教学反思,是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。下面是小编收集整理的二项式定理教学反思,希望对您有所帮助!

下午在xx一中高二(6)班上了一节数学展示课,课堂学生的反应和专家的点评,都让我受益匪浅,主要体会如下:

二项式定理教学反思

1、学生能机积极配合,情绪高涨。据了解,高二(6)班学生基础较好,整体素质较高。由于是新老师,学生不了解我的教学风格,开头几分钟,学生的积极*还没有完全调动起来,但随着时间的推进,课堂氛围不断进入高潮。在遇到疑难问题时,只要我稍加点拨,都能立即化解。特别是最后一道天津高考题,具有挑战*,需要较高的逆向思维水平,但一名学生在很短的时间内就看出了它的结构特点,作出了完整的回答,使学生和听课老师眼睛一亮。加上我及时总结的“数感、式感和图感”又让学生耳目一新,增添了课堂*彩。

2、数学思想、方法和数学文化得到了较好的体现。孙主任点评中的“课堂教学要有高贵和丰满的学科气质”,我认为对数学课堂来说,就是要体现数学思想、方法和数学文化,让数学课堂有“数学味”。课堂中,提到的数学的两重*“直觉与逻辑”,牛顿的“没有大胆的猜想就没有伟大的发现”,二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑*”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,反例c62就不是偶数等等,都带给学生积极的情感体验和无尽的思考。“真诚、深刻、丰富”是课堂永恒的追求。

3、基本技巧和基本方法可能没有很好落实。本节课的教学重点是二项式定理的探求过程,而简单的应用则次之。基于这种想法,我在引导发现定理上花的时间较多,*过程多媒体详细展示,但最后没有点到“还可以用数学归纳法*”是一个疏忽。同时对将(p-q)7展开这种问题没有书写示范,以致不少学生书写不规范或弄错,板演的学生就有好几处错误,我也没有详细板书订正。我想,好在还有第二节课的加强,先让学生对此内容有点兴趣,再去强化运算的正确*也不迟。

4、课堂上如何放手让学生自主学习。多位专家评课中提到数学课堂上如何放手让学生自主学习,这也是新课程大力倡导的。我认为,像这样面对新学生的展示课,难以*作。因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错。否则,对于有一定难度的数学课,在课堂上2先自主、合作、探究,再来答疑、解惑,就没有足够的时间了。即使可以*作,自主、合作、探究也是走走过场,没有实际效果。语文与数学有不同特点,在数学课堂上如何实施自主学习值得深入研究。

5、数学教师要不断提高专业水平和人文素养。范梅南有一句名言:教学就是“即兴创作”,依托的是教师的文化底蕴和精神修养。对数学教师来说,我认为是专业水平和人文素养。专业水平可以帮助你确定有梯度的思维目标,创设有价值的思维情景;人文素养可以帮助你确定良好的情感目标,营造积极的情感情景。速度、效果、体验是判别有效课堂的三要素,其中就蕴涵着对学生探索精神、创新精神的唤醒和弘扬,创新能力的发展和提升,创造型人格的生成与确立。数学教师要多读点文学作品,打造有诗意的数学课堂。

二项式定理是初中学过的多项式乘法的继续,是排列组合知识的具体运用,定理的*是计数原理的应用。

本节课的教学重点是“使学生掌握二项式定理的形成过程”,在教学中,采用“问题探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,让学生体验定理的发现和创造历程。

本节课的难点是用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律.在教学中,设置了对多项式乘法的再认识,引导学生运用计数原理来解决项数问题,明确每一项的特征,为后面二项展开式的推导作铺垫.再以为对象进行探究,引导学生用计数原理进行再思考,分析各项以及项的个数,这也为推导的展开式提供了一种方法,使学生在后续的学习过程中有“法”可依。

教材的探求过程将归纳推理与演绎推理有机结合起来,是培养学生数学探究能力的极好载体.教学过程中,让学生充分体会到归纳推理不仅可以猜想到一般*的结果,而且可以启发我们发现解决一般问题的方法.教学中我特别注重运用通项意识凡涉及到展开式的项及其系数等问题,常是先写出其通项公式,然后再据题意进行求解。

本节课的亮点:引入作了项数问题,明确每一项的很好的铺垫,数学思想、方法和数学文化得到了较好的体现.引导学生运用计数原理来解决特征,为后续学习作准备.二项式系数的对称美,“特殊出发、发现规律、猜想结论、逻辑*”的科学方法,二项式指数推广到负整数指数,有没有三项式定理,都带给学生积极的情感体验和无尽的思考。

不足之处:学生在数学课堂中的参与度不够.我认为,像这样面对新学生的展示课,难以*作.因为让学生自主学习,必须课前作充分的准备,学生带着问题到课堂上进行汇报和交流,师生共同释疑、纠错.否则,对于有一定难度的数学课,在课堂上先自主、合作、探究,再来答疑、解惑,就没有足够的时间了.即使可以*作,自主、合作、探究也是走走过场,没有实际效果.语文与数学有不同特点,在数学课堂上如何让学生讨论、思考值得深入研究。

总之,本节课遵循学生的认识规律,由特殊到一般,由感*到理*.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯。

整式,多项式教学反思2

从学生已掌握的列代数式入手,这不仅是复习了所学知识,也采用了简洁的介绍形式。举例来说,通过给出一个多项式的例子,按照课本的概念,立刻确定了多项式的各项、最高次项以及多项式的次数。然而,对于理解能力较差、反应较慢的学生来说,这种直接的方法可能过于抽象,导致在自己动手解决问题时遇到了很多障碍。

因此,在学生阅读课本后的点评中,我向学生介绍了以加减号为分界线,将多项式拆分成带符号的段落,从而解析“项”的概念。然后,逐项地在单项式的基础上求出各项的次数,解析“最高次项”,进而解析“多项式的次数”。通过这样详细的剖析,学生能够将课本中学到的相关概念逐步转化为数学符号,并理解这些概念。

介绍完多项式的项、次数以及常数项的概念后,我引导学生循序渐进,逐步接近本节课学习的重点和难点。一旦掌握了所有的概念,我让学生自己举一些多项式的例子,以反映他们掌握知识的程度,同时也体现了学生学习的主体*。因此,我认为,在课堂上,我们不能只考虑要学生学什么,还应该更多地考虑学生需要如何学。

作为初一的学生,刚从小学过渡而来,还没有完全摆脱小学被动接受型的学习方法。如果初一老师在这方面不加以引导,很容易出现脱节,导致学生提早出现分化。在处理这节课上,我认为我成功地应对了这一点。在教学中,一方面要示范严格的书写格式,另一方面也要让学生顺着老师的思路,体验老师是如何思考问题的。然后,让学生在课堂上完成练习,也可以让一两位同学上黑板进行演示。为了确保学生是否真正掌握了本节课的内容,可以让学生自己进行课堂小结,然后布置作业以进一步巩固所学知识。

勾股定理教学反思3

不断的通过反思与总结,才能不断的进步,勾股定理教学反思怎么写?以下是小编为您整理的勾股定理教学反思资料,欢迎阅读!

《勾股定理》为八年级上第三章第一节的内容。教学的实践中难免会有一些错漏,为了弥补教学中的许多不足,数学网特地收集了相关的《勾股定理》教学反思人教版,仅供大家参考学习。

导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多媒体展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。

本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:

1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。

2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成*思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。

3、通过老师的介绍,体会一种新的*的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。

除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.

《勾股定理》一章检测结果出来了,学生考绩很不理想,很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

一是没有把握好勾股定理的适用范围。勾股定理只适用直角三角形,而不适用钝角三角形和锐角三角形。例如:在△abc中,ac=3,bc=4,有的同学直接根据勾股定理得:ab=5。这是因为与勾股定理的条件相似,已知三角形的两边,求第三边,满足能利用勾股定理解决问题的特征之一,却忽略特征之二:勾股定理只适用直角三角形。

二是没有弄清楚待求的直角三角形的第三边是斜边还是直角边。例如:已知直角三角形两直角边的长分别是4c和5c,求第三边的长。很多同学可能是受勾股数“3,4,5”的影响,错把结果写成了3c,其实这里的第三边是斜边.

三是缺乏分类思想,考虑问题不全面,导致解答错误。例如:已知直角三角形两边长分别是1、4,求第三边的长。这里的第三边有可能是斜边也有可能是直角边,所以结果应该有两个,但好多同学都填了一个*。又如:在△abc中,ab=15,ac=13,高ad=12,求△abc的面积。此题应考虑三角形是锐角三角形,还是钝角三角形两种情况,否则会漏解。

四是利用直角三角形的判别条件时,没有分清较短边和较长边。例如:已知三角形的三边长分别为a=0.6,b=1,c=0.8,问这个三角形是直角三角形吗?有的同学认为此三角形不是直角三角形,其实这个三角形是以b为斜边的直角三角形。

五是缺少方程思想和转化思想,使综合类试题痛失分数。

六是书写不规范。例如:运用直角三角形的判别条件,判别一个三角形是否为直角三角形的过程中,有的同学写出一句“由勾股定理得”的不恰当的叙述。

针对上述问题,痛定思痛,感悟颇多:

第一,教学不可削弱技能的训练。要学生真正掌握某个知识,如果缺少相应技能的训练是不科学的。正如教人开车的教练把开车的要点、技巧讲清楚,然后叫学车的学生马上开车去考试一样。试问:当教师在讲台上滔滔不绝地讲解时,能否保证每一个学生都专心去听?能否保证每一个专心去听的学生都听得明白?能否保证每一个听得明白的学生都能解同一类题目?可见:“课堂上教师讲,学生听,听就会懂,懂就会做。”只是教师一厢情愿的做法,教师只有不满足于自己的“讲清楚”,在课堂上帮助学生*完成,并进行一定量的训练,才能实现教学的有效*。

第二,巧设错误案例,让学生辨错、纠错,即学生对教师的有意“示错”进行分析、判断,提高防错能力。在教学中,教师有时可恰到好处,有意地把估计学生易错的做法显示给学生,以引起学生的注意,然后通过师生共同分析错因,加以纠错,达到及时、有效预防,并避免学生出现类似错误的目的。这样,可防患于未然,并提高学生分析、判断、解决问题的能力。

第三,教学应注重数学思想和方法传授。理解掌握各种数学思想和方法是形成数学技能技巧,提高数学能力的前提。学生学习数学,学会是基础,会学是目的,教是为了不教。教学中,在加强技能训练的同时,要强化数学思想和数学方法的教学,做到讲方法联系思想,以思想指导方法,使二者相互交融,相得益彰。此外,在教学中培养学生的“问题意识”,激励学生善于发现问题、思考问题,并能运用数学方法去解决广泛的多种多样的实际问题,以便增强学生探究新知识、新方法的创造能力。

第四,教学应加大综合训练的力度。目前的综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及创新意识等特点。教学时应抓好“三转”能力的培养:(1)语言转换能力。每道数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成,解综合题往往需要较强的语言转换能力,能把普通语言转换成数学语言。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。只有如此,方可找到解决综合题的突破口。

第五,教学勿忘发挥板书的特有功能。板书通过学生的视角器官传递信息,比语言富有直观*。条例清晰,层次分明,逻辑严谨的解答过程的板演,不但便于学生理解、掌握知识,还会给学生起到示范作用。

相信通过反思教学,优化方法,细化过程,一定能取得事半功倍之效。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。