“箇依”通过精心收集,向本站投稿了12篇均值不等式的证明,小编在这里给大家带来均值不等式的证明,希望大家喜欢!

篇1:均值不等式证明
均值不等式证明
均值不等式证明一、
已知x,y为正实数,且x+y=1 求证
xy+1/xy≥17/4
1=x+y≥2√(xy)
得xy≤1/4
而xy+1/xy≥2
当且仅当xy=1/xy时取等
也就是xy=1时
画出xy+1/xy图像得
01时,单调增
而xy≤1/4
∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4
得证
继续追问:
拜托,用单调性谁不会,让你用均值定理来证
补充回答:
我真不明白我上面的方法为什么不是用均值不等式证的
法二:
证xy+1/xy≥17/4
即证4(xy)-17xy+4≥0
即证(4xy-1)(xy-4)≥0
即证xy≥4,xy≤1/4
而x,y∈R+,x+y=1
显然xy≥4不可能成立
∵1=x+y≥2√(xy)
∴xy≤1/4,得证
法三:
∵同理0
xy+1/xy-17/4
=(4xy-4-17xy)/4xy
=(1-4xy)(4-xy)/4xy
≥0
∴xy+1/xy≥17/4
试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿插别的途径?!
二、
已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0
a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)
于是c-a≤-2√(a-b)*(b-c)<0
即:1/(c-a)≥-1/【2√(a-b)*(b-c)】
那么
1/(a-b)+1/(b-c)+1/(c-a)
≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】
≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 2、几何平均数:Gn=(a1a2...an)^(1/n) 3、算术平均数:An=(a1+a2+...+an)/n 4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n 这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。
概念:
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn
a1、a2、… 、an∈R +,当且仅当a1=a2= … =an时劝=”号
均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);
(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))
则有:当r注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)
由以上简化,有一个简单结论,中学常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√[(a^2+b^2)/2]
方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等
用数学归纳法证明,需要一个辅助结论。
引理:设A≥0,B≥0,则(A+B)^n≥A^n+nA^(n-1)B。
注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的'同学可以想想如何证明(用数学归纳法)。
原题等价于:((a1+a2+…+an )/n)^n≥a1a2…an。
当n=2时易证;
假设当n=k时命题成立,即
((a1+a2+…+ak )/k)^k≥a1a2…ak。那么当n=k+1时,不妨设a(k+1)是a1,a2 ,…,a(k+1)中最大者,则
k a(k+1)≥a1+a2+…+ak。
设s=a1+a2+…+ak,
{[a1+a2+…+a(k+1)]/(k+1)}^(k+1)
={s/k+[k a(k+1)-s]/[k(k+1)]}^(k+1)
≥(s/k)^(k+1)+(k+1)(s/k)^k[k a(k+1)-s]/k(k+1) 用引理
=(s/k)^k* a(k+1)
≥a1a2…a(k+1)。用归纳假设
下面介绍个好理解的方法
琴生不等式法
琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点,
则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)]
设f(x)=lnx,f(x)为上凸增函数
所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=ln[(x1*x2*...*xn)^(1/n)]
即(x1+x2+...+xn)/n≥(x1*x2*...*xn)^(1/n)
在圆中用射影定理证明(半径不小于半弦)。
篇2:均值不等式的证明
均值不等式的证明
均值不等式的证明设a1,a2,a3...an是n个正实数,求证(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要简单的详细过程,谢谢!!!!
你会用到均值不等式推广的证明,估计是搞竞赛的把
对n做反向数学归纳法
首先
归纳n=2^k的情况
k=1 。。。
k成立 k+1 。。。
这些都很简单的'用a+b>=√(ab) 可以证明得到
关键是下面的反向数学归纳法
如果n成立 对n-1,
你令an=(n-1)次√(a1a2...a(n-1)
然后代到已经成立的n的式子里,整理下就可以得到n-1也成立。
所以得证
n=2^k中k是什么范围
k是正整数
第一步先去归纳2,4,8,16,32 ... 这种2的k次方的数
一般的数学归纳法是知道n成立时,去证明比n大的时候也成立。
而反向数学归纳法是在知道n成立的前提下,对比n小的数进行归纳,
指“平方平均”大于“算术平均”大于“几何平均”大于“调和平均”
我记得好像有两种几何证法,一种三角证法,一种代数证法。
请赐教!
sqrt{[(a1)^2+(a2)^2+..(an)^2/n]}≥(a1+a2+..an)/n≥n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)
证明:
1.sqrt(((a1)^2+(a2)^2+..(an)^2)/n)≥(a1+a2+..an)/n
两边平方,即证 ((a1)^2+(a2)^2+..(an)^2)≥(a1+a2+..an)^2/n
(1) 如果你知道柯西不等式的一个变式,直接代入就可以了:
柯西不等式变式:
a1^2/b1 + a2^2/b2 +...an^2/bn ≥(a1+a2+...an)^2/(b1+b2...+bn)
当且仅当a1/b1=a2/b2=...=an/bn是等号成立
只要令b1=b2=...=bn=1,代入即可
(2)柯西不等式
(a1^2 + a2^2 +...an^2)*(b1+b2...+bn)≥(a1b1+a2b2+...anbn)^2
[竞赛书上都有证明:空间向量法;二次函数法;是赫尔德不等式的特例]
2.(a1+a2+..an)/n≥n次根号(a1a2a3..an)
(1)琴生不等式: 若f(x)在定义域内是凸函数,则nf((x1+x2+...xn)/n)≥f(x1)+f(x2)+...f(xn)
令f(x)=lgx 显然,lgx在定义域内是凸函数[判断凸函数的方法是二阶导数<0,或从图象上直接观察]
nf((x1+x2+...xn)/n)=nlg[(a1+a2+..an)/n]≥
f(x1)+f(x2)+...f(xn)=lga1+lga2+lga3...lgan=lga1*a2..an
也即 lg[(a1+a2+..an)/n]≥1/n(lga1a2a3...an)=lg(a1a2a...an)^(1/n)=lgn次根号(a1a2..an)
f(x)在定义域内单调递增,所以(a1+a2+..an)/n≥n次根号(a1a2..an)
(2)原不等式即证:a1^n+a2^n+...an^n≥na1a2a3...an
先证明a^n+b^n≥a^(n-1)b+b^(n-1)a 做差 (a-b)(a^(n-1)-b^(n-1))[同号]≥0
2*(a1^n+a2^n+...an^n)≥a1^(n-1)a2+a2^(n-1)a1+a2^(n-1)a3+a3^(n-1)a2...an^(n-1)a1+a1^a(n-1)an
=a2(a1^(n-1)+a3^(n-1))+a3(a2^(n-1)+a4^(n-1))...
≥a2a1^(n-2)a3+a2a3^(n-2)a1+...[重复操作n次]≥...≥2na1a2...an
即a1^n+a2^n+...an^n≥na1a2a3...an
(3)数学归纳法:但要用到 (1+x)^n>1+nx这个不等式,不予介绍
3.n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)
原不等式即证:n次根号(a1a2a3..an)*(1/a1+1/a2+..+1/an)≥n
左边=n次根号[a2a3..an/a1^(n-1)]+n次根号+[a1a3a4..an/a2(n-1)]+n次根号[a1a2a4...an/a3^(n-1)]+...n次根号[a1a2a3...a(n-1)/an^(n-1)]
由2得 和≥n*n次根号(它们的积) 所以左边≥n*n次根号(1)=n
所以(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)
证毕
特例:sqrt(a^2+b^2/2)≥(a+b)/2≥sqrt(ab)≥2/1/a+1/b
证明:
1.sqrt(a^2+b^2/2)≥(a+b)/2 两边平方 a^2+b^2≥(a+b)^2/4 即证 (a/2-b/2)^2≥0 显然成立
2.(a+b)/2≥sqrt(ab) 移项 即证 (sqrt(a)-sqrt(b))≥0 显然成立
此不等式中 a+b可以表示一条直径的两部分,(a+b)/2=r sqrt(ab)就是垂直于直径的弦,而r≥弦的一半
3.sqrt(ab)≥2/1/a+1/b 两边同时乘上 1/a+1/b 即证 sqrt(ab)*(1/a+1/b)≥2
而sqrt(ab)*(1/a+1/b)=sqrt(a/b)+sqrt(b/a)≥2[由上一个不等式]。
篇3:高中四个均值不等式
用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的`式子也是不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
篇4:不等式证明
不等式证明
不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..
(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如:
2)利用基本不等式,如:
(3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。
8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的.。
10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当 a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当 a<0时,f(x)>0(或< 0).△>0(或< 0)。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。
2.放缩法
欲证 A≥B,可将 B适当放大,即 B1≥B,只需证明 A≥B1。相反,将 A适当缩小,即 A≥A1,只需证明 A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
3.几何法
数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

篇5:不等式证明练习题
不等式证明练习题
不等式证明练习题(1/a+2/b+4/c)*1
=(1/a+2/b+4/c)*(a+b+c)
展开,得
=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4
=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b
基本不等式, 得
>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2
=11+6√2≥18
楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z
则原不等式等价于:
x^2+y^2+z^2>=xy+yz+zx
<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)
<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0
<=>(x-y)^2+(y-z)^2+(z-x)^2>=0
含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.
函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的'值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.
(1/a+2/b+4/c)*1
=(1/a+2/b+4/c)*(a+b+c)
展开,得
=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4
=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b
基本不等式, 得
>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2
=11+6√2≥18
楼上的,用基本不等式要考虑等号什么时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z
则原不等式等价于:
x^2+y^2+z^2>=xy+yz+zx
<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)
<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0
<=>(x-y)^2+(y-z)^2+(z-x)^2>=0
含有绝对值的不等式练习。1.关于实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.
函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。函数公式模型。一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.
篇6:导数证明不等式
f(x)=x-ln(x+1)
f'(x)=1-1/(x+1)=x/(x+1)
x>1,所以f'(x)>0,增函数
所以x>1,f(x)>f(1)=1-ln2>0
f(x)>0
所以x>0时,x>ln(x+1)
二、
导数是近些年来高中课程加入的新内容,是一元微分学的'核心部分。本文就谈谈导数在一元不等式中的应用。
例1. 已知x∈(0, ),
求证:sinx
篇7:分析法证明不等式
分析法证明不等式
分析法证明不等式已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|<=√2
【1】
∵a⊥b
∴ab=0
又由题设条件可知,
a+b≠0(向量)
∴|a+b|≠0.
具体的,即是|a+b|>0
【2】
显然,由|a+b|>0可知
原不等式等价于不等式:
|a|+|b|≤(√2)|a+b|
该不等式等价于不等式:
(|a|+|b|)≤[(√2)|a+b|].
整理即是:
a+2|ab|+b≤2(a+2ab+b)
【∵|a|=a. |b|=b. |a+b|=(a+b)=a+2ab+b
又ab=0,故接下来就有】】
a+b≤2a+2b
0≤a+b
∵a,b是非零向量,
∴|a|≠0,且|b|≠0.
∴a+b>0.
推上去,可知原不等式成立。
作为数学题型的不等式证明问题和作为数学证明方法的分析法,两者皆为中学数学的教学难点。本文仅就用分析法证明不等式这一问题稍作探讨。
注:“本文中所涉及到的图表、公式注解等形式请以PDF格式阅读原文。”
就是在其两边同时除以根号a+根号b,就可以了。
下面我给你介绍一些解不等式的方法
首先要牢记一些我们常见的不等式。比如均值不等式,柯西不等式,还有琴深不等式(当然这些是翻译的问题)
然后要学会用一些函数的方法,这是解不等式最常见的方法。分析法,综合法,做减法,假设法等等这些事容易的。
在考试的时候方法最多的是用函数的.方法做,关键是找到函数的定义域,还有求出它的导函数。找到他的最小值,最大值。
在结合要求的等等
一句话要灵活的用我们学到的知识解决问题。
还有一种方法就是数学证明题的最会想到的。就是归纳法
这种方法最好,三部曲。你最好把它掌握好。
若正数a,b满足ab=a+b+3,则ab的取值范围是?
解:ab-3=a+b>=2根号ab
令T=根号ab,
T^2-2T-3>=0
T>=3 or T<=-1(舍)
即,根号ab>=3,
故,ab>=9 (当且仅当a=b=3是取等号)。
篇8:综合法证明不等式
综合法证明不等式
综合法证明不等式若正数a,b满足ab=a+b+3,则ab的取值范围是?
解:ab-3=a+b>=2根号ab
令T=根号ab,
T^2-2T-3>=0
T>=3 or T<=-1(舍)
即,根号ab>=3,
故,ab>=9 (当且仅当a=b=3是取等号)
已知a,b,c为正实数,用综合法证明
2(a^3 + b^3 +c^3)≥a^2 (b+c)+b^2 (a+c)+c^2 (a+b)
证明:a>0,b>0--->a+b>0,(a-b)^2>=0
--->(a+b)(a-b)^2>=0
--->(a^2-b^2)(a-b)>=0
--->a^3-a^2*b-ab^2+b^3>=0
--->a^3+b^3>=ba^2+ab^2
同理b^3+c^3>=cb^2+bc^2,c^3+a^3>=ac^2+ca^2
三同向的不等式的两边相加得到
2a^3+2b^3+2c^3>=a^2*b+a^2*c+b^2*a+b^2*c+c^2*a+c^2*b
就是2(a^3+b^3+c^3)>=(b+c)a^2+(c+a)b^2+(a+b)c^2.证完
1.若a,b∈R,则lg(a^2+1)
2.设x>1,则x/(1+x)+1/2与1的大小关系为
3.不等式
1/(a-b) + 1/(b-c) + β/(c-a) ≥0,
对满足a>b>c恒成立,则β的取值范围是
1.若a,b∈R,则lg(a^2+1)
解:lg(a^2+1)
<==>a^2+1
<==>a^2
<==>|a|<|b|≠=>a
且a|a|<|b|,
∴lg(a^2+1)
2.设x>1,则x/(1+x)+1/2与1的'大小关系为
解:x/(1+x)+1/2-1
=(x-1)/[2(x+1)]>0,
∴x/(1+x)+1/2>1.
3.不等式
1/(a-b) + 1/(b-c) + β/(c-a) ≥0,
对满足a>b>c恒成立,则β的取值范围是
解:注意a-b+b-c=a-c,原不等式化为
β<=(a-c)^2/[(a-b)(b-c)]恒成立,
而(a-c)^2/[(a-b)(b-c)]>=4,
∴β的取值范围是(-∞,4]。
综合法是不等式证明的一种方法,这种方法是:根据不等式的性质和已经证明过的不等式来进行。 综合法.从已知(已经成立)的不等式或定理出发,逐步推出(由因导果)所证的不等式成立.例如要证 ,我们从 ,得 ,移项得 .综合法的证明过程表现为一连串的“因为……所以……”,可用一连串的“ ”来代替.
综合法的证明过程是下一节课学习的不等式的证明的又一必须掌握的方法――分析法的思考过程的逆推,而分析法的证明过程恰恰是综合法的思考过程。 实际上在前面两个重要的不等式平方不等式和均值定理的证明及不等式的性质证明当中,我们已经运用了综合法,但当时只是没有提出或采用这个名字而已。本节课是不等式的证明的每第二节课,由于立方不等式已移至阅读材料当中,故例题只有一个,是运用平方不等式来作为基础工具。
篇9:第二册不等式证明
目的:以不等式的`等价命题为依据,揭示不等式的常用证明方法之一――比较法,要求学生能教熟练地运用作差、作商比较法证明不等式。
过程:
一、复习:
1.不等式的一个等价命题
2.比较法之一(作差法)步骤:作差――变形――判断――结论
二、作差法:(P13―14)
1. 求证:x2 + 3 > 3x
证:∵(x2 + 3) - 3x =
∴x2 + 3 > 3x
2. 已知a, b, m都是正数,并且a < b,求证:
证:
∵a,b,m都是正数,并且a 0 , b - a > 0
∴ 即:
变式:若a > b,结果会怎样?若没有“a < b”这个条件,应如何判断?
3. 已知a, b都是正数,并且a b,求证:a5 + b5 > a2b3 + a3b2
证:(a5 + b5 ) - (a2b3 + a3b2) =( a5 - a3b2) + (b5 - a2b3 )
=a3 (a2 - b2 ) - b3 (a2 - b2) =(a2 - b2 ) (a3 - b3)
=(a + b)(a - b)2(a2 + ab + b2)
∵a, b都是正数,∴a + b, a2 + ab + b2 > 0
又∵a b,∴(a - b)2 > 0 ∴(a + b)(a - b)2(a2 + ab + b2) > 0
即:a5 + b5 > a2b3 + a3b2
4. 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半时间以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果m n,问:甲乙两人谁先到达指定地点?
解:设从出发地到指定地点的路程为S,
甲乙两人走完全程所需时间分别是t1, t2,
则: 可得:
∴
∵S, m, n都是正数,且m n,∴t1 - t2 < 0 即:t1 < t2
从而:甲先到到达指定地点。
变式:若m =n,结果会怎样?
三、作商法
5. 设a, b R+,求证:
证:作商:
当a =b时,
当a > b > 0时,
当b > a > 0时,
∴ (其余部分布置作业 )
作商法步骤与作差法同,不过最后是与1比较。
四、小结:作差、作商
五、作业 : P15 练习
P18 习题6.3 1―4
篇10:不等式的证明
不等式的证明
不等式的证明不等式的证明,基本方法有
比较法:(1)作差比较法
(2)作商比较法
综合法:用到了均值不等式的知识,一定要注意的是一正二定三相等的方法的使用。
分析法:当无法从条件入手时,就用分析法去思考,但还是要用综合法去证明。两个方法是密不可分的。
换元法:把不等式想象成三角函数,方便思考
反证法:假设不成立,但是不成立时又无法解出本题,于是成立
放缩法:
用柯西不等式证。等等……
高考不是重点,但是难点。
大学数学也会讲到柯西不等式。
不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。
一、不等式的初等证明方法
1.综合法:由因导果。
2.分析法:执果索因。基本步骤:要证..只需证..,只需证..
(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。
(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。
3.反证法:正难则反。
4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:
(1)添加或舍去一些项,如:
(2)利用基本不等式,如
3)将分子或分母放大(或缩小):
5.换元法:换元的目的就是减少不等式中变量,以使问题
化难为易、化繁为简,常用的换元有三角换元和代数换元。
6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。
7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。
8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。
10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当 a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当 a<0时,f(x)>0(或< 0).△>0(或< 0)。
二、部分方法的例题
1.换元法
换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。
注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。
2.放缩法
欲证 A≥B,可将 B适当放大,即 B1≥B,只需证明 A≥B1。相反,将 A适当缩小,即 A≥A1,只需证明 A1≥B即可。
注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的.不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。
3.几何法
数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。
注意:这类方法对几何的熟悉程度以及几何与代数的相互联系能力要求比较高。
每一种不等式的证明方法基本上都有一种固定的模式可以去对比,但数学的特点就在于它的灵活性非常强,所以不等式的证明中的题目会有很多种变化,这对学习者的要求是非常高的,这就需要我们在今后的学习中多总结、归纳,才能达到我们学习的效果。具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学对于老师讲过的题会做,其他的题就不会做,只会依样画瓢,题目有些小的变化就无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其他条件有关的,或与结论有关的,或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,俗话说,条条大路通罗马。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地应对那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;有了自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
篇11:比较法证明不等式
比较法证明不等式
比较法证明不等式1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。
(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的`大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。
a>b>0,求证:a^ab^b>(ab)^a+b/2
因a^a*b^b=(ab)^ab,
又ab>a+b/2
故a^a*b^b>(ab)^a+b/2
已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4.
用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于-4
下面这个方法算不算“比较法”啊?
作差 M = ab+bc+ca - (-4) = ab+bc+ca+4
构造函数 M = f(c) = (a+b)c + ab+4
这是关于 c 的一次函数(或常函数),
在 cOM 坐标系内,其图象是直线,
而 f(-2) = -2(a+b) + ab+4 = (a-2)(b-2) > 0(因为 a<2, b<2)
f(2) = 2(a+b) + ab+4 = (a+2)(b+2) > 0(因为 a>-2, b>-2)
所以 函数 f(c) 在 c∈(-2, 2) 上总有 f(c) > 0
即 M > 0
即 ab+bc+ca+4 > 0
所以 ab+bc+ca > -4
设x,y∈R,求证x^2+4y^2+2≥2x+4y
(x-1)≥0
(2y-1)≥0
x-2x+1≥0
4y-4x+1≥0
x-2x+1+4y-4x+1≥0
x+4y+2≥2x+4x
除了比较法还有:
求出中间函数的值域:
y=(x^2-1)/(x^2+1)
=1-2/(x^2+1)
x为R,
y=2/(x^2+1)在x=0有最小值是2,没有最大值,趋于无穷校
所以有:
-1<=y=1-2/(x^2+1)<1
原题得到证明
比较法:
①作差比较,要点是:作差――变形――判断。
这种比较法是普遍适用的,是无条件的。
根据a-b>0 a>b,欲证a>b只需证a-b>0;
②作商比较,要点是:作商――变形――判断。
这种比较法是有条件的,这个条件就是“除式”的符号一定。
当b>0时,a>b >1。
比较法是证明不等式的基本方法,也是最重要的方法,有时根据题设可转化为等价问题的比较(如幂、方根等)
综合法是从已知数量与已知数量的关系入手,逐步分析已知数量与未知数量的关系,一直到求出未知数量的解题方法。
篇12:法证明不等式
归纳法证明不等式
归纳法证明不等式由于lnx>0 则x>1
设f(x)=x-lnx f'(x)=1-1/x>0
则f(x)为增函数 f(x)>f(1)=1
则 x>lnx
则可知道等式成立。。。。。。。。。(运用的是定理,f(x),g(x)>0. 且连续 又f(x)>=g(x).则 在相同积分区间上的积分也是>=)
追问
请问这个“定理”是什么定理?
我是学数学分析的,书上能找到么?
回答
能 你在书里认真找找,不是定理就是推论埃。。。。
叫做积分不等式性
数学归纳法不等式的做题思路 : 1、n等于最小的满足条件的值,说明一下这时候成立,一般我们写显然成立,无须证明
2、假设n=k的时候成立,证明n=k+1的时候也是成立的,难度在这一步。(含分母的一般用放缩法,含根号的.常用分母有理化。)
3、总结,结论成立,一般只要写显然成立。 这题大于号应该为小于号。 当n=1,1<2显然 假设n=k-1的时候成立 即 1+ 1/√2 +1/√3 +... +1/√(k -1)<2√(k-1) 则当n=k时,
1+ 1/√2 +1/√3 +...... +1/√(k-1)+1/√k<2√(k-1)+1/√k如果有2√(k-1)+1/√k<2√k就可,只要1/√k<2√k-2√(k -1)=2(√k-√(k -1)=2/[(√k+√(k -1)],即只要√(k -1<√k,而这显然。所以1+ 1/√2 +1/√3 +...... +1/√n >2√n
已知f(n)=1+1/2+1/3+...+1/n(n属于正整数),求证:当n>1时,f(2^n)>n+2/2
(1)n=2时 代入成立
(2)假设n=a时候成立
则n=a+1时
f(2^(a+1))=f(2^a)+1/(2^a+1)+1/(2^a+2)+1/(2^a+3)+……1/(2^(a+1))>
f(2^a)+1/(2^(a+1))+1/(2^(a+1))+1/(2^(a+1))+……1/(2^(a+1))
后面相同项一共有2^a个
所以上面又= f(2^a)+2^a/(2^(a+1))= f(2^a)+1/2
因为f(2^a)>(a+2)/2 故上面大于<(a+1)+2>/2
因此n=a时上式成立的话 n=a+1也成立
1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈N+)
“1/2^2”指2的平方分之1
证明:数学归纳法:
1、∵当n=2时有1/2^2=1/4<1-1/2=1/2
∴符合原命题。
2、假设当n=k时1/2^2+1/3^2+1/4^2+…+1/k^2<1-1/k(k≥2,k∈N+)成立,
则当n=k+1时有1/2^2+1/3^2+1/4^2+…+1/k^2+1/(k+1)^2<1-1/k+1/(k+1)^2=(k^3+k^2-1)/(k(k+1)^2)<(k^3+k^2)/(k(k+1)^2)=k/(k+1)=1-1/(k+1) ∴原命题成立
综上可得1/2^2+1/3^2+1/4^2+…+1/n^2<1-1/n(n≥2,n∈N+)成立!!。












