“幸运Buff”通过精心收集,向本站投稿了13篇常用数学符号总结,下面是小编收集整理后的常用数学符号总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
篇1:常用数学符号总结
常用数学符号
| 常用数学符号 |
|---|
| +-×÷﹢﹣±/=≈≡≠∧∨∑∏∪∩∈⊙⌒⊥∥∠∽≌<>≤≥≮≯∧∨√﹙﹚[]﹛﹜∫∮∝∞⊙∏??????????·∶?????????∴∵∷αβγδεζηθικλμνξοπρστυφχψω%‰℅°℃℉′″¢〒¤○㎎㎏㎜㎝㎞㎡?㏄㏎mlmol㏕Pa$£¥㏒㏑壹贰叁肆伍陆柒捌玖拾微毫厘分百千万亿兆吉 |
| 几何符号 |
| ⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △ |
| 代数符号 |
| ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ |
| 运算符号 |
| × ÷ √ ± |
| 集合符号 |
| ∪ ∩ ∈ ? ? ? ? |
| 特殊符号 |
| ∑ π(圆周率) |
| 推理符号 |
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨ |
数学符号的历史
例如加号曾经有好几种,现在通用“+”号。
“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现在通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号。他自己还提出用“п”表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”斜起来写,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”变,“——”是括线。
十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞
任意号
学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“~”表示相似,用“≌”表示全等。
大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用。至于“≯”、“≮”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“[]”是代数创始人之一魏治德创造的。
任意号来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置,如图所示。
常用数学符号名称中英文对照
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
% per cent 百分之…
∞ infinity 无限大号
√ (square) root平方根
X squared X的平方
X cubed X的立方
∵ since; because 因为
∴ hence 所以
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ intersection of 并,
∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃 second 秒
# number …号
@ at 单价
篇2:关于数学符号
大写 | 小写 | 英文注音 | 国际音标注音 | 中文注音 |
Α | α | alpha | alfa | 阿耳法 |
Β | β | beta | beta | 贝塔 |
Γ | γ | gamma | gamma | 伽马 |
Δ | δ | deta | delta | 德耳塔 |
Ε | ε | epsilon | epsilon | 艾普西隆 |
Ζ | ζ | zeta | zeta | 截塔 |
Η | η | eta | eta | 艾塔 |
Θ | θ | theta | θita | 西塔 |
Ι | ι | iota | iota | 约塔 |
Κ | κ | kappa | kappa | 卡帕 |
∧ | λ | lambda | lambda | 兰姆达 |
Μ | μ | mu | miu | 缪 |
Ν | ν | nu | niu | 纽 |
Ξ | ξ | xi | ksi | 可塞 |
Ο | ο | omicron | omikron | 奥密可戎 |
∏ | π | pi | pai | 派 |
Ρ | ρ | rho | rou | 柔 |
∑ | σ | sigma | sigma | 西格马 |
Τ | τ | tau | tau | 套 |
Υ | υ | upsilon | jupsilon | 衣普西隆 |
Φ | φ | phi | fai | 斐 |
Χ | χ | chi | khai | 喜 |
Ψ | ψ | psi | psai | 普西 |
Ω | ω | omega | omiga | 欧米伽 |
篇3:关于数学符号
| +-×÷﹢﹣±/=≈≡≠∧∨∑∏∪∩∈⊙⌒⊥∥∠∽≌<>≤≥≮≯∧∨√﹙﹚[]﹛﹜∫∮∝∞⊙∏??????????·∶?????????∴∵∷αβγδεζηθικλμνξοπρστυφχψω%‰℅°℃℉′″¢〒¤○㎎㎏㎜㎝㎞㎡?㏄㏎mlmol㏕Pa$£¥㏒㏑壹贰叁肆伍陆柒捌玖拾微毫厘分百千万亿兆吉 |
| 几何符号 |
|---|
| ⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △ |
| 代数符号 |
| ∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶ |
| 运算符号 |
| × ÷ √ ± |
| 集合符号 |
| ∪ ∩ ∈ ? ? ? ? |
| 特殊符号 |
| ∑ π(圆周率) |
| 推理符号 |
| |a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨ |
篇4:关于数学符号
例如加号曾经有好几种,现在通用“+”号。
“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。
“-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现在通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号。他自己还提出用“п”表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”斜起来写,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”变,“——”是括线。
十六世纪法国数学家维叶特用“=”表示两个量的差别。可是英国牛津大学数学、修辞
任意号
学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来。
1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“~”表示相似,用“≌”表示全等。
大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用。至于“≯”、“≮”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“[]”是代数创始人之一魏治德创造的。
任意号来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置,如图所示。

篇5:常用数学符号读法
下面就将常用列表如下:
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西隆
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧ λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽
· 数学符号:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。
(4)结合符号:如圆括号“”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。
数学符号的意义
符号 意义
∞ 无穷大
π 圆周率
|x| 绝对值
∪ 并集
∩ 交集
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
x - floor(x) 小数部分
∫f(x)dx 不定积分
∫[a:b]f(x)dx a到b的定积分
数学符号的应用
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
二、一般符号对应的英文单词
. period 句号
, comma 逗号
: colon 冒号
; semicolon 分号
! exclamation 惊叹号
? question mark 问号
─ hyphen 连字符
’ apostrophe 省略号;所有格符号
— dash 破折号
‘’single quotation marks 单引号
“”double quotation marks 双引号
( ) parentheses 圆括号
[ ] square brackets 方括号
《 》French quotes 法文引号;书名号
... ellipsis 省略号
¨ tandem colon 双点号
“ ditto 同上
‖ parallel平行
/ virgule 斜线号
& ampersand = and
~ swung dash 代字号
§ section; division 分节号
→ arrow 箭号;参见号
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by or cross 叉乘
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is equal to or approximately equal to 等于或约等于号
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than (is greater than在数学中更常用) 大于号
≮ is not less than 不小于号
≯ is not more than 不大于号
≤ is less than or equal to 小于或等于号
≥ is more than or equal to 大于或等于号
% per cent 百分之…
‰ per mill 千分之…
∞ infinity 无限大号
∝ varies as 与…成比例
√ (square) root平方根
∵ since; because 因为
∴ hence 所以
∷ equals, as (proportion) 等于,成比例
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
π pi 圆周率
△ triangle 三角形
⊥ perpendicular to 垂直于;另外normal to,right to也都有垂直的意思。
∪ union of 并,
∩ intersection of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
″ second 秒
# pound …号
∏ pi
. dot (点乘就是centered dot)
f’ f prime f撇
A上面一个横杠:A bar
A上面一个星星*: A asterisk
A上面一个波浪线~:A tilde
A的厄米共轭(注意不是加号,那个竖比横长):A dagger(dagger:短剑,匕首
篇6:数学符号课程PPT
加减乘除(+、-、×(·)、÷(∶))等数学符号是我们每1个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们.别看它们这么简单,直到17世纪中才全部形成。
数学加减乘除符号。
下面小编就为您们介绍一下加减乘除符号及定义
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法.这2个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,
用“─”表示不足.到15,荷兰的赫克首次用“+”表示加法,用“─”表示减法.1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“─”表示加减,这2个符号逐渐被公认为真正的算术符号,广泛采用.
以符号“×”代表乘是英国数学家奥特雷德首创的.他于1631年出版的《数学之钥》中引入这种记法.据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的..后来,莱布尼兹认为“×”容易与“X”相混淆,
建议用“·”表示乘号,这样,“·”也得到了承认.
除法符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广.除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”.至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度.
”加减乘除 (+,-,×(?),÷)等数学符号都是经过长期发展而形成的,到了17世纪,才得到广泛使用。
加法符号,开始使用的是英文plus(加)的字头p。
在德国,使用了相当于英语“and”(和) 的词“et”。
随着欧洲商业的繁荣,写“et”也嫌慢了,为了加快速度,把2个字母连着写,因此“et”慢慢地变成了“+”。
减法也是同样,使用英文minus (减少) 的字头m,而它也是为了便于速写,逐渐变成了“-”。
在“+”号出现了1左右后,英国的奥特雷德首先使用了“×”作为乘号。
据说乘法符号是根据加法符号得来的。
因为乘法运算是从几个相同数的连加运算发展而来的。
例如,13×5就是13+13+13+13+13。
也就是说乘法运算是1种特殊的加法运算,所以将加法符号“+”稍作变动,就变成了现在的乘号“×”。
后来,莱布尼兹认为“×”容易与χ相混淆,建议用“?”作为乘号,这样,“?”也得到了承认。
但也有人觉得“?”容易与小数点相混,仍坚持采用×号。
除法的符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。
除的本意是分,例如,100个苹果分给10位小朋友,每人得多少,就是100÷10。
符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
但在德国,莱布尼兹是使用“∶”代表除号,一直沿用到现在。
后来人们也用“∶”表示比,因为比的含义和除的含义是一致的。
加法:加法是基本的四则运算之一,它是指将2个或者2个以上的数、量和起来,变成1个数、量的过程。
表达加法的符号为加号(+)。
进行加法时以加号将各项连接起来.把和放在等号(=)之后.
减法:将1个数或量从另1个数或量中减去的运算叫做减法。
已知2个加数的和与其中1个加数,求另1个加数的运算。
乘法:乘法是指1个数或量,增加了多少倍。
例如4乘5,就是4增加了5倍率,也可以说成五个4连加。
除法:已知2个因数的积与其中1个因数,求另1个因数的运算,叫做除法 。
篇7:小学数学符号及公式
小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a=a
5、三角形的面积=底×高÷2S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2d=2r半径=直径÷2r=d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr
10、圆的面积=圆周率×半径×半径
定义定理公式
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a×a
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
数量关系计算公式方面
1.单价×数量=总价 2.单产量×数量=总产量
3.速度×时间=路程 4.工效×时间=工作总量
算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
篇8:常用的数学符号及其意义
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数),
双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠),
∵ 因为(一个脚站着的,站不住)
∴ 所以(两个脚站着的,能站住)(口诀:因为站不住,所以两个点;因为上面两个点,所以下面两个点)
总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数 (n元素的总个数;r参与选择的元素个数),幂 等。
数学符号大全及意义之排列组合符号
C 组合数
A (或P) 排列数
n 元素的总个数
r 参与选择的元素个数
! 阶乘,如5!=5×4×3×2×1=120,规定0!=1
!! 半阶乘(又称双阶乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840
数学符号大全及意义之离散数学符号
∀ 全称量词
∃存在量词
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
﹁ 命题的“非”运算,如命题的否定为﹁p
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
↔ 命题的“双条件”运算的
p<=>q 命题p与q的等价关系
p=>q 命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)
A* 公式A的对偶公式,或表示A的数论倒数(此时亦可写为 )
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算(“与非门”)
↓ 命题的“或非”运算(“或非门”)
□ 模态词“必然”
◇ 模态词“可能”
∅空集
∈ 属于(如“A∈B”,即“A属于B”)
∉ 不属于
P(A) 集合A的幂集
|A| 集合A的点数
R²=R○R [R
=R
○R] 关系R的“复合”
ℵ Aleph,阿列夫
⊆ 包含
⊂(或⫋) 真包含
另外,还有相应的⊄,⊈,⊉等
∪ 集合的并运算
U(P)表示P的领域
∩ 集合的交运算
-或 集合的差运算
〡 限制
集合关于关系R的等价类
A/R 集合A上关于R的商集
[a] 元素a产生的循环群
I环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 R的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:x→y f是x到y的函数
(x,y) x与y的最大公约数,有时为避免混淆,使用gcd(x,y)
[x,y] x与y的最小公倍数,有时为避免混淆,使用lcm(x,y)
aH(Ha) H关于a的左(右)陪集
Ker(f) 同态映射f的核(或称f同态核)
[1,n] 1到n的整数集合
d(A,B),|AB|,或AB 点A与点B间的距离
d(V) 点V的度数
G=(V,E) 点集为V,边集为E的图G
W(G) 图G的连通分支数
k(G) 图G的点连通度
Δ(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
I 虚数集
N 自然数集,非负整数集(包含元素“0”)
N*(N+) 正自然数集,正整数集(其中*表示从集合中去掉元素“0”,如R*表示非零实数)
P 素数(质数)集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
二、常用数学符号意义汇总
= 等于
≠ 不等于
≈ 约等于
< 小于
> 大于
//平行
平行且相等
⊥垂直
≥ 大于或等于
≤ 小于或等于
≡ 恒等于或同余
π 圆周率 约为3.1415926536
e 自然常数 约为 2.7182818285
|x| 绝对值或(复数的)模
∽ 相似
≌ 全等
远大于
<< 远小于
∪ 并集
∩ 交集
⊆ 包含于
∈ 属于
⊙ 圆
除,求商值,部分编程语言中理解为整除
α,β,γ,φ… 角度;系数
∞ 无穷大(包括正无穷大+∞与负无穷大-∞)
lnx 以e为底的对数(自然对数)
lgx 以10为底的对数(常用对数)
lbx 以2为底的对数
lim 求极限
floor(x) 或[x],亦可写为 下取整函数(直译为“地板函数”),又称高斯函数
ceil(x) 亦可写为 上取整函数(直译为“天花板函数”)
x mod y模,求余数
x-floor(x) 或{x} 表示x的小数部分
dy,df(x) 函数y=f(x)的微分(或线性主部)
∫f(x)dx 不定积分,函数f的全体原函数
篇9:小学三年级常用数学符号
1、几何符号
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ? ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
篇10:符号
符号
符号fú hào[释义]①(名)记号;标记。文字是记录语言的'~。(作宾语)
②(名)佩带在身上表明职别、身份等的标志。
[构成] 并列式:符+号篇11:数学小故事关于数学符号的的
很久很久以前,数字王国里乱糟糟的,没有任何次序。0-9十个兄弟不仅在王国中称霸,而且他们彼此之间总是自己吹嘘自己的本领大。数学天使看见这种情况非常生气,于是就派“<”、“>”和“=”三个小天使到数学王国,要求他们一定要让王国变得有次序起来。三个小天使来到了数学王国,0-9十个兄弟轻蔑地盯着他们,“9”问道:“你们三个是来干什么的?我们的王国不欢迎你们。”
“=”天使笑了笑说:“我们是天使派到你们王国的法官,帮助你们治理好你们的国家。我是‘等号’,在我两边的数字总是相等的;这两位是‘大于号’和‘小于号’,他们开口朝谁,谁就大,尖尖朝谁,谁就小。”
0-9十兄弟一听他们是数学天使派来的法官,以及“=”的介绍,都乖乖地服从“”<、“>”和“=”的命令。
从此以后数学王国越来越强盛,而且有着十分严格的次序,任何人都不会违反。
篇12:数学小故事关于数学符号的的
我的名字叫“乘号”。
我是数学符号王国中的一员猛将,大家都离不开我。
对了,我可不是“+”,你们要看清楚,我的方向跟他不一样。但是我们之间的关系很密切,如果“+”两边的数字是一样的,我就可以减轻他的负担,很容易的得到结果,著名数学家高斯在小的时候,就是用我来解决问题的。
在乘法竖式中,我的位置和“+”、“-”一样,但是我的运算方式却不一样。我是分级运算的,我的准则就是乘法口诀。
除法虽然表面上和我处处做对,但是我们之间互相协助,他可以帮助我发现运算中的错误,相反我也可以帮助他。
数学符号小故事
大家好!我们是数学小符号,今天大家就来认识一下我们吧!
如果你有4个苹果,你想和别人分,可以用三种方法。
第一种方法就是你分给别人2个,我等于号会告诉你,你们一样多,就可以说2=2.
第二种方法就是你分给别人1个,我大于号就要上场了,我要告诉你,你们你比别人多,可以说3>1.
第三种方法就是你分给别人3个,哈哈,我小于号终于要上场了,我要告诉你,你比别人少,那就是1<3.
对了,大于号和小于号可是一对双胞胎,经常有人把我们弄错。大家一定要记清楚:大于号,小于号,开口朝着大数笑。
关于数学符号的小诗
数与人 高蓉
“1”是顶天柱,是正直,告诉你做人应刚正不阿;
“2”是美丽的天鹅,是无瑕的美,提醒你守住心灵的纯洁;
“3”是只耳朵,是聆听,告诉你得谦虚、好学和勤奋;
“4”是快刀,是豪放,让你敞开胸襟海纳百川;
“5”是奔跑,是活力展现,催你生机勃勃,勇往直前;
“8”是心心相连、深情厚谊,关照你珍惜情感;
“9”是气球,是自由和旷达,使你有了“采菊东篱下,悠然见南山”的自适自乐;
让我们欣赏数字,让我们发现美好;
让我们热爱生活,让我们学会做人。
12 单靓
你给人带来希望
分针与时针交错的瞬间
便是午夜十二点
越过它
走出漆黑的深渊
摆脱子夜的羁绊
迎接耀眼的光芒,新的希望
∪(并根) 张田源
你是友谊的桥梁
让两个世界的人牵手在一起
你是重要的花蕊
把每片花瓣连接在一起
≈ 张田源
有时的你 粗心大意
有时的你 宽容待人
有时的你 四五分明
有时的你 化繁为简
但这样的你,大家都离不开
∧(幂) 张娴雅
静静地躲在世界的角落
没有波澜壮阔
平淡地做渺小的自我
从不高谈阔论
众星捧月时
你甘愿为人梯,俯首称臣
争奇斗艳时
你愿展现自我,大放异彩
你像微笑的眼睛
面对世间过往的风沙
你像艳丽的花朵
寂寞时大放光芒
数学小故事 关于数学符号的的故事_关于数学符号的小诗
篇13:《易经》符号与祖国数学
《易经》符号与祖国数学
<易经>符号有其丰富的数学内蕴,<易经>是我国有文字记载以来最早的数学著作.它对我国古代数学产生了巨大影响.直到16世纪,我国的数学在世界上一直居于领先水平,并已接近了微积分的大门.落后的封建制度、帝王的腐败和帝国主义的.侵略,使得我国的近代数学未能对世界作出应有的贡献.本文同时对我国古代的数学成就进行了简要的总结.
作 者:李兴民 王敬 LI Xing-min WANG Jing 作者单位:李兴民,LI Xing-min(广州大学,理学院,广东,广州,510405)王敬,WANG Jing(广州大学,人事处,广东,广州,510405)
刊 名:广州大学学报(自然科学版) 英文刊名:JOURNAL OF GUANGZHOU UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2002 1(4) 分类号:B244.3 关键词:<易经> 的知识脉络' > 八元数 微积分 解析几何











