“沙川妲己”通过精心收集,向本站投稿了10篇分数乘法应用题解题方法的课件,下面是小编为大家推荐的分数乘法应用题解题方法的课件,欢迎阅读,希望大家能够喜欢。

篇1:分数乘法应用题解题方法的课件
分数乘法应用题解题方法的课件
教学目标
1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.
2.渗透对应思想.
教学重点
理解应用题中的单位“1”和问题的关系.
教学难点
1.理解“求一个数的几分之几是多少”的应用题的解题方法.
2.正确灵活的判断单位“1”.
教学过程
一、复习、质疑、引新
1.说出 、 、 米 的意义.
2.列式计算
20的 是多少?6的 是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘
法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)
二、探索、质疑、悟理
(一)教学例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了 ,吃了多少千克?
1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.
2.分析.
教师提问:重点分析哪句话呢?“吃了 ”这句话是分率句.是什么意思呢?
(就是把100千克白菜平均分成5份,吃了这样的4份).
3.画图.(演示课件:分数乘法应用题1)
画图说明:a.量在下,率在上,先画单位“1”
b.十份以里分份,十份以上画示意图.
c.画图用尺子,用铅笔.
4.尝试解答.
解法一:用自己学过的'整数乘法做
(千克)
解法二:
5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.
(二)巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的 ,参加合唱队有多少人?
1.把哪个数量看作单位“1”?
2.为什么用乘法计算?
(三)教学例2
例2.小林身高 米,小强身高是小林的 ,小强身高多少米?
1.演示课件:分数乘法应用题2
2.求参加合唱队有多少人实际上就是求 米的 是多少。
3.列式: (米)
答:小强身高 米.
(四)变式练习
小强身高 米,小林身高是小强的 倍,小林身高多少米?
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?
共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。
从分率可入手分析
四、训练、深化
(一)先分析数量关系,再列式解答
1.一只鸭重 千克,一只鸡的重量是鸭的 ,这只鸡重多少千克?
2.一个排球定价36元,一个篮球的价格是一个排球的 ,一个蓝球多少元?
(二)提高题
1.一桶油400千克,用去 ,用去多少千克?还剩多少千克?
2.一桶油400千克,用去 吨,用去多少千克?还剩多少千克?
五、课后作业
(一)修路队计划修路4千米,已经修了 。修了多少千米?
(二)一头鲸长7米,头部长占 。这头鲸的头部长多少米?
(三)成昆铁路全长1100千米,桥梁和隧道约占全长的 。桥梁和隧道约长多少千米?
六、板书设计
篇2:分数乘法应用题
分数乘法应用题
?千克100千克
教师:大家想怎样用线段图表示题中的数量关系?应重点抓住题中的哪个已知条件?板书线段图,学生跟着画:先画一条线段,表示什么?并标出“100千克”。依据“吃了 ”这两个条件应该把这条线段平均分成几份?怎么标出问题?学生自己画线段图,边画边想。问:你是怎么想的?引导学生说出:把线段平均分成5份,表示这样的4份的数用 表示。(3)分析数量关系:观察并想一想:吃了 ,是吃了哪个数量的 ?(是吃了100千克的 )。分组讨论交流:依据吃了100千克的 ,把哪个量看作单位“1”呢?为什么?你是怎么想的'?引导学生说想法:应该把100看作单位“1”。板书:把100看作单位“1”。共同分析数量关系:根据“吃了 ”这个条件,可以确定把100看作单位“1”,要求出问题,也就是求100的 是多少。板书:求100的 是多少。(4)列式计算:学生完整叙述解题思路。学生列式计算,教师板书:100w =100w =80(千克)写出答语,教师板书:答:吃了80千克。(5)总结思路:根据以上分析,同学们议论一下解题顺序:吃了 →吃了谁的 →谁是多少(已知)→谁的 是多少用乘法。3、练习:14页“做一做”第1─3题。学生做题,教师巡视指导,订正后说一说你是怎么想的?4、概括总结:通过这节课的学习,你对解答分数应用题有哪些收获?两点:一是分清把谁看作单位“1”;二是要根据一个数乘分数的意义,求一个数的几分之几用乘法计算。5、课堂练习:(1)练习四第1、2题,完成后订正。(2)操作:画出“体育小组的人数是美术小组的1 倍”的线段图;自己补充条件和问题并解答(3)学校举行书画比赛,共收到作品180件,其中有90件分别获一、二、三等奖和鼓励奖。填出下表。根据条件,你还知道什么?获奖种类占获奖作品总数的几分之几获奖件数一等奖 二等奖 三等奖 合计 6、作业:练习四第3、4题。板书设计:分数乘法应用题例1:?千克100千克
把100看作单位“1”。求100的 是多少。100w =100w =80(千克)答:吃了80千克。篇3:分数乘法应用题
小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的 ,小新储蓄的钱是小华的 .小新储蓄了多少钱?
教案点评:
解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位“1”,求的是谁的几分之几。这也正是课堂教学的重点和难点,是学生分析能力的体现。是我们课堂的叫目标之一。
这节课是分数应用题的第二节。学生已具备初步分析已知和找单位“1”的能力,但是增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易,教学中采用小组合作的形式,发挥集体的智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

篇4:分数乘法课件
分数乘法课件
【教学内容】人教版小学数学六年级上册第一单元第二课时
【教学目标】
知识与能力:
1.使学生理解一个数乘分数的意义,掌握分数乘分数的计算法则。
2.学会分数乘分数的简便计算。
过程与方法:
教学过程中结合直观,注意力体讲解,指导学生通过体检,说明一个数乘分数的意义并归纳出分数乘分数的计算法则。
情感态度价值观:
通过一个数乘分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣,使学生感悟到数学知识的魅力。
【教学重难点】
理解一个数乘分数的意义,掌握分数乘分数的计算方法;推导算理,总结法则。
【教学过程】
一、复习
(一)计算下列各题并说出计算方法。
(二)上面各题都是分数乘整数,说一说分数乘整数的意义。
二、新课
引入:这节课我们来学习分数乘分数的意义和计算方法。(板书课题:分数乘分数)
(一)理解一个数乘分数的意义。
1.第一幅图:一桶桶水有12升,3桶共多少升?怎样列式?
指名列式,板书:12 ╳3
12 ╳3表示什么意思?指名回答。
2.出示第二幅图:一桶桶水有12升, 桶是多少升?怎样列式?
指名回答,列式为:12╳ 。
说明:求12的一半,就是求12的 是多少。
3.出示第三幅图:一桶桶水有12升, 桶是多少升?怎样列式?
指名回答,列式为:12╳ ,问:12╳ 表示什么意思?指名回答。
4.引导学生小结。
指出三个算式都是分数乘法,比较三个算式的不同点:
第一个算式与第二、三个算式中第二个因数有什么不同?
想一想:第一个算式与第二、三个算式中乘法的意义有没有不同?有什么不同?
学生齐读课本的结语。
一个数乘几分之几表示的是求这个数的几分之几是多少。
5.练习:
说一说下列算式的意义。
(二)理解分数乘分数的计算方法。
1.出示例3:
李伯伯家有一块 公顷的地,种土豆的面积占这块地的 ,种玉米的.面积占这块地的 。
(1)种土豆的面积是多少公顷?
你根据什么列出式子?
根据一个数乘几分之几表示的是求这个数的几分之几是多少,得出:这是求 公顷的 是多少,怎么列式呢?列出算式: 。
怎么计算呢?
如果我们用一个长方形表示1公顷,那么 公顷怎样表示?
学生回答后,教师出示例3的图(1)
公顷的 是什么意思?
出示例3图(2)
要求学生观察图(2),问:在图中 的 对于1公顷来说,是1公顷的几分之几?
也就是把 公顷平均分成5份,取其中的一份,就是把1公顷平均分成(2×5)份,取其中的一份,结果是 。
引导得出:
观察这个式子有什么特点?
引导学生回答。
出示例3的第二个问题:
(2)种玉米的面积是多少公顷?
学生列式,教师再出示例3图(3)
已经求 公顷的 是 公顷,那么 公顷的 应有这样的几份?就是多少公顷? 求 公顷的 是多少,也就是把 公顷平均分成5份,取其中的三份,就是把1公顷平均分成(2×5)份,取其中的三份,结果是 .
板书:
2.引导学生小结分数乘以分数的计算方法。
观察分数乘分数的计算过程,谁能说一说计算方法?
教师归纳,分数乘分数,用分子相乘的积做分子,用分母相乘的积做分母。
再说明,为了计算的简便,也可以先约分,再乘。
3.巩固
只列式,不计算。
(1) kg的 是多少千克?
(2) 小时的 是多少小时
4.出示例4:
无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
李叔叔的游泳速度是乌贼的 。李叔叔每分钟有多少千米?
乌贼30分钟可以有多少千米?
请同学们自己做在练习本上,集体订正。订正时注意强调:为了计算的简便,也可以先约分,再乘。
三、巩固练习
1、
2、
请同学们自己做在练习本上,集体订正。
四、全课小结
这节课我们学习了什么内容?
篇5:六年级数学分数应用题解题方法
分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。比如:
汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?
分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。所以降低后是120%-24%=96%。
篇6:六年级数学分数应用题解题方法
有些分数应用题数量变化多,分析难度大,不易列式计算。但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。比如:
有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?
分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。则“取前”第一桶占两桶水总重量的1/1+6=1/7,“取后”第一桶占两桶水总重量的1/1+4=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)
篇7:六年级数学分数应用题解题方法
不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
一般来讲,单位“1”的确定有以下两点方法和规律:
1、关键句中分数前面有个“的”,“的”字前面的量就是单位“1”的量。
如“甲的2/3是乙”,那么单位“1”的量就是2/3前面的“甲”;“乙是甲的4/7”,那么单位“1”的量就是“甲”;“乙的7/8相当于甲”,那么单位“1”的量就是“乙”。
2、关键句中“比”字后面的量是单位“1”的量。
如“篮球比足球多1/3”,那么单位“1”的量就是比字后面的量足球;“足球比篮球少1/4”,那么单位“1”的量是篮球。
小学六年级数学分数应用题解题方法之运用逆推找出解题方法
有些分数应用题,如果按照从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。家长可以引导孩子不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。比如:
倒一个油桶里的油,第一次倒出1/3后加入20千克,第二次倒出这时油的1/6多5千克,这时桶里剩下油95千克。问原来桶里有油多少千克?
分析:从最后条件出发思考:95+5=100(千克),即为现存油的5/6,故现在桶里有油100除以5/6=120(千克)。
再从第一个条件思考,120-20=100(千克),即为原存油的2/3,因此,原来桶里有油100÷ 2/3=150(千克)。
综合算式:
﹝(95+5)÷(1-1/6)-20﹞÷(1-1/3)=150(千克)
小学六年级数学分数应用题解题方法之利用假设推算找出解题方法
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里数量关系推算,所得的结果发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。如:
李家村修一条路,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修,这条路长多少米?
分析:假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米。
假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中就要减少5米,于是条件变为“”第一周修了全长的2/5,第二周修了全长的1/4,还剩(282+10-5)米没有修。
把这条路全长看作单位“1”,那么(282+10-5)的对应分率就是(1-2/5-1/4)。
于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)
小学六年级数学分数应用题解题方法之通过变换条件找出解题方法
有些分数应用题,可以通过改变看问题的角度将题中某些已知数量转换成与之有关联的另一个量,使其成为一个较为熟悉的简单的问题,从而找到解题的方法。如:
有两个钱罐,如果从第一个钱罐里取出15元放入第二个钱罐,这时钱罐里的钱正好是第一个钱罐里钱的5/7,已知第二个钱罐里原有钱35元,问第一个钱罐里原有多少钱?
分析:这道题可以转化为熟悉的“归一”问题。题中的5/7根据分数的意义,表示把这时第一个钱罐里的钱平均分成7份,这时第二个钱罐里的钱占其中的5份,这5份共35+15=50(元),则每份是50÷5=10(元)。
因此,这时第一个钱罐有钱10×7=70(元),那么第一个钱罐里原有钱70+15=85(元)。综合算式:(35+15)÷5/7+15=85(元)
篇8:分数乘法一步应用题
教学内容:课本第17~18页的例1和例2,完成“做一做”和练习五的第1~5题。
教学目的:
1. 使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2. 培养学生分析能力,发展学生思维。
教学过程 :
一、复习
1.先说下列各算式表示的意义,再口算出得数。
2.列式计算。
(1)20的 是多少?
(2)6的 是多少?
让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位“1”。
二、新授。
1.教学例1。
出示例1:学校买来100千克白菜,吃了 ,吃了多少千克?
(1)指名读题,说出条件和问题。
(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。
先画一条线段,表示“100千克白菜”。
吃了 ,吃了谁的 ?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?
?千克
100千克
教师边说边画出下图:
(3)分析数量关系,启发解题思路。
引导学生说出:吃了 ,是吃了100千克的 ,所以把100千克看作单位“1”,要求100的 是多少,根据一个数乘以分数的意义,直接用乘法计算。
1
(4)学生列式计算: = =80
(5)再让学生分析一下数量关系。
(6)练一练:完成第18页“做一做”第1题。
评讲订正时,让学生分析一下数量关系。
2.教学例2。
出示例2:小林身高 米,小强身高是小林的 ,
小强身高多少米?
(1)明确题意,指名读题,说出条件和问题。
(2)让学生画出线段图并标明条件和问题。
①要画几条线段表示题里的数量关系?
②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。
③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。
米
小林:
?米
小强:
启发学生:根据“小强身高是小林的 ”,要把表示小林的线段平均分成8份,在它的下面画出其中7份的长度代表小强的`身高。
教师边启发边画出如下线段图:
(3)分析数量关系,启发解题思路。
启发学生思考:小强身高是小林的 ,就要把小林的身高看作单位“1”,要求小强的身高,就要求出小林身高的 是多少,即求 的 是多少,根据分数乘法的意义,用乘法计算。
1
1
(米)
(4)让学生列式计算。
(5)如果把上题改成下面的题:
小强身高 米,小林身高是小强的 倍,小林身高多少米?
问:哪条线段画得长一些?怎样画?
把谁看作单位“1”为什么?
怎样列式?
米
?米
小强:
小林:
教师边启发边画出如下线段图:
(6)教师说明:
一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里 是带分数,把 化成假分数 ,上题也可以改成“小林身高是小强的 ”
指出:在这种情况下乘得的积大于原来的被乘数。
(7)做一做。
完成课本18页“做一做”的第3题。
三、巩固练习
1.完成课本第18页“做一做”的第3题。
学习列式计算后,指名让学生分析数量关系。
2.完成练习五的第5题。
说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。
订正时指名分析。
四、全课小结。
今天我们学习的分数乘法一步应用题,应根据“一个数是另一个数的几分之几”分析数量关系,应用一个数乘以分数的意义来解答。
五.作业 。练习五的第1~4题。
篇9:《分数乘法应用题》说课稿
《分数乘法应用题》说课稿
一、说教材
1、教学内容:九年义务教育六年制小学数学第十一册第一单元分数乘法应用题第一课时:“求一个数的几分之几是多少的应用题”,课本第14页例1,练习四第1――5题。
2、教材所处地位和作用
本节课所学的分数乘法应用题是求一个数的几分之几是多少的应用题,它是一个数乘分数的意义在实际中的运用,同时还是学习“已知一个数的几分之几是多少求这个数”的应用题以及今后学习较复杂的分数应用的基础。因此使学生掌握这种应用题的解答方法有重要的'意义。
3、教学目标。
根据《大纲》的要求和教材特点,确定如下教学目标:
(1)、使学生能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的应用题的数量关系。
(2)、在理解的基础上,掌握解题方法,能正确解答这类应用题。
(3)、让学生进一步体验数学与日常生活的密切联系,体验数学问题的探索性和挑战性,从而激发学生学习数学的兴趣,以主动参与数学活动。
4、教材的重点和难点
根据《大纲》的要求和教材的特点,结合本班学生的实际情况,确定使学生在理解题意的基础上,分析数量关系,掌握解题思路是本节重点,其中分析数量关系,找准单位“1”是本节课的难点。
二、说教法。
俗话说:教学有法,但无定法,贵在得法。为了突出重点,分散难点,我遵循学生的认识规律及分数应用题的特点,在教学中采用如下几点教法:
1、有目的的运用迁移规律,启发引导的方法组织教学,教给学生获取知识的方法,引导学生进行观察、分析、概括,培养学生的思维能力。
2、采用“尝试教学法”,利用学生好奇心和求知心切的特点,让学生通过画线段直观上理解弄清数量关系,掌握例题的解题思路。然后通过各种形式的巩固练习,使学生真正理解和掌握所学知识。
三、说学法
叶圣陶先生的数学核心思想是:“教是为了不教。”这正体现了现代教学的目标不是使学生“学会”,而是让学生“会学”,也就是通过课堂教学教给学生正确科学的学习方法,培养其良好的学习习惯。
本节的教学,使学生掌握以下学法:学会通过画线段图、观察、分析、归纳最后概括出此类应用题的解答方法。掌握解题技能,发展智力,提高解题能力。
四、说教学程序
(一)、出示复习题
1、列式计算
(1)20的1/5是多少?(2)6的3/4是多少?
(通过复习,使学生唤起回忆,巩固一个数乘分数的意义,沟通新知识,为学好分数应用题打下好的基础。)
(二)探究新知
1、出示例1:学校买来100千克白菜,吃了4/5,吃了多少千克白菜?
(1)学生读题、审题,明确条件和要求问题。
(2)通过画线段图,帮助学生弄清数量关系。指名多位学生说说该把哪个数量看作单位“1”?吃了4/5是指吃了哪个数量的4/5。
(3)学生尝试练习解答,师巡视,指名学生板演。
(4)引导学生归纳“求一个数的几分之几是多少的应用题”的解题方法。
小结:求一个数的几分之几是多少的应用题,根据分数乘法的意义,用乘法计算。即:单位“1”×几/几=几分之几的对应量。
(通过画线段图,让学生直观地理解弄清数量关系,让学生自己去找出题中的“单位1”,充分发挥学生的主体作用,让学生自己去探索发现知识的规律,特别是差生,先让他们发表见解,给他们创造成功的机会,使不同的人在数学上得到不同的发展。学生尝试独立解答同样体现了学生的主体作用。利用“反馈信息”,教师进行精讲小结,归纳,解决疑难,揭示解题方法。)
(三)巩固练习
1、做教科书第14页“做一做”第1、2题。
2、做练习四的第1.4.5题。
(让学生独立完成,充分发挥学生的主体作用,使学生进一步掌握求一个数的几分之几是多少的解题方法。)
篇10:分数乘法应用题教案设计参考
教学目标
1.进一步掌握分数乘法应用题的数量关系.
2.学会用一个数乘分数的意义解答两步分数乘法应用题.
教学重点
1.掌握两步分数应用题的解题思路和方法.
2.画线段图分析应用题的能力.
教学难点
分析两次单位“1”的不同之处.
教学过程
一、复习、质疑、引新
(一)指出下面分率句中的单位“1” .
1.乙是甲的
2.小红的身高是小明的
3.参加合唱队的同学占全班同学的
4.乙的 相当于甲
5.1个篮球的价钱是一个排球价钱的 倍
(二)口头分析并列式解答
1.小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小华储蓄了多少元?
2.小华储蓄了15元,小新储蓄的是小华的 ,小新储蓄了多少元?
(三)引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?这就是本节课要学习的新内容.
(出示课题――分数应用题)
二、探索、悟理
(一)出示组编的例题
例2.小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的是小华的 ,小新储蓄了多少元?
1.思考讨论
(1)小华储蓄的钱是小亮的 ,是什么意思?谁是单位“1”?
(2)小新储蓄的是小华的 ,又是什么意思?谁是单位“1”?
2.汇报思路讲方法
根据“小华储蓄的钱是小亮的 ”,把小亮的钱看作单位“1”,可以求出小华储蓄的钱: .根据“小新储蓄的'是小华的 ”,把小华的钱看作单位“1”,再标出小新的储蓄钱: .
由此基础上试列综合算式:
(二)巩固练习
小华有36张邮票,小新的邮票是小华的 ,小明的邮票是小新的 ,小明有多少张邮票?
1.分析数量关系,独立画图并列式解答.
2.学生板演.
(张)
(张)
答:小明有40张.
3.综合算式
三、归纳、明理
用连乘解答的题有什么特点?”“解题思路是什么?”
1.认真读题弄清条件和问题
2.确定单位“1”找准数量关系
根据分数乘法的意义,找准“量”、“率”对应关系,即谁是谁的几分之几.
3.列式解答
板书:抓住分率句,找准单位“1”,
画图来分析,列式不用急.
四、训练、深化
(一)联想练习根据下面的每句话,你能想到什么?
1.苹果的个数是梨的 .(如,梨是单位“1”;苹果少,梨多;苹果比梨少 等)
2.修了全长的
3.现在的售价比原来降低了
(二)先口头分析数量关系,再列式解答.
1.鹅的孵化期是30天,鸭的孵化期是鹅的 ,鸡的孵化期是鸭的 ,鸡的孵化期是多少天?
2.3个同学跳绳,小明跳了120下,小强跳的是小明的 ,小亮跳的是小强的 倍,小亮跳了多少下?
(三)提高题.
六年级有三个班参加植树,___________,二班植树棵数是一班的 ,三班植树棵数是二班的 倍,___________?
五、课后作业
(一)六年级同学收集了180个易拉罐,其中 是一班收集的, 是二班收集的.两班各收集多少个?
(二)长跑锻炼,小雄跑了3千米,小雄跑的 等于小刚跑的,小勇跑的是小雄的 .小刚和小勇各跑多少千米?
六、板书设计












