。

一种用VHDL设计嵌入式Web Server的方案

篇1:一种用VHDL设计嵌入式Web Server的方案

一种用VHDL设计嵌入式Web Server的方案

摘要:近几年嵌入式Internet开始迅猛发展,但绝大多数嵌入式Internet都使用微控制器和相应的软件来实现。本文介绍一种基于硬件来实现嵌入式Web Server的方案。该方案的核心思想是用VHDL语言来设计实现,并且用FPGA进行验证。

关键词:VHDL Internet协议 控制信息协议 数据报

最近几年随着Internet应用的迅猛发展,Internet的通信协议,特别是TCP/IP协议,已成为嵌入式Internet的主体构架;然而,仅仅使用嵌入TCP/IP协议对许我应用来说远远不够,它们要求更高层次的信息传输和交换方式。在原有嵌入TCP/IP协议基于上加入HTTP/1.1将构成一个功能较为简单的嵌入式Web Server,它可以接收和发送一些简单的数据和命令。如果再将这些嵌入通信协议和Web功能用VHDL来实现的话,将大大降低嵌入成本,满足嵌入式产品对Web功能的要求。

1 嵌入式Web Server中的协议裁减

嵌入式Web Server中用到的通信协议较多,若全部采用,将导致整个嵌入式Web Server异常复杂,而且费用显著增加。因此,为保证嵌入式Web Server最简化,必须对一些主要的通信协议进行相关的裁减,减小整个硬件设计的复杂性。

1.1 IP协议

IP在网络中主要实现2个基本功能:寻址和分段。IP可以根据数据报头中包括的目的地址将数据报传送到目的地。在此过程中,IP负责选择传送的通道。如果有些网络内只能传送小的数据报,IP可以将数据报重新组装并在报头域内说明。

(本网网收集整理)

在嵌入式Web Server中,由于只需传送一些简单的数据和命令,数据报的长度很小,足以适合在任何网络中传送,因此对于分段的功能可以裁减不要。

IP数据包头如图1所示。

在IP数据包头中,服务类型是指一些服务质量的参数,这些参数用于在特定网络指示所需要的服务。而选项包括时间戳,安全和特殊路由,在数据包中可以没有。因此,为简化嵌入Web Server的复杂程度,这2个字段都可以忽略,而且不用作任何处理。标识是发送时用于帮助重组分段包的,段偏移量是指示这个段在数据报中什么位置。由于不采用分段功能,因此这些字段都无须考虑也不用作任何处理,而且标记字段第2位必须为1,表示是不可分段的。

1.2 ICMP协议裁减

ICMP协议用于报告在数据报过程中的错误,它在以下几种情况下发送ICMP消息:未达目的地、超时、参数总是、源拥塞、重定向、回送或回送响应、时间戳和时间戳响应、信息请求或信息响应。

由于嵌入式Web Server只是一个具有简单Web功能的模块,并且它对外部传感器和网络之间只是简单的数据传输和命令的发布;因此跟成本相比较而言,许多可靠性措施可以忽略不计,只考虑一些必要。在ICMP消息报告中,回送或回送响应消息、信息请求或信息响应消息在网络信息处理中至关重要,因此予以采用;其它消息报告可以忽略,保证嵌入式Web Server最简化。

1.3 TCP协议裁减

TCP,即传输控制协议,是一种面向连接的传输层协议。通过使用序列号和确认信息,TCP协议能够向发送方提供到达接收方的数据包的传送信息。当传送过程中出现数据包丢失情况时,TCP协议可以重新发送丢失的数据包,直到数据成功到达接收方或者出现网络超时为止。TCP协议还可以识别重复信息,丢弃不需要的多余信息。使网络环境得到优化。如果发送方传送数据的速度大大快于接收方接收数据的速度,TCP协议可以发送和接收的数据响应。TCP协议能够把数据传送信息传递给所支持的更高层次的协议或应用使用。

但在嵌入式Web Server中,考虑到实现的`情况和复杂性,对于TCP协议,除了采用数据包传送机外,重新发送和数据流控制机制都可以忽略不计。因此在嵌入式Web Server中,只传送一些简单的数据和命令,而且数据量很少,因此,在系统中不会产生网络拥塞,只需在其它客户端或访问端上用流量控制机制就可以了。同时由于嵌入式Web Server功能简单,重新发送的可靠性不大;如果真的要求重发的话,可以与嵌入式Web Server重新进行连接,来完成传送任务。

2 硬件结构

由于TCP协议、IP协议和ICMP协议被简化,整个协议的处理只需由协议状态机来完成。它须负责接收IP数据报、做相应的检验和消息处理、协议解释、根据接收到的信息进行TCP状态的转换、构造IP发送数据报。

整个嵌入式Web Server的硬件结构如图2所示。嵌入式

Web Server由本地网络协议处理器、TCP处理器、IP数据包接收和发送处理及存储器、嵌入式Web Server IP的地址寄存器、传感器数据采集接口组成。在嵌入式Web Server的传感器数据采集接口的数据直接传送到主页存储器中。

IP数据报处理检查数据报是否发送给嵌入式Web Server以及是否有效。

TCP状态机是一个简化的TCP连接过程,只有6个状态,不包括错误情况和错误处理。

HTTP的存储器包含了接收到的HTTP的报头。如果接收到的IP包体有一个有效HTTP载荷,那么HTTP/1.0协议解释器会搜索存储器寻找相应的回答。IP数据报构造器根据HTTP/1.0协议解释器搜索结果构造发送的包体。其中地址、端口号、确认号、序列号是根据接收到的数据包体产生的,而校验码是根据发送的数据产生。其它信息则是从数据接口和主页内存中形成的。

整个硬件设计采用了VHDL语言,采用Xilinx的FPGA进行仿真。

3 VHDL设计

整个嵌入式Web Server的具体的VHDL设计在这里不多说明,只介绍其核心的TCP状态机的状态转移顺序和转移条件的设计。整个协议状态机有6种状态,还可以分离出6种事件,这些事件的发生可以引起状态间相互转换,如图3所示。

SYN表示连接请求;ACK(SYN)表示连接确认;RST表示拒绝建立连接;FIN(CLOSE)主动关闭连接请求;ACK(FIN)关闭连接确认;TIME OUT计时等待结束。

TCP状态机的VHDL的设计代码省略。

4 结论

嵌入式Web Server的网络连接既可以采用以太网方式,也可以采用蓝牙技术,这可以根据需要来选定。采用硬件来解决嵌入式Web Server,关键在于它的复杂度很低,而且可以根据需要嵌入到相应的运用系统的芯片中去,减少了开发时间,降低了成本。采用VHDL使设计移植更加方便。

篇2:一种用VHDL设计嵌入式Web Server的方案

一种用VHDL设计嵌入式Web Server的方案

摘要:近几年嵌入式Internet开始迅猛发展,但绝大多数嵌入式Internet都使用微控制器和相应的软件来实现。本文介绍一种基于硬件来实现嵌入式Web Server的方案。该方案的核心思想是用VHDL语言来设计实现,并且用FPGA进行验证。

关键词:VHDL Internet协议 控制信息协议 数据报

最近几年随着Internet应用的迅猛发展,Internet的通信协议,特别是TCP/IP协议,已成为嵌入式Internet的主体构架;然而,仅仅使用嵌入TCP/IP协议对许我应用来说远远不够,它们要求更高层次的信息传输和交换方式。在原有嵌入TCP/IP协议基于上加入HTTP/1.1将构成一个功能较为简单的嵌入式Web Server,它可以接收和发送一些简单的数据和命令。如果再将这些嵌入通信协议和Web功能用VHDL来实现的话,将大大降低嵌入成本,满足嵌入式产品对Web功能的要求。

1 嵌入式Web Server中的'协议裁减

嵌入式Web Server中用到的通信协议较多,若全部采用,将导致整个嵌入式Web Server异常复杂,而且费用显著增加。因此,为保证嵌入式Web Server最简化,必须对一些主要的通信协议进行相关的裁减,减小整个硬件设计的复杂性。

1.1 IP协议

IP在网络中主要实现2个基本功能:寻址和分段。IP可以根据数据报头中包括的目的地址将数据报传送到目的地。在此过程中,IP负责选择传送的通道。如果有些网络内只能传送小的数据报,IP可以将数据报重新组装并在报头域内说明。

在嵌入式Web Server中,由于只需传送一些简单的数据和命令,数据报的长度很小,足以适合在任何网络中传送,因此对于分段的功能可以裁减不要。

IP数据包头如图1所示。

在IP数据包头中,服务类型是指一些服务质量的参数,这些参数用于在特定网络指示所需要的服务。而选项包括时间戳,安全和特殊路由,在数据包中可以没有。因此,为简化嵌入Web Server的复杂程度,这2个字段都可以忽略,而且不用作任何处理。标识是发送时用于帮助重组分段包的,段偏移量是指示这个段在数据报中什么位置。由于不采用分段功能,因此这些字段都无须考虑也不用作任何处理,而且标记字段第2位必须为1,表示是不可分段的。

1.2 ICMP协议裁减

ICMP协议用于报告在数据报过程中的错误,它在以下几种情况下发送ICMP消息:未达目的地、超时、参数总是、源拥塞、重定向、回送或回送响应、时间戳和时间戳响应、信息请求或信息响应。

由于嵌入式Web Server只是一个具有简单Web功能的模块,并且它对外部传感器和网络之间只是简单的数据传输和命令的发布;因此跟成本相比较而言,许多可靠性措施可以忽略不计,只考虑一些必要。在ICMP消息报告中,回送或回送响应消息、信息请求或信息响应消息在网络信息处理中至关重要,因此予以采用;其它消息报告可以忽略,保证嵌入式We

[1] [2] [3]

篇3:一种嵌入式系统的内存分配方案

①快速性。嵌入式系统中对实时性的保证,要求内存分配过程要尽可能地快。因此在嵌入式系统中,不可能采用通用操作系统中复杂而完善的内存分配策略,一般都采用简单、快速的内存分配方案。当然,对实性要求的程序不同,分配方案也有所不同。例如,VxWorks采用简单的最先匹配如立即聚合方法;VRTX中采用多个固定尺寸的binning方案。

②可靠性。也就是内存分配的请求必须得到满足,如果分配失败可能会带来灾难性的后果。嵌入式系统应用的环境千变万化,其中有一些是对可靠性要求极高的。比如,汽车的自动驾驶系统中,系统检测到即将撞车,如果因为内存分配失败而不能相应的操作,就会发生车毁人亡的事故,这是不能容忍的。

③高效性。内存分配要尽可能地少浪费。不可能为了保证满足所有的内存分配请求而将内存配置得无限大。一方面,嵌入式系统对成本的要求使得内存在其中只是一种很有限的资源;另一方面,即使不考虑成本的因素,系统有限的空间和有限的板面积决定了可配置的内存容量是很限的。

2 静态分配与动态分配

究竟应用使用静态分配还是动态分配,一直是嵌入式系统设计中一个争论不休的总是。当然,最合适的答案是对于不同的系统采用不同的方案。如果是系统对于实时性和可靠性的要求极高(硬实时系统),不能容忍一点延时或者一次分配失败,当然需要采用静态分配方案,也就是在程序编译时所需要的内存都已经分配好了。例如,火星探测器上面的嵌入式系统就必须采用静态分配的方案。另外,WindRiver公司的一款专门用于汽车电子和工业自动化领域的实时操作系统OSEKWorks中就不支持内存的动态分配。在这样的应用场合,成本不支持内存的动态分配。在这样的应用场合,成本不是优先考虑的对象,实时性和可靠性才是必须保证的。当然,采用静态分配一个不可避免的总是就是系统失去了灵活性,必须在设计阶段就预先知道所需要的内存并对之作出分配;必须在设计阶段就预先考虑到所有可能的情况,因为一旦出现没有考虑到的情况,系统就无法处理。这样的分配方案必须导致很大的浪费,因为内存分配必须按照最坏情况进行最大的配置,而实际上在运行中可能使用的只是其中的一小部分;而且在硬件平台不变的情况下,不可能灵活地为系统添加功能,从而使得系统的升级变得困难。

大多数的系统是硬实时系统和软实时系统的综合。也就是说,系统中的一部分任务有严格的时限要求,而另一部分只是要求完成得越快越好。按照RMS(Rate Monotoin Scheduling)理论,这样的系统必须采用抢先式任务调度;而在这样的系统中,就可以采用动态内存分配来满足那一部分可靠性和实时性要求不那么高的任务。采用动态内存分配的好处就是给设计者很大的灵活性,可以方便地将原来运行于非嵌入式操作系统的程序移植到嵌入式系统中,比如,许多嵌入式系统中使用的网络协议栈。如果必须采用静态内存分配,移植这样的协议栈就会困难得多。另外,采用动态内存分配可以使设计者在不改变基本的硬件平台的情况下,比较灵活地调整系统的功能,在系统中各个功能之间作出权衡。例如,可以在支持的VLAN数和支持的路由条目数之间作出调整,或者不同的版本支持不同的协议。说到底,动态内存分配给了嵌入式系统的程序设计者在比较少的限制和较大的自由。因此,大多数实时操作系统提供了动态内存分配接口,例如malloc和free函数。

3 RTOS提供的内存分配接口

不同的RTOS由于其不同的定位,采用不同的内存分配策略。例如VRTX中,采用类似于GNU C中由Doug Lea开发的内存分配方案,即Binning算法,系统内存被分成了一些固定尺寸的内存块的算法,系统内存被分成了一些固定尺寸的内存块的集合。这种方法的优点是查找速度快而且不会产生内存碎片。但是,它的缺点也很明显,就是容易造成浪费,因为内存块的尺寸只有有限个,分配时只能取较大的内存块来满足一个较小的需求,累积起来,浪费就很大了;而且操作系统管理这样一个内存分配表也是一个很大的负担。

下面详细介绍一下我们常用的RTOS――美国风河公司(WindRiver)的VxWorks中采用的内存分配策略。VxWorks的前身就是VRTX,据说VxWorks的名称来自make vrtx work。

VxWorks的内存管理函数存在于2个库中;memPartLib(紧凑的内存分区管理器)和memLib(完整的内存分区管理器)。前者(memPartLib)提供的工具用于从内存分区中分配内存块。该库包含两类程序,一类是通用工具创建和管理内存分区并从这些分区中分配和管理内存块;另一类是标准的malloc/free程序提供与内存分区的接口。系统内存分区(其ID为memSysPartId是一个全局变量)在内核初始化时由usrRoot调用memInit创建。其开始地址为RAM中紧接着VxWorks的BSS段之后,大小为所有空闲内存,如图1所示。(本网网收集整理)

当创建其它分区时,一般需要先调用mallo

c从系统内存分区中分配一段内存才能创建。内存分区的结构定义为mem_part,包含1个对象标记,1个双向链表管理空闲块,1个信号量保护该分区及一些统计信息,如总尺寸、最大块尺寸、调试选项、已分配的块数、已分配的尺寸等。其语句如下:

typedef struct mem_part {

OBJ_CORE objCore; /*对象标志*/

DL-LIST freeList; /*空闲链表*/

SEMAPHORE sem; /*保护分区的信号量*/

Unsigned totalWords; /*分区中字(WORD)数*/

Unsigned minBlockWords; /*以字为单位的最小块尺寸*/

Unsigned options; /*选项,用于调试或统计*/

/*分配统计*/

unsigned curBlocksAllocated; /*当前分配的块数*/

unsigned curWorkdAllocated; /*当前分配的字数*/

unsigned cumBlockAllocated; /*累积分配的块数*/

unsigned cumWordsAllocated; /*累积分配的字数*/

}PARTITION;

一般系统中只有1个内存分区,即系统分区,所有任务所需要的内存直接调用malloc从其中分配。分配采用First-Fit算法(注意这种算法容易导致大量碎片),通过free释放的内存将被聚合以形成更大的空闲块。这就是VxWorks的内存分配机理。分配时可以要求一定的`对齐格式。注意,不同的CPU架构有不同的对齐要求。为了优化性能,malloc返回的指针是经过对齐的,为此的开销随构不同而不同。例如,68K为4字节对齐,开销8字节;SPARC为8字节对齐,开销12字节;MIPS为16字节对齐,开销12字节;I960为16字节对齐,开销16字节。

MemLib库中提供了增强的内存分区管理工具,并且增加了一些接口,而且可以设置调试选项。可以检测2类错误:①尝试分配太大的内存;②释放内存时发现坏块。有4种错误处理选项,当发生错误时记录消息或挂起任务。

但是,使用动态内存分配malloc/free时要注意到以下几方面的限制。①因为系统内存分区是一种临界资源,由信号量保护,使用malloc会导致当前调用挂起,因此它不能用于中断服务程序;②因为进行内存分配需要执行查找算法,其执行时间与系统当前的内存使用情况相关,是不确定的,因此对于有规定时限的操作它是不适宜的;③由于采用简单的最先匹配算法,容易导致系统中存在大量的内存碎片,降低内存使用效率和系统性能。

针对这种情况,一般在系统设计时采用静态分配与动态分配相结合的方法。也就是对于重要的应用,在系统初始化时分配好所需要的内存。在系统运行过程中不再进行内存的分配/释放,这样就避免了因内存的分配释放带来的总是。而且在系统初始化,因为没有内存碎片,对于大的内存块的需求容易满足。对于其它的应用,在运行时进行动态内存分配。尤其是某些应用所要求的大量固定尺寸的小内存块,这时就可以采用一次分配多次使用的内存分配方案。下面详细介绍这种内存分配方案及其应用场合。

4 一次分配多次使用的内存分配方案

在嵌入式系统设计中,经常有一些类似于内存数据库的应用。这些应用的特点是在内存中管理一些树,比如以太网交换机中的MAC地址表、VLAN表等,或者路由器中的路由表。这些树是由许多相同尺寸的节点组成的。这样,就可以每次分配一个大的缓冲池,比如包含多个内存单元的数组,每个内存单元用于1个节点。我们用一个空闲链表来管理该数组中的空闲内存单元。每次程序需要分配内存以创建1个新的节点时,就从空闲链表中取1个单元给调用者。程序删除节点并释放内存时,将释放的内存单元返还给空闲链表。如果链表中的空闲内存单元取空了,就再次调用malloc从系统内存中分配一个大的内存块作为新的缓冲池。采用这样一种方案主要有如下优点:①减少了malloc/free的调用次数,从而降低了风险,减少了碎片;②因为从缓冲池中取一个内存单元是时间确定的(当然,如果缓冲池耗尽从而需要重新调用malloc分配除外),因此它可以用于严格时限的场合从而保证实时性;③它给用户以自由来添加一些用于内存分配和释放的调试函数以及一些统计功能,更好地监测系统中内存的使用情况。

这种方案必然涉及到一个缓冲池的结构。一般缓冲池的结构由以下几部分组成:单元尺寸、块尺寸(或者单元数目)、缓冲池指针、空闲链表、用于统计和调试的参数等。对缓冲池的操作包括创建缓冲池、释放缓冲池、从缓冲池中分配1个内存单元、释放内存单元回缓冲池等。下面举2个例子说明一下该方案的具体使用情况。

4.1 Intel交换机驱动程序中内存分配

在以Intel的交换芯片为基础的交换机方案中,因为采用的是软件地址学习的方式,需要在内存中维护许多数据,如MAC地址表的软拷贝、VLAN表、静态单播地址表、组播地址表等。这些表都是由一些树组成,每个树由一些固定尺寸的节点组成。一般每个节点几十个字节,每棵树的节点数是可增长的,少则几十,最多可到16K个节点。因此,很适合于采用该方案,具体的实现如下:

(1)缓冲池结构BlockMemMgr

typedef struct{

MemSize data_cell_size; /*数据单元的尺寸*/

MemSize block_size; /*块尺寸*/

/*下面的变量为预定义的每个管理器最多包含的块数,如64

MAX_BLOCKS_OF_MEM_SIZE*/

Unsigned short blocks_being_used;/*已使用的块数*/

Void mem_ptr[PAX_BLOCKS_OF_MEM_SIZE];

一种用VHDL设计嵌入式Web Server的方案/*块数组*/

SLList free_data_cells_list; /*空闲链表*/

}BlockMemMgr;

结构中的参数包括:单元尺寸、块尺寸、已用块数、所有块的地址、空闲链表(单向链表)。

(2)缓冲池的管理函数

◆block_mem_create:创建块内存管理器,参数包括内存指针(如为NULL,表示自己分配)、块尺寸、单元尺寸、返回管理器指针。

过程如下:

①检验参数合法性。

②单元尺寸4字节对齐,计算每个块中的单元数。对内存指针进行4字节对齐或者分配内存指针。

③初始化结构BlockMemMgr,包括单元尺寸和块尺寸。设置第1个内存块的指针。如果内存是外来的,设置块已用标志(已用为0),表示不能增加块;否则,已用块数设为1。

④创建空闲链表,将块内所有单元添加到链表中,最后一个单元处于链表的最前面。

⑤返回BlockMemMgr。

◆block_mem_destroy:解构一个块内存管理器,释放它所分配的所有内存,调用者负责外部内存的释放。参数为BlockMemMgr。返回成功失败标志。

①参数合法性检测。

②删除单向链表(设链表指针为NULL)。

③如果块是动态分配的,释放它们。

④释放结构BlockMemMgr。

◆block_malloc:从块内存管理器中分配1个单元

⑤释放结构BlockMemMgr

◆block_malloc:从块内存管理器中分配1个单元。参数为BlockMemMgr,返回数据单元指针。

①参数合法性检测。

②判断空闲链表是否为空(是否为NULL)。如果为空,判断是否可以动态分配块,如果不能,返回失败;如果可以动态分配块,则分配1个块,执行与block_mem_create一样的操作。

③从空闲链表中分配第1个单元,返回其指针。

注意这里有一个小技巧,即数据单元在空闲时其中存放空闲链表的节点信息,而分配后则存放数据内容。

◆block_free:释放1个数据单元,返回块内存管理器。小心不要对1个单元释放2次。参数为BlockMemMgr和单元指针。

①参数合法性检测。

②地址比较,判断数据单元属于哪个块。

③判断数据单元的内容是否为空闲链表节点信息(也就是块内某单元的地址),从而确定是否为2次释放。

④将该数据单元插入到空闲链表的前面。

⑤引用该单元的指针设为NULL。

内存管理代码遵守如下约定:①管理的内存是实际可写的内存;②分配内存是4字节或32位对齐;③block_malloc、block_free在中断级调用是部分安全的,除非BLOCK中已经没有空闲CELL,需要重新调用malloc分配新的BLOCK(而malloc和free就不是安全的,因为其中使用了信号量和搜索算法,容易引起中断服务程序阻塞)。当然,block_mem_create和block_mem_destroy必须在进程级调用。

4.2 TMS中的内存分配

TMS是WindRiver公司为可管理式交换机推出的开发包。它用用IDB来管理各种协议的数据,比如STP和GVRP等。为了支持IDB,它建立了自己的缓冲池管理方案,程序在bufPoolLib.c中。该程序包含用于缓冲池管理的函数,这些函数允许从1个池中分配固定数目和大小的缓冲区。通过预先分

配一定数目固定大小的缓冲区,避免了反复的小的内存块分配/释放相关联的内存碎片和浪费。既然它从1个单一的块中分配缓冲池,也比对每一个缓冲区执行1次分配有更高的空间效率。模块对每个缓冲区加上1个标记(MAGIC),释放时会检查标记。模块给用户提供分配和释放操作定义回调函数的能力。这样可以做到自动的对象创建和解构,同时允许由多个缓冲池分配的成员组成的对象做为1个单一的实体删除。这类似于C++中自动的对象构建和解构,不过是用C语言并且没有堆栈分配的负担。模块既允许从堆栈中分配缓冲池(通过calloc),也可以在用户分配的空间中创建它们。模块用1个单向链表来维护未分配的缓冲区,但不跟踪已分配的缓冲区。模块并不是任务安全的,用户需要用信号时来保护缓冲池。

(1)缓冲池结构

typedef struct

{

ulong_t magic; /*用于一致性检测的特殊标记*/

Boolean localAlloc; /*内存是否在创建缓冲区时分配*/

SL_LIST freeList; /*空闲链表*/

Void store; /*缓冲区指向的内存指针*/

STATUS(*createFn)(void*,ulong_t argl); /*创建缓冲区时的回调函数指针*/

STATUS(*destroyFn)(void*,ulong_targl);/*释放缓冲区时的回调函数指针*/

Ulong_t argVal;/*回调函数的参数*/

} buf_pool_t;

结构中的参数包括检查标记MAGIC、是否本地分配、空闲链表、内存指针、创建缓冲池的回调函数指针、释放时的回调函数指针、回调函数参数。

(2)相关函数

◆BufPoolInitializeStorage:分配和初始化存储区。参数包括存储区地址(如为NULL,则本地分配)、缓冲区大小、缓冲区个数。

①根据缓冲区大小和个数获得所需的内存大小。

②如果指针为NULL,则调用calloc分配内存。设置本地分配标志。

③初始化内存为0。

④初始化指针。分配的内存块最前面为缓冲池结构buf_pool_t。实际的存储区紧随其后。Buf_pool_t包含参数检查标记、是否本地分配、存储区地址、分配时回调函数、释放时回调函数、回调函数变量。此时只设置存储区指针。

◆BufPoolCreate:创建缓冲池。参数为内存制止。缓冲区尺寸和个数,创建时回调函数、释放时回调函数、回调函数参数。

①尺寸对齐。

②调用bufPoolInitializeStorage初始化内存区和buf_pool_t结构。

③用传入参数填充buf_pool_t结构。

④将缓冲区添加到空闲链表中,最后的缓冲区在最前面。

◆BufPoolDestroy:删除缓冲池。参数为buf_pool_t指针。

①检查缓冲池结构中的MAGIC字段是否被个性。

②如果是本地分配的则翻放内存区。

◆BufPoolAlloc:从缓冲池中分配一个缓冲区,参数为缓冲池结构指针。如果存在空闲缓冲区,则从空闲链表中除并提供给调用者,执行创建时回调函数。如果回调函数返回错误,则将缓冲区返还给空闲链表。

①检查缓冲池结构中的MAGIC标记是否完好。

②从空闲链表中取出头一个节点。

③如果节点不为空,清空节点,以其地址为参数调用回调函数。

④如果回调函数返回错误,则将节点还给空闲链表。

⑤返回得到空闲缓冲区地址。

◆BufPoolFree:将缓冲区返回给缓冲池。如果定义了回调函数,将在归还缓冲之间调用回调函数。参数为缓冲池结构和缓冲区指针。

①缓冲池MAGIC标记是否完好。

②如果定义回调函数、调用之。如果返回错误,则设置错误号。

③将缓冲区添加到空闲链表中头部。

注意该函数有2点:①回调函数返回错误,照样归还缓冲区。②没有检查缓冲区是否二次释放,这一点与Intel的驱动程序不同。

另外,TMS的缓冲池没有BLOCK要领,不需要判断哪个CELL属于哪个BLO

CK,简化 了操作。

5 小结

许多嵌入式应用在RTOS提供的malloc/free的基础上编写自己的内存管理方案。编写这样的内存管理方案,目的无非有两个:一是减少对malloc/free的依赖,从而避免由之带来的内存碎片、时间不确定等总是;另一个是增强程序的查错能力,送还内存使用错误。对于在嵌入式系统中广泛存在的数据库类型的内存需求,即分配多个固定尺寸的内存单元的要求,“一闪分配,多次使用”的方案无疑是一种很好的解决之道。文中介绍的2个例子很好地体现了它的优越性。

篇4:一种嵌入式系统的内存分配方案

①快速性。嵌入式系统中对实时性的保证,要求内存分配过程要尽可能地快。因此在嵌入式系统中,不可能采用通用操作系统中复杂而完善的内存分配策略,一般都采用简单、快速的内存分配方案。当然,对实性要求的`程序不同,分配方案也有所不同。例如,VxWorks采用简单的最先匹配如立即聚合方法;VRTX中采用多个固定尺寸的binning方案。

②可靠性。也就是内存分配的请求必须得到满足,如果分配失败可能会带来灾难性的后果。嵌入式系统应用的环境千变万化,其中有一些是对可靠性要求极高的。比如,汽车的自动驾驶系统中,系统检测到即将撞车,如果因为内存分配失败而不能相应的操作,就会发生车毁人亡的事故,这是不能容忍的。

③高效性。内存分配要尽可能地少浪费。不可能为了保证满足所有的内存分配请求而将内存配置得无限大。一方面,嵌入式系统对成本的要求使得内存在其中只是一种很有限的资源;另一方面,即使不考虑成本的因素,系统有限的空间和有限的板面积决定了可配置的内存容量是很限的。

2 静态分配与动态分配

究竟应用使用静态分配还是动态分配,一直是嵌入式系统设计中一个争论不休的总是。当然,最合适的答案是对于不同的系统采用不同的方案。如果是系统对于实时性和可靠性的要求极高(硬实时系统),不能容忍一点延时或者一次分配失败,当然需要采用静态分配方案,也就是在程序编译时所需要的内存都已经分配好了。例如,火星探测器上面的嵌入式系统就必须采用静态分配的方案。另外,WindRiver公司的一款专门用于汽车电子和工业自动化领域的实时操作系统OSEKWorks中就不支持内存的动态分配。在这样的应用场合,成本不支持内存的动态分配。在这样的应用场合,成本不是优先考虑的对象,实时性和可靠性才是必须保证的。当然,采用静态分配一个不可避免的总是就是系统失去了灵活性,必须在设计阶段就预先知道所需要的内存并对之作出分配;必须在设计阶段就预先考虑到所有可能的情况,因为一旦出现没有考虑到的情况,系统就无法处理。这样的分配方案必须导致很大的浪费,因为内存分配必须按照最坏情况进行最大的配置,而实际上在运行中可能使用的只

[1] [2] [3] [4] [5] [6] [7]

篇5:一种嵌入式WEB服务器的设计与实现

通常嵌入式系统硬件包括微控制器、存储器及外设器件和I/O端口等,其核心是嵌入式微控制器。为适应上网需求,嵌入式微控制器不仅要具有传统的控制功能,还要具有与因特网连接的功能。而Ubicom公司的SX52芯片能比较容易实现TCP/IP协议,选择它作为微控制器。关于传输媒质,采用最常用的连接模式即通过以太网连接Internet,利用网络接口控制器RTL8019AS实现数据链路层协议。RTL8019AS采用台湾Realtek公司生产的RTL8019AS芯片。

嵌入式WEB服务器硬件结构框图如图1所示。

嵌入式WEB服务器用SX52微控制器作为处理器,以太网驱动芯片RTL8019AS经耦合隔离滤波器HR61101G和RJ45接口接入以太网,配有RS232和CAN总线两个扩展接口,可以将具有RS232接口的设备或采用CAN总线协议通信的设备连到以太网上。RS232接口采用MAX232CPE芯片,CAN总线控制器采用Philips公司的SJAl000芯片,CAN收发器采用Philips公司的PCA82C250。

图1

数据的流向为:请求和控制信息从局域网中来,通过nJ45送到RTL8019AS,RTL8019AS负责将以太网帧的首部和尾部信息剥离,将处理后的数据包送入SX52的TCP/IP协议栈,由协议栈对数据包进行解析,得到原始的请求和控制信息。请求和控制信息再经过SJAl000进行CAN协议格式的数据封装,再与现场的CAN总线设备进行通信。请求和控制的回复信息到局域网的过程正好相反。

在嵌入式WEB服务器的硬件设计中,在确保通信功能顺利实现的同时,充分利用了SX52芯片I/O口灵活配置的特点,最大程度地节约了微控制器SX52的硬件资源。

图2为WEB服务器主要芯片连接电路简图,结合本图详细分析系统硬件设计。

1.1 RTL8019AS驱动程序实现

RTLS019AS是台湾Realtek公司制造的一种高集成度的全双工10Mbps以太网控制芯片,实现了基于Ethernet协议的MAC层的全部功能,内置16KB的SRAM、双DMA通道和FIFO完成数据包的接收和发送功能。在网关设计中,使用跳线模式(JP置为高)来硬配置RTLS019AS为8位模式;使用了RTL8019的低五位地址线A0~A4以及低8位数据线D0~D7。为满足RTL8019AS的ISA时序,RTL8019AS高端地址A5~A19须设置为0X300。SX52的B口的B0~B4脚作为地址线连接RTL8019AS的低5位地址线,B5~B7作为控制线分别连接读写时序控制脚IORB、IOWB、IOCHRDY;C口作为数据线连接RTLS019AS的低8位数据线;A口保留,用作日后扩展。设计中采用AT24C64这样一个8KB的EEPROM来保存WEB服务器的配置信息,如网关IP地址、MAC地址和SJAl000的ID网络标示符、网络掩码AMR和总线定时(BTR0、BTR1)等。这样就能够灵活方便地修改网关参数,适应不同环境,同时也考虑到以后的扩展。

图2

要实现嵌入式WEB服务器接入以太网,就要对RTL8019AS进行编程,完成以太网帧的数据收发,相当于实现PC机中网卡的驱动程序功能。首先要对RTL8019AS进行复位,并将其设置为跳线模式;然后对RTL8019AS的工作参数进行设置,以使其开始工作;接下来读写RTL8019AS的RAM以完成数据包的接收和发送。程序流程如图3所示。

1.2 TCP/IP协议栈的实现

并不是所有的协议在嵌入式WEB服务器中都要实现,应根据项目要求有选择地加以实现。以太网数据的传输采用MAC地址来识别,而ARP协议提供IP地址和数据链路层使用的MAC地址之间的转换功能,为了保证系统在以太网的通信,首先要实现ARP协议;由于嵌入式WEB服务器要能在Internet上通信,在网络层一定要实现IP协议,还要实现能报告数据传送差错等情况的ICMP协议;在应用层,主要实现远端主机通过浏览器的访问控制方式,所以要实现HTTP协议。而HTTP协议是基于TCP协议实现传输的,加上TCP协议是面向可靠的数据流的传输,基于应用的需要和对可靠性的要求,在传输层采用TCP协议,并对TCP协议进行简化处理,主要针对HTTP协议开发TCP协议。

&nb

sp; 由于嵌入式系统的资源有限,因此将TCP/IP协议最大幅度精简,以提高程序的运行速度,减少在SX52存储器中占用的空间。TCP/IP协议栈主流程图如图4所示。

(本网网收集整理)

精简协议主要遵循以下两个原则:

(1)协议内容精简

嵌入式WEB服务器的实现需要ARP、IP、TCP、ICMP等网络协议的支持,每一个完整协议都很庞大,在存储容量并不大的SX52上全部实现是不现实的`。应该在保证实现网络通信基本功能的前提下尽可能地精简协议,确定出协议的哪一部分是必需的,哪一部分可以省略,以满足系统要求。

(2)协议接口层次明确

TCP/IP协议分布在链路层、网络层、传输层和应用层上,是分层实现的,每一层只负责处理通信过程中的一部分问题,其它层不能实现其功能。采用模块化的设计思路,如果需要修改哪个协议,只需修改相应模块的功能,其它模块不用改动。协议分层简化了程序的设计和调试,每层的协议相互独立,使协议的开发更高效。在网络系统中,按照分层的思想,从网络最底层开始每一层都为高层提供服务,明确层间接口对软件开发十分重要。

篇6:一种嵌入式WEB服务器的设计与实现

Brower/Server(简称B/S)模式已经成为流行的开发模式,课题中的嵌入式WEB服务器要实现的功能主要是现场实时数据发布功能。B/S访问模式是WEBServer和Browser之间的直接访问。客户和服务器间的中间节点不对HTTP请求及响应做任何操作,只需在客户端采用如IE这样的浏览器对服务器上的数据进行浏览,不用开发客户端程序。采用B/S结构具有如下优势:

・具有分布性特点,可以随时随地进行业务处理;

・系统维护或升级只在服务器端,对客户端无须进行改动,只需要改变服务器端网页,即可实现所有用户的同步更新,易于维护和升级;

・开发简单,共享性强。

图4

B/S访问模式只需对服务器端程序进行开发。在服务器端形成动态网页最常用的工具有ASP和JSP。由于采用的嵌入式芯片SX52只有4KB存储容量,在SX52中既实现TCP/IP协议栈,又实现ASP和JSP的功能是很困难的。所以可以采用字节传输方式针对SX52用汇编语言编程实现动态网页。

Java applet能够被传送到浏览器并且在浏览器所在的本地机上运行。本设计正是利用了这一特性改进了传统的B/S模式设计出的应用程序,Java applet对于管理和处理动态数据也是一种行之有效的技术。Java applet能实时表示从轮询得到的更新信息,利用这个特性显示实时数据。所以程序客户端采用Java applet设计实现。

嵌入式WEB服务器接入以太网时,在程序中设置了自身的IP地址和MAC地址,可以与局域网上任一台微机通信。服务器端主要实现两部分功能:利用HTTP协议实现网页浏览功能和利用套接字编程实现与客户端applet通信的功能。服务器程序用SX52的汇编语言实现。

在WEB服务器中实现HTTP协议才能实现网页文件的浏览。方案中将WEB服务器上扩展的EEPROM与SX52相连,用来存储要浏览的WEB文件,EEPROM里的WEB内容采用原始数据的形式存储,没有进行封装和编码。文本内容以ASCⅡ码形式存储,图像内容以二进制数据形式存储。

篇7:一种嵌入式WEB服务器的设计与实现

摘要:介绍了一种嵌入式WEB服务器的设计与实现,实现了以太网与CAN总线网络的直接互连,使用户可以使用PC机通过Internet进行远程访问和控制Web服务器,从而能够将工业现场测控层监测设备得到的数据方便快捷地送到异地的管理监控层。

关键词:WEB服务器 以太网 CAN总线

在企业自动化的工业现场,下层车间的监测设备之间都是采用现场总线相互连接,而企业的管理层和生产监控层都是连于以太网的`PC,甚至是位于异地的连于互连网上的PC。为了使工业现场的现场总线上的设备和管理监控层之间的PC能够通信,同时改善故障检测和设备维护的远程访问能力,笔者在CAN总线网与以太网的互连系统中设计了一个嵌入式WEB服务器。

篇8:一种嵌入式WEB服务器的设计与实现

通常嵌入式系统硬件包括微控制器、存储器及外设器件和I/O端口等,其核心是嵌入式微控制器。为适应上网需求,嵌入式微控制器不仅要具有传统的控制功能,还要具有与因特网连接的功能。而Ubicom公司的SX52芯片能比较容易实现TCP/IP协议,选择它作为微控制器。关于传输媒质,采用最常用的连接模式即通过以太网连接Internet,利用网络接口控制器RTL8019AS实现数据链路层协议。RTL8019AS采用台湾Realtek公司生产的RTL8019AS芯片。

嵌入式WEB服务器硬件结构框图如图1所示。

嵌入式WEB服务器用SX52微控制器作为处理器,以太网驱动芯片RTL8019AS经耦合隔离滤波器HR61101G和RJ45接口接入以太网,配有RS232和CAN总线两个扩展接口,可以将具有RS232接口的设备或采用CAN总线协议通信的设备连到以太网上。RS232接口采用MAX232CPE芯片,CAN总线控制器采用Philips公司的SJAl000芯片,CAN收发器采用Philips公司的PCA82C250。

图1

数据的流向为:请求和控制信息从局域网中来,通过nJ45送到RTL8019AS,RTL8019AS负责将以太网帧的首部和尾部信息剥离,将处理后的数据包送入SX52的TCP/IP协议栈,由协议栈对数据包进行解析,得到原始的请求和控制信息。请求和控制信息再经过SJAl000进行CAN协议格式的数据封装,再与现场的CAN总线设备进行通信。请求和控制的回复信息到局域网的过程正好相反。

在嵌入式WEB服务器的硬件设计中,在确保通信功能顺利实现的同时,充分利用了SX52芯片I/O口灵活配置的特点,最大程度地节约了微控制器SX52的硬件资源。

图2为WEB服务器主要芯片连接电路简图,结合本图详细分析系统硬件设计。

1.1 RTL8019AS驱动程序实现

RTLS019AS是台湾Realtek公司制造的一种高集成度的全双工10Mbps以太网控制芯片,实现了基于Ethernet协议的MAC层的全部功能,内置16KB的SRAM、双DMA通道和FIFO完成数据包的接收和发送功能。在网关设计中,使用跳线模式(JP置

[1] [2] [3]

篇9:用MSP430实现的嵌入式因特网终端设计

用MSP430实现的嵌入式因特网终端设计

【摘要】本文详细描述了用TI公司的MSP430单片机实现嵌入式因特网终端的设计,包括硬件和软件两大部分。MSP430微控制器控制以太网控制器CS8900A实现本地局域网的功能,通过TCP/IP协议提供与因特网进行连接的应用接口,使用该应用接口,可以建立新的任务或改变现有的任务,实现与因特网中其它终端间的通信。在本文中,给出了硬件原理图,说明了部分模块的工作流程。

【关键词】因特网;MSP430;终端;以太网;TCP/IP

1.介绍

计算机通信系统尤其是因特网在日常生活中的作用越来越重要,并且呈加速发展的趋势。如今,上网不再是个人电脑和网络工作站的专利,很多用微控制器(或称单片机)控制的嵌入式系统也成为了因特网网络节点中的一员,通常,这种嵌入式系统可称为嵌入式因特网终端。试想,如果通过网页浏览器,能够完成对远处的微控制器控制,并能够接收到微控制器采集的信号,那将给人们的生活带来很大的便利和极大地推动生产力的发展。打个比方,如果通过办公室的一台连接到因特网的电脑和安装在家里的嵌入式控制器,人们就可以了解到家里或者发生的一切,那么家居防盗等一系列问题将会等到很好的解决。

MSP430是由于TI(TexasInstruments,美国德州仪器公司)开发的16位微处理器,其突出的特点是强调低功耗,非常适用于各种低功率要求的应用,有多个系列和型号。由于其性价比比较高,所以,被广泛应用于家居自动化,医疗设备,安防系统,楼宇控制系统等许多领域当中。本因特网终端设计方案中使用的MSP430F149是TI公司于2000年增加的MSP430F1X中的一员。

2.协议基础

ISO(InternetStandardOrganization,国际标准组织)于1981年提出了OSI(OpenSystemInterconnect,开放系统互连)七层网络模型。七层网络模型的最大优点是将服务、接口和协议这三个概念明确地区分开来:服务说明某一层为上一层提供一些什么功能,接口说明上一层如何使用下层的服务,而协议涉及如何实现本层的服务。

因特网采用的四层网络模型是OSI七层网络模型的一个子集,其具体的四层:应用层、传输层、因特网层和网络层,图1为因特网的四层网络模型与OSI七层网络模型的对应关系图。因特网模型通过数据分段(Segment)中的序列号保证所有传输的数据可以在远端按照正常的次序进行重组,而且通过确认保证数据传输的完整性。

图1OSI七层协议与因特网四层模型的对应关系

2.1以太网(Ethernet)[1]

以太网是目前用得最广泛的一种局域网,它在因特网四层网络模型当中,属于网络层。以太网网络中的每个节点具有相同的访问网络的权利,它们之间对网络占用是通过具有冲突检测的载波监听多路访问(CSMA/CD)的方法来实现的。数据采用曼彻斯特编码,网络中的连接一般采用双绞线或同轴电缆。以太网中每个节点具有一个48位、唯一编号的地址。每帧数据的最大长度为1518个字节,第一个48位为目标地址,第二个48位为数据源地址,然后是2个字节的数据帧类型值,在数据帧的最后,自动生成4个字节的循环冗余码校验(CRC)值,用于保证数据帧的完整性。

2.2传输控制协议TCP(TransmissionControlProtocol)

TCP提供了一种可靠的数据流服务,尽管TCP是DARAP协议组中的一员,但它却有很大的独立性。它对下层网络协议只有最基本的要求,很容易在不同的网络上建成,因而非常流行。ISO/OSI运输层标准中的第四类TP-4就是以TCP作为原型建立的。TCP可以在众多的网络上工作,可以提供虚拟电路服务和面向数据流的传输服务。用户数据可以有序而且可靠的传送。在一个分组可能发生丢失、破坏、重复、延迟或失序情况下,TCP服务可提供一种可靠的进程间通信机制,协议可以自动纠正各种差错。

2.3网际协议IP(InternetProtocol)

第三层最重要的协议是IP。它将多个网络联成一个互连网。IP的工作是将一个以上的报文处理网络联成一个网际网。IP的基本任务是通过网际网传送数据报,各个IP数据报之间是相互独立的。主机上的IP层基于数据链路层的服务向传输层提供服务。IP从源运输实体取得数据,通过它的数据链路层服务传给目的主机的IP层。网关通过下一网络数据报传到目的主机或下一网关。

2.4地址转换协议ARP(AddressResolutionProtocol)

在TCP/IP网络环境下,每个主机分配的组位IP地址只是一种逻辑地址,这样在传送时必须转换成物理地址,ARP协议就是完成这一功能的。?ARP使主机可以找到同一物理网络中任一物理主机的物理地址,只需给出该主机的网际地址即可。可见,基本网络的物理编址对网络层服务是透明的。

2.5其它协议

在因特网网络协议当中,还有其它相关的协议,如:反向地址转换协议RARP(ReverseAddressResolutionProtocol)、用户数据报协议UDP(UserDatagramProtocol)、网际控制报文协议ICMP(InternetworkcontrolMessageProtocol)、超文本传输协议(hypertexttransferprotocol)等,它们在因特网的数据交换当中都有什么重要的作用,本文限于篇幅,不一一详细介绍。

3.硬件设计[1]

本设计中所用到的两个重要组件为TI公司的'微处理器MSP430F149和Crystal公司的以太网控制器CS8900A,下面简单介绍一下这两个组件,再论述硬件实施方案。

3.1MSP430F149[2]

MSP430F149具有60K字节的FLASH存储器和2K字节的RAM、看门狗定时器(WatchdogTimer)、6个8位的通用I/O口、12位A/D转换器、2个串行通信接口和1个硬件乘法器等。MSP430F149的60K字节FLASH存储器足以存储网页数据,6个通用I/O口既可以用来控制以太网控制器CS8900A,也可以用来执行其它的用户命令,12位A/D转换器可以用来在终端采集数据,然后再通过网络发给用户.

3.2CS8900A[3]

CS8900A低功耗的以太网控制器,被广

泛应用于工控机中。其高集成度的设计(在应用当中只需要极少的外围元件)和简单容用的总线接口,非常适用于本设计。目前,许多的以太网控制器都只提供PCI(周边元件扩展接口)接口,而CS8900A可以直接和微控制器相连,所以,可以MSP430F149的I/O口来直接对CS8900A进行控制,具体连接方式如图2所示。另外,CS8900A可以直接3V供电,这有利于和MSP430F149之间的电平匹配。

3.3MSP430F149与CS8900A的接口

CS8900A有三种工作模式:I/O模式、存储器模式和直接存储器存储模式,默认为I/O模式,可通过程序使其工作于其它模式。CS8900A的各个工作模式各有优缺点,本设计当中,采用的是它的I/O模式。CS8900A共有8个16位的I/O口,这8个I/O口与片内的8个16位寄存器相对应。如图2所示,CS8900A采用8位的数据总线方式和MSP430F149的P5口相连,接口中共用到14个引脚。复位后,CS8900A默认选择I/O地址为0x300,并且一直保持该默认地址工作。

3.4系统硬件原理

整个系统的硬件原理如图2所示,下面详细分析图中的各个模块。

CS8900A的XTAL1(97)引脚和XTAL2(98)引脚接一20MHz的晶振,由于其片内XTAL处集成了电容,所以,不需要外接电容。CS8900A的复位引脚为高有效,在芯片上电工作时,需要一个复位信号,这由R9和C17提供联合提供。CS8900A有两个不同的LED控制引脚:LANLED(100)引脚和LINKLED(99)引脚,用于控制LED以显示CS8900A的工作状态。LANLED引脚接一个红色LED(D1),当CS8900A接收或发送数据时,该引脚输出低电平,点亮红色LED。LINKLED接一个黄色LED(D2),当CS8900A和工作的以太网络连接时,黄色LED点亮。

和MSP430F149有关的电路,除了上述的和CS8900A连接的部分外,还有JTAG(JointTestActionGroup)接口、晶振和复位电路。其中,JTAG接口用于编程和调试,用一个14引脚的接头引出了TCK、TDI、TDO/TDI四个用于编程和调试的引脚,可直接和MSP430的调试工具FET(FLASHEmulationTool)相连。用户也可以通过电平转换芯片MAX3221把MSP430F149的串行通信口也引出,以实现需要的功能。MSP430F149时钟电路部分,需要接一个8MHz的晶振和两个15pF的电容。

整个系统由3.3V的电源供电,绿色LED(D4)为整个系统的电源指示灯。为了系统扩展的需要,也可以把MSP430F149所有未用到的I/O引脚都用接头引出。

进行PCB(印制电路板)设计时,通过旁路电容滤波,以给MSP430F149和CS8900A提供稳压的电源信号。为了得到更好的系统性能和减小电磁干扰,最好能够把PCB布置为四层板。

3.5CS8900A与局域网的接口

CS8900A片内集成了一个10M的以太网收发器,其片内集成了所有用于和局域网通信的模拟和数字电路,其可通过一个电磁隔离器E2023直接和局域网相连。电阻R1用于连接两根接收线,和两根发送线相连的电阻R2和R3则用于阻抗匹配。RJ45为网络接头,其可接10M或100的网络集线器(hub)。

4.软件设计

本设计的软件部分主要分为四大部分:以太网模块、TCP/IP模块、API(应用程序接口)和HTTP(超文本传输协议)服务模块,全部程序用C语言编写(便于与其它微控制器系统的接口的扩展),并通过IARWorkbenchforMSP430V2.10编译。

4.1以太网模块

以太网部分程序的主要作用是对以太网控制器CS8900A进行驱动、以函数的形式给其它模块提供读写CS8900A寄存器的接口、产生读写CS8900A的时钟等。以太网程序包含了网络接口的各种配置,其中,最重要的是,MAC(介质访问控制)地址的配置。MAC地址共48位,在程序中用6个无符号整型变量存储MAC地址值,每个MAC地址值必需为唯一的,并且不能是0xFFFFFFFFFFFF。

以太网控制器的配置过程如下:在系统上电后,首先调用函数Init8900()进行以太网控制器CS8900A的初始化配置,然后CS8900A被复位,MSP430F149把本机的MAC地址以配置序列字的形式发给CS8900A,CS8900A把MAC地址存储在寄存器中。配置完成后,MSP430F149就可以对CS8900A读写数据了。

4.2TCP/IP模块

TCP/IP模块是整个系统软件的关键,定义了使用网络来收发数据的协议,使用以太网模块所提供的各种读写函数来接收或发送数据,并给应用层提供简单易用的API接口。

TCP/IP模块中,最重要的函数是DoNetworkStuff(),该函数的主要作用是进行TCP事件处理,应该周期性地被用户程序调用。在函数DoNetworkStuff()中,定义了一些用于标志以CS8900A和MSP430F149工作状态的标志量,该函数的工作流程如图3所示。函数DoNetworkStuff()被调用得周期越短,系统执行TCP/IP协议的性能越好。

为了更好的协调接发和发送的数据,给TCP/IP模块在SRAM中分配了三个缓冲区,TxFrame1、TxFrame2和RxTCPBuffer。其中,TxFrame1的主要作用是给要发送的TCP数据帧(包括以太网、IP、TCP帧头)提供缓冲内存;TxFrame2的主要作用是给TCP非数据帧(包括以太网、IP、TCP帧头)和ARP、CIMP协议帧提供缓冲内存;RxTCPBuffer给接收到的TCP数据提供缓冲内存。所分配的缓冲区越大,收发速度越快,因为这样可以减少因缓冲区不足造成的滞后。

可以通过主动或被动的方式调用函数TCPPassiveOpen()或TCPActiv

eOpen()建立网络通信连接。函数TCPPassiveOpen()函数的作用主要是用于检测到有数据包送入时,把数据包送入缓冲区,函数TCPActiveOpen()的主要作用是,把要发送的数据包送入缓冲区。在主动发送数据包之前,先设置要接收该数据包的MAC地址,并把本机地址包含进数据包。一旦连接建立完成,就可以开始发送数据,可以通过相应的接口函数读出连接的状态。当数据发送完毕,可以通过函数TCPClose()关闭连接。

在数据包收发的过程当中,不同的任务需要不同的处理时间,这个时间可以使用MSP430F149的定时器Timer_A来提供,不过必须注意的是,在使用定时器Timer_A之前,必须进行初始化,这点同使用其它微控制器是相似的。为了减少数据包发送不成功造成的错误,当接收机接收到数据后,其应当返回一个接收正确信号,当发送机超过设定时间,仍接收不到正确的接收信号时,TCP/IP模块自动进行数据包重发,这个过程可以通过相应的变量和函数来实现。

虽然,各个公司的软件处理TCP/IP协议的程序不尽相同,但幸运的是,各个公司在TCP/IP协议上的兼容性都非常好,因此,只要用户按照TCP/IP协议进行程序编写,不同的程序间的通信应该不存在多大的问题。

4.3API(应用编程接口)

为了使用户既能够使用现在的应用,也能够建立适用自己要求的嵌入式应用,在整个软件的编制过程中,应当留一下API函数,以便于用户无需对TCP/IP协议有过多的了解也能够在原有程序的基础上进行二次开发。本软件充分考虑了这一点,给用户留出了很多AIP函数,主要的有,TCPClose()、TCPReleaseRxBuffer()和TCPTransmitTxBuffer()等。其中,函数TCPClose()的主要用处是用于关闭打开了的连接,在关闭连接之前,发送的数据包还留在发送缓冲区中以保证正确发送,连接关闭之后,用户要重新建立连接的话,必须重新设置IP地下、重新分配I/O口和重新建立连接。TCPReleaseRxBuffer()的主要作用是,在读出缓冲区的数据之后,调用此函数,无需再保存已正确读出的数据包,这样就可以腾出缓冲区用于存放新的数据包。用户可以使用函数TCPTransmitTxBuffer()通过已建立的连接发送数据,但是,在使用该函数前,用户要先检查SOCK_TX_BUF_RELEASED标志,确定是否有可用的发送缓冲区。本设计中,还提供了检查连接状态和收发状态的变量(标志),如SOK_ACTIVE、SOCK_CONNEDTED等。

4.4HTTP应用

在进行以上的工作之后,用户就可以建立HTTP服务器,通过TCP/IP协议,实现不同的微控制器或工作站之间的通信。HTML(超文本链接标示语言)网页数据可以保存在MSP430F149的片内FLASH存储器中。网页能够完成接收数据、发送网页数据、关闭连接和等待其它应用进行连接等。并且,用户建立的网页,能够动态实时的进行数据更新。当然,无论是在普通计算机或微控制器上运行HTML网页应用程序,要实现和其它计算机进行通信,都必须如前所述,设置单一、有效的MAC地址。

5.结束语

随着网络技术的发展,需要进行网络连接和通信的微型嵌入式因特网终端越来越多,这不仅可以应用于日常生活中,也可以应用于许多工业现场,特别是在那些分散、共享数据或需要共享某些信息的工业现场嵌入式网络终端的技术优质更加明显。此外,MSP430系列单片机的功耗非常低,很好的解决了在某些特殊场合下的电源问题。由此可见,本文所论述的设计方案具有很大的应用前景。

参考文献

[1]TexasInstruments.MSP430InternetConnectivity[Z].2004.2

[2]TexasInstruments.MSP430x13x,MSP430x14x,MSP430x14x1MIXEDSIGNALMICROCONTROLLER[Z].2000.7

[3]CirrusLogic.CS8900AProductDataSheet[Z].2001.4

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。