“豆乳柿饼”通过精心收集,向本站投稿了14篇研究基于云计算角度下的数据存储安全技术论文,下面是小编精心整理后的研究基于云计算角度下的数据存储安全技术论文,仅供参考,大家一起来看看吧。

研究基于云计算角度下的数据存储安全技术论文

篇1:研究基于云计算角度下的数据存储安全技术论文

研究基于云计算角度下的数据存储安全技术论文

随着科学技术的日益进步,互联网信息技术得到广泛的应用,云计算也得到较快的发展。云计算作为当今新型的计算机技术,在数据存储安全方面还存在一定的问题未得到充分的解决。根据云计算数据存储安全的现状分析,其研宄内容主要在于数据保护、加密算法、虚拟安全技术等方面,其中数据安全存储是关键部分,本文对云计算环境下数据存储安全的关键技术进行研究,保障用户的信息安全。

1.云计算与云存储的概述

云计算是指通过互联网进行动态的扩展且为虚拟化的资源,随着互联网相关服务的增加,按使用量付费的模式。网络的数据传输功能发展迅速,使得计算机逐渐组成了一个相互关联的集群,并且由统一的数据处理中心进行资源的调配和处理。其具有规模大、形式虚拟、兼容性强等特点。云计算中的关键环节在于云存储,其具有集群应用和分布式文件系统等功能,将网络中不同类型的存储设备通过应用软件进行组合工作,为用户提供业务访问等服务的系统,属于云计算衍生出的新兴的网络存储技术。当云计算系统需要存储和管理大量数据时,系统需要配置存储设备,此时,云存储成为主要进行数据存储和管理的核心云计算系统,方便用户随时随地,通过任何可联网的装置进行信息数据的存取。

2.云数据存储结构

云计算环境下数据存储结构利用了先进的互联网技术,实现了按照用户的网络需求来分配资源。与传统的数据存储结构比较,从服务和实际应用的角度分析,云数据存储是一个硬件的同时还是由客户端程序、访问接口、软件、服务器等设备组成的存储系统。

云数据存储结构通过云计算系统中的应用软件为用户提供数据存储及业务访问等服务,其中,存储层是云数据存储结构的最基层,其主要内容包含存储管理和虚拟化设备,存储层中的存储管理系统用于对硬件设施的维护和升级等功能。管理层是云数据存储结构的核心层,其通过分布式文件系统和集群管理技术进行内容分布和数据备份,具有良好的拓展性,还可以完成云存储系统中的数据加密等任务,符合用户对信息可用性及存储功能的需求。接口层属于云数据存储结构中的重要组成部分,其应有与云计算系统的结构开发与应用,供应商包括网络接入、身份论证、权限管控、应用软件接口等部分,供应商通过接口层为用户设置统一的编程,方便用户自主开发应用程序。云数据存储结构的顶层为访问层,其主要是系统应用程序的入口,用户通过访问层进入云计算系统,实现系统中的资源共享。

3.云计算环境下数据存储安全及其关键内容

3.1 云计算环境下数据存储安全

云计算在其实际应用中存在用户信息遭泄露等不安全问题,因此,云计算环境下数据存储安全问题是当前计算机技术发展过程中面临的挑战。为了降低企业中事务的使用成本,减少繁琐的工作程序,就需要在云数据存储的过程中,确保其安全可靠性,使的云计算系统提供优质的服务。在云计算技术的背景下,通过服务式的操作和存储数据,保证数据的稳定性。虽然个体用户使用的数据由提供商管理,用户存储和使用数据是借助网络服务的,但其数据的安全性也需要由云计算系统统一负责。可以将计算机的使用过程看成一个节点,当这些节点出现安全隐患问题时,就需要采取不同的手段对其进行访问和使用,即保证云计算中的安全存储与数据的传输、恢复联系起来,并且得以稳定的发展。

3.2 云计算环境下数据安全的关键内容

云数据安全的关键内容包括数据传输安全,其主要指在云计算的服务下,用户将数据传输给云计算系统服务商,由服务商进行数据的处理工作。其间,云计算需要确保用户的数据在传输过程中被加密,保证不被泄露。服务商获取用户数据后,按照行业要求进行保存,服务商还需要做到对用户进行权限认证之后再给予访问数据的权利,访问的对象只能访问自身的数据。云数据安全的关键内容包括数据存储安全,其主要指实现系统中存储数据资源共享的模式,在云计算系统服务下,服务商采取必要的手段隔离不同的数据。当用户准确知道其数据存放位置的情况下,服务商还需要保证对用户托管的数据进行了有效的备份,以防出现突发状况时,数据的丢失,云计算服务商需要最大限度地保护用户的数据,使其恢复到初始状态。在系统中,数据的残留极易泄露用户的信息,因此,云计算服务商需要保证为用户提供数据的安全性。云数据安全的关键内容还包括数据审计安全,通过云计算的服务模式,服务商为用户提供必要的信息支持,并且不对其他用户的数据造成威胁。云计算的服务费为保证数据的安全,需要协助第三方机构准确地对数据安全进行审计,保证用户的信息安全性,同时也促进云计算服务系统的健康长远发展。

4.基于云计算的数据存储安全技术

云计算环境下数据存储在保证数据运算效率的同时还需要确保其安全性,因此,服务商在为用户提供云存储服务时,需要对其信息进行加密保护,保证用户的数据出现在任一存储空间中,非授权用户看到的是无序的乱码,确保用户的个人信息不被泄露。在保证云计算服务商真实可信的前提下,需要将提高云计算的系统运算效率和安全性作为主要任务,探宄出适合互联网信息技术发展的数据存储安全技术。

4.1 数据加密技术

目前我国的云存储系统保护隐私数据的能力有限,为保证云存储数据的完整性,用户在使用互联网的同时也需要对自身信息进行有效的加密。云计算系统用户需要提高信息安全意识,加强数据的密钥管理,通过科学的数据加密技术保障云存储系统数据的安全性,提高其使用效率。用户在进行数据加密的过程前,对应的加密算法公钥需要用户端从密匙库中提取,之后应用对称加密的算法,形成具有校验信息的密钥。其中具备校验信息的密钥可以通过非对称的加密算法进行处理,确保其安全性,最后处理好的信息数据作为数据包储存于云端中。在重复加密过程中,保证所有的数据包完成数据加密的行为,方可截止,形成数据加密的'全过程。

4.2 数据隔离技术

在云计算模式的背景下,用户将随意摆放系统中的数据存储结构,因此,会出现多个用户将数据存储于同一个虚拟服务器中的现象。出现此类情况时,用户需要使用数据隔离技术,将自身的信息与其他用户的信息有效的隔离开,保证云计算环境下数据存储的安全性。

4.3 访问权限控制

当用户将数据上传至云计算数据存储系统后,云计算系统的提供商将享有访问该数据的优先权。如果用户需要限制服务商的访问权限,在上传个人数据的同时,需要将该数据的访问优先级别设置为自己,以此确保自身数据在云计算环境下数据存储的安全性。

4.4 数据加密传输

各类数据在云计算系统中的传输是必不可少的,因此,其在传输过程中的安全性是当前面临的大考验。数据的加密传输是指在数据的传输过程中在网络链路层、传输层等区域使用加密技术,以此确保用户数据的可用性和完整性。在数据传输的前期,通过加密协议为用户的数据传输提供加密通道,在数据传输的后期,则采用必要手段防治非法用户对数据的窃取,进而维护用户的数据安全,保证云计算环境下的数据加密传输。

5.结语

随着我国的信息技术不断发展,云计算技术在各行业中得以广泛的应用,其前景广阔。但在云计算的环境下,数据的安全问题成为当前亟待解决的问题。基于云计算的系统模式,构建云数据存储结构,通过数据加密技术、数据隔离技术、访问权限控制、数据加密传输等关键技术确保云计算的数据存储安全,提高云计算的运行效率,推动云存储系统的高效应用,促进我国云计算环境下数据存储结构的不断完善。

篇2:云计算环境数据安全研究论文

云计算环境数据安全研究论文

云计算是网格计算、分布式计算、效用计算等技术发展融合的产物,如今普及速度非常快。亚马逊、谷歌、微软等企业向用户提供了在云环境中开发应用和远程访问应用的功能。由于云环境的数据托管给服务商存储在远程服务器中,且应用数据通过互联网传输,数据存储和传输安全是一个重要的问题。在实现云计算之前,首先应该解决由此带来的安全问题。论文描述了云计算中数据安全相关的挑战,研究了对于数据安全不同层面的解决方案。

1 引言

云计算是基于下一代互联网的计算系统,提供了方便和可定制的服务供用户访问或者与其他云应用协同工作。云计算通过互联网将云应用连接在一起,向用户提供了在任意地点通过网络访问和存储数据的服务。

通过选择云服务,用户能够将本地数据副本存储在远端云环境中。在云环境中存储的数据能通过云服务提供商提供的服务进行存取。在云计算带来方便的同时,必须考虑数据存储的安全性。如今云计算安全是一个值得注意的问题。如果对数据的传输和存储不采取合适的手段,那么数据处于高风险的环境中,关键数据泄露可能造成非常大的损失。由于云服务向公共用户群提供了访问数据的功能,数据存储可能存在高风险问题。在后续章节中,本文首先介绍了云计算模型,然后针对云计算本身的属性带来的信息安全问题,研究了已有数据安全解决方案的应用范围。

2 云计算应用模式

云计算的应用模式主要有软件即服务(SaaS)、平台即服务(PaaS)、基础设施即服务(IaaS)等。在SaaS中,厂商提供服务供客户使用,客户使用服务在云基础架构中运行应用。SaaS相对比较简单,不需要购买任何硬件,使用容易。但是数据全部保存在云端,且存放方式不受用户控制,存在安全隐患。PaaS则通过使用云计算服务商提供的中间件平台开发和测试应用,例如谷歌的App Engine。由于不同的中间件平台提供的API不一样,同一个应用不能再不同的平台通用,存在一定的兼容性问题。在IaaS模型中,用户可以控制存储设备、网络设备等基础计算架构,或者直接使用服务商提供的虚拟机去满足特定的软件需求,灵活性高但是使用难度也比较大。

随着云计算的蓬勃发展,云计算安全作为不能忽视的层面,应该引起足够的重视。如果对数据的传输和存储不采取合适的手段,那么数据将处于高风险的环境中。由于云计算向用户群提供了访问数据的功能,不论采用三种主要应用模式的任意一种,数据都存储在公共平台中,由此带来了数据存储和传输的安全问题。

3 数据安全挑战

3.1 数据保障

当多个用户共享同一个资源的时候存在资源误用的风险。为了避免这个风险,有必要对数据存储、数据传输、数据处理等过程实施安全方面的措施。数据的保护是在云计算中最重要的挑战。为了加强云计算的安全,有必要提供认证授权和访问控制的手段确保数据存储的安全。数据安全的主要几个方面:健壮性——使用测试工具检查数据的'安全脆弱性,查看云计算应用是否有常见的漏洞,比如跨站脚本、SQL注入漏洞等;保密性——为了保护客户端数据的安全,应当使用资源消耗少的瘦客户端,尽量将客户端的功能精简,将数据的运算放置在云服务端完成;可用性——数据安全中最重要的部分,具体实施情况由厂商和客户直接协商决定。以上措施决定了数据的可用性、可靠性和安全性。

3.2 数据正确性

在保证数据安全的同时也要保证数据的正确性。每个在云计算中的事务必须遵守ACID准则保持数据的正确性。否则会造成数据的“脏读”,“幻读”等现象,造成数据的不准确,事后排查花费的代价高。大多数Web服务使用HTTP协议都面临着事物管理的问题。HTTP协议本身并不提供事务的功能,事务的功能可以使用程序内部的机制解决。

3.3 数据访问

数据访问主要是指数据安全访问管理机制。在一个公司中,应根据公司的安全条例,给予不同岗位职工特定数据的访问权限,保证该数据不能被公司的其他员工访问。可以使用加密技术保证数据传输安全,采取令牌管理手段提升用户密码的猜解复杂程度。

3.4 保密性

由于在云环境中,用户将文本、视频等数据存储在云端,数据保密性成为了一个重要的需求。用户应该了解保密数据的存放情况和数据的访问控制实施情况。

3.5 数据隔离

云计算的重要特征之一是多用户租用公共服务或设备。由于公用云向所有用户提供服务的特点,存在数据入侵的可能。通过注入代码等手段,可能造成云端存储的数据被非授权获取。所以有必要将用户数据和程序数据分开存储,增加数据被非授权获取的难度。通常可以通过SQL注入、数据验证等方式验证潜在的漏洞是否存在。

3.6 数据备份

云端数据备份主要目的是在数据意外丢失的情况下找。数据丢失是一个很普遍的问题,一份的调查表明,66%的被访者声称个人电脑的文件存在丢失情况。云端数据备份还可以方便将数据恢复到某个时期的版本。云计算作为公用服务,已有大量用户使用网盘将数据副本存储在云端,但是还有很多应用的业务数据未在用户本地设备中存储。无论云端存储数据的性质,云端都应定时将存储的数据备份,保障云服务的正常运行。

3.7 法律法规风险

在云计算中,数据有可能分布存储在不同的国家和地区中。当数据被转移到其他的国家和地区中后,必须遵守当地的法律法规。所以在云计算中,存在数据放置地理位置的问题,客户应当知晓数据存储的地理位置防范风险。

4 数据安全解决方案

对于数据安全问题,需要方案解决云环境中数据潜在的风险。其中由于云环境的公用特性,数据保密应当作为主要解决目标。针对上节的数据保障、正确性、访问等问题,多位云计算安全专家在不同层面已先后提出了几套完整的解决方案,其目标主要是保证云环境中数据共享的安全性。在不可信的公共云环境中,数据共享的同时保证数据对第三方的保密性。

4.1 基本方案

数据加密是一个比较好的保证数据安全的方案。在云端存储数据之前最好能先加密数据。数据的拥有者能将数据的访问权给予特定的用户群体。应当设计一个包括认证、数据加密、数据正确性、数据恢复等功能的模型去保证数据在云端的安全。

为了保证数据不能被非授权访问,将数据加密使其完全对于其他用户无法解析是一个比较好的方法。在上传数据到云端之前,建议用户验证数据是否在本地有完整的备份,可以通过计算文件的哈希值来验证数据是否一致。数据传输应当采用加密方式,防止敏感信息被中间人监听。SaaS要求必须在物理层面和应用层面将不同用户的数据隔离。可以使用采用基于角色的访问控制或者是自主访问控制,以及分布式的访问控制架构控制云计算中的数据访问。一个设计良好的访问控制机制可以极大地保护数据的安全,还可以采用入侵防御系统实时监测网络入侵。入侵防御系统主要功能为识别可疑行为,记录行为的详细信息并试图阻止。

上述基本方案可以解决数据保障、数据正确性、数据访问及保密性等问题。但是,在实际应用中没有考虑效率,仅仅作为基本手段不能满足用户云环境数据共享的特定需求。

4.2 属性基加密

属性基加密(Attribute-based Encryption)相对于传统的公用密钥加密具有很大的优势。传统的公用密钥加密采用公私钥对,公钥加密的信息只能用私钥解密,保证了仅有接收人能得到明文;私钥加密的信息只能用公钥解密,保证了信息的来源。公钥基础设施体系和对称加密方式相比,解决了信息的保密性、完整性、不可否认性问题。属性基加密则在公用密钥加密的基础上,更多考虑了数据共享和访问控制的问题。在属性基加密系统中,密钥由属性集合标识。仅当公私钥对指定的属性相同或者具有规定的包含关系时,才能完成解密密文。例如,用户如果为了数据安全将文档加密,但是需要同公司的人能解密该密文,那么可以设置密钥的属性位“组织”,只有属性位“组织”为该用户公司的密钥才能将该密文解密,不满足条件的密钥则不能解密,如图1所示。

属性基加密分为密钥策略(KP-ABE)和密文策略(CP-ABE)。KP-ABE模式中,密文具有属性集合,解密密钥则和访问控制策略关联。加密方定义了能成功解密密文的密钥需要满足的属性集合。KP-ABE模式适用于用户查询类应用,例如搜索、视频点播等。CP-ABE模式中,加密方定义了访问控制策略,访问控制策略被包含在密文内,而密钥仅仅是属性的集合。CP-ABE模式主要适用于访问控制类应用,例如社交网站、电子医疗等。

属性基加密方式,不仅可以应用在云存储共享中,在审计日志共享方面也有很广泛的应用。审计日志共享大都存在时间段的限制,属性基加密方式可以在密文中添加时间属性位和用户属性,提供对不同用户共享不同时间段日志的功能。属性基加密紧密结合了访问控制的特性,在传统公用密钥的基础上,提高了数据共享的方便程度。

属性基加密虽然提高了数据共享的方便程度,但是没有从根本上解决云环境数据加解密过程中,解密为明文导致的敏感数据泄露问题。

4.3 代理重加密

由于云环境是公用的,用户无法确定服务提供商是否严格的将用户资料保存,不泄露给第三方。所以,当用户之间有在云环境中共享资料的需求时,必须考虑资料的保密性问题。

用户A希望和用户B共享自己的数据,但是不希望直接将自己的私钥Pa给B,否则B能直接用Pa解密自己采用私钥加密的其他数据。对于这种情况,有一些解决方案。

(1)用户A将加密数据从云端取回,解密后通过安全方式(例如采用用户B的公钥加密)发送给用户B。这种方式要求用户A必须一直在线,存在一定的局限性,并且数据量比较大时,本地耗费的计算量可能非常大。

(2)用户A可以将自己的私钥给云服务提供商,要求提供数据共享的服务。在这种情况中,用户A必须相信云端不会将私钥泄露。

(3)用户A可以采用一对一加密机制。A将解密密钥分发给每个想共享数据的用户,A必须针对每个用户生成并存储不同的加密密钥和密文。当新用户数量很多时,这个方案造成了磁盘空间的大量占用,存储数据冗余度高。

代理重加密(Proxy Re-Encryption)手段可以很好的解决云环境数据共享的问题。代理重加密手段设立了一个解密代理。首选A由私钥Pa和B的公钥Pb计算出转换密钥Rk。转换密钥可以直接将由私钥Pa加密的密文转加密为由公钥Pb加密的密文。在转换过程中,A的原始密文不会解密为明文,而转加密后的密文也只能由用户B解密。当用户B想访问A共享的资料时,只需要解密代理使用Rk将A的密文转换为只有B能解密的密文即可。这种机制保证了包括云在内的所有第三方都不能获取A共享给B的明文,如图2所示。

代理重加密解决了云环境中数据共享而不泄露明文的基本问题,侧重于数据的保密。该技术手段关注数据的保密性,未考虑实际应用中数据共享方便程度等其他问题。

4.4 基于代理重加密的属性基加密方法

代理重加密技术可以和在云存储中使用的属性基加密机制结合,属性基加密侧重于加密方面的访问控制,而代理重加密从加密手段上保证了数据的隐秘性。通过将这两种机制结合,用户可以更加高效的分享数据。数据拥有者可以根据新的访问控制规则生成转换密钥,然后将转换密钥上传至云服务器,服务器将原有的密文转加密为新的密文。新的密文在不影响原有用户解密的情况下,可以使新用户成功解密。而在转换原有密文的整个过程中,服务器无法将密文解密为明文。

该类加密方法既保证了转换效率,又保证了数据的保密性。此类方法中,不考虑抗选择密文攻击的算法计算转换密钥的资源消耗相对较小,考虑了抗选择密文攻击的算法资源消耗量和密钥属性基的大小正相关。

5 结束语

虽然云计算是一个带来了很多益处给用户的新兴技术,但它也同时面临着很多安全方面的挑战。本文说明了云计算方面的安全挑战和对应的解决方案,从而降低云计算可能带来的安全风险。为了保证云存储的安全访问,在技术层面,可以采用健壮的数据加密机制;在管理层面,采用合适的令牌管理机制,分发令牌给用户从而保证数据只能被授权的访问。随着云计算的普及,相信云服务提供商和用户对于云环境数据安全方面会越来越重视。在相关安全策略实施后,云计算能在提供良好服务的同时,让用户使用更加放心。

篇3:云计算环境下数据挖掘技术分析论文

云计算环境下数据挖掘技术分析论文

摘要:随着经济社会不断发展与进步,科技信息技术为了适应社会发展的需求,也在不断地提高。云计算作为互联网发展中的一项新兴技术,渐渐成为了人们生活中不可或缺的一部分,并被广泛运用于军事领域、医疗领域与金融领域等。随着计算机的不断发展,基于云计算环境下的数据挖掘技术已经成为一项非常高效与实用的技术,它可以有效的解决传统数据挖掘方式不适合解决海量数据的问题。本文通过对云计算环境下的数据挖掘技术的分析与探讨,期望可以加深同行业工作者对数据挖掘技术的了解,为将来电子商务发展效率的提高,打下结实的基础。

关键词:数据挖掘,云计算,技术

随着移动互联网和物联网的迅速发展,如今的社会正处于大数据时代。数据的海量增加,对数据挖掘系统带来了极大的挑战。而云计算的出现便能有效解决这一难题,它可以使分布在不同计算机的数据集中在统一的云端,这样便有利于我们对数据的获取与挖掘。云计算中可弹性变化的计算能力和海量存储能力,更是为解决海量数据挖掘提供了有效的解决途径。

一、数据挖掘的内涵

数据挖掘是我们通过大量数据集进行分类以识别趋势和模式并建立关系的自动化过程。因为当今是一个大数据时代,我们需要从海量数据中提取和挖掘对我们有利的信息,从而来更好地为各种应用系统服务,如物联网、社交媒体等。而数据挖掘,就能从海量数据的挖掘到所需的信息,从而为你提供比没有使用这些工具的竞争对手更大的优势。

二、基于云计算环境下的数据挖掘技术分析

数据挖掘具有数据清理、数据变换、数据挖掘实施过程、模式评估与知识表示等8个步骤。这8个步骤,能帮我们更好地从海量数据中提取我们所需的有价值的信息。而在数据挖掘中,最重要的是数据收集处理与数据存储工作。第一,数据收集处理。我们在进行数据收集与处理时,可以先用决策树来判别是用户访问数据还是Web机器人访问数据。然后再将海量数据进行过滤、转换、清洗、整合,将其变成半结构化的XML文件进行保存。虽然现在流行用Map—Reduce模式来进行数据收集,但其开发工具还不够完善[1]。在今后的数据挖掘技术发展与完善的过程中,我们可以将结合分形维数和其他技术的方法作为新的发展方向。不断地强化数据收集处理功能,使其能更好地为各种应用系统服务。第二,数据的存储工作。云计算系统中的分布式存储策略,是运用最广泛的数据存储方式。它可以将同一个数据存储为多个副本,这在一定程度上保证了数据的可靠性,而且还不是冗余复制。而且系统中,还存在心跳检测、错误隔离等措施。虽然通过数据副本的存储方式能够有效的提高数据存储安全性,但是数据的计算速度和移动速度都比较慢,且实际的工作效率也并不理想。因此,我们在进行数据迁移的时候,可以利用MASTER系统来完成计算数据迁移工作。我们可以通过寻找数据副本进行抵制,既可以进行迁移又可以完成既定工作,这样不但使工作效果更加理想,而且实际工作效率也大幅度的提高。

三、云计算环境下数据挖掘技术的优势

利用云计算进行数据挖掘,具有以下的优点:第一,云计算环境下的数据挖掘可以隐蔽底层,这样使得我们的数据开发工作更加便利。用户不用考虑计算分配、计算调度任务与数据划分等问题,既能有效地提高工作效率,还便于我们操作;第二,云计算提高了大规模数据的处理能力和处理速度;第三,使得数据处理的成本降低,不再需要购买高性能的机器,从而有效提高了收益;第四,基于云计算的数据挖掘技术,可以使我们有效地从海量数据中挖掘出我们需要的信息,创造了良好的开发环境和应用环境,让挖掘任务变得更加简单。

四、云计算环境下数据挖掘技术面临的问题与挑战

目前,云计算还处于初级阶段,发展还不够成熟,也存在着一些问题与挑战,主要包括以下几个方面:第一,软件与服务的可信度不高。云计算要重视隐私安全问题,不断提升云计算的隐私安全保护能力,才能让用户放心使用云计算;第二,存在太多的不确定性。如数据挖掘的方法及结果、挖掘结果的评价和数据挖掘任务的描述等;第三,算法的'选择问题。不同的问题要用合适的算法和策略来进行数据的处理,云计算数据挖掘技术在这一方面还有待加强。大数据挖掘技术应用的过程中,验证技术的局限性也非常突出。在技术应用过程中,我们是通过特定分析方法及逻辑形式来发现知识[2]。在这一过程中,如果系统没有能力交互证实已发现的知识,就容易造成发现的知识不具有普遍实用性。而那些事待挖掘的数据自身可能就是错误的,这样便使得数据挖掘在有效性这方面受到一定的冲击。而我们从海量数据中挖掘到的信息,它们所构成的预言模型并不会告诉我们:一个人为什么会做某一件事及采取某个行动。为了保障数据挖掘结构的价值,用户就要对自身的数据进行一定的了解,这样才能提高数据挖掘输出结果的质量,才能更好地将挖掘到的数据为我们服务。综上所述,本文通过对云计算环境下的数据挖掘技术的分析与探讨,期望可以加深同行业工作者对数据挖掘技术的了解,为将来电子商务发展效率的提高,打下结实的基础。随着我国新兴产业战略地位不断提升,云计算成为了国家新兴产业发展的一项重点工程。我们需要不断探索与发展云计算数据挖掘技术,才能更好的满足用户的需求。据相关研究表明,云计算技术下的数据挖掘平台,相比于传统的数据挖掘方式,其数据挖掘效率高于20%。由此可见,基于云计算环境下的数据挖掘技术,不仅能满足用户规模扩大、应用目标多样等环境下的数据挖掘的应用需求,还能满足当前系统的设计需求,有利于提高数据挖掘的效率,具有更加实用价值。

参考文献:

[1]曾志华,李聪。云计算环境下频繁出现异常数据挖掘方法研究[J]。计算机仿真,,56(3):339—342。

[2]黄潮。云计算环境下的海量光纤通信故障数据挖掘算法研究[J]。激光杂志,,38(1):96—100。

篇4:云计算下网络安全技术论文

【摘要】云计算在带给我们方便快捷的同时也带来了网络安全问题。

在云计算环境下,提升用户的安全防范意识、加强智能防火墙建设、合理运用网络安全上的加密技术和做好对网络病毒的防控工作是我们必须思考的重要问题,我们应继续加强网络安全技术建设,不断探索具体的实施途径,解决云计算下的各种网络安全问题。

研究基于云计算角度下的数据存储安全技术论文篇5:云计算下网络安全技术论文

随着我国改革开放的不断深入与进行,推动了我国经济与科学技术的发展,在一定程度上推动了我国经济的发展,使得计算机技术应用到人们的生活工作中,并起到了重要的作用。

在当前由于计算机网络的发展,云计算作为其中一种新的方式,发展的其实主要就是因特网,是需要与需求进行结合的,将软硬件等资源进行结合来提供给设备的,进行资源上的共享。

云计算主要就是将技术进行分布处理,在云计算技术应用,在一定的程度上降低了成本,使得网络运用起来更加的便捷,在运用起来具有一定的优势。

消费者用户在获取资源的时候是需要随时能够为用户提供共享的资料等。

但是由于互联网具有一定的开放性,这样在一定的程度上就会使得计算机网络的安全性应用起来的安全性并不是很高,这样就需要采取一定的安全措施。

1云计算的特点

云计算的工作原理是很复杂的,主要是计算、网络计算、分布式计算3种基础性的工作原理。

因而,云计算具有分时系统性的特点,多个服务器是可以在同一时间内对于一个大任务中不同于的程序来进行计算的。

云计算在对于数据的处理上一般情况下主要是包括系统内部中搜索或是集合成的工作。

另外,云计算还具有多种不同的.便捷功能,比如说对于数据的保存等。

云计算在应用上是可以给使用者带来很便利的感受。

首先,云计算对于机器的要求并不是高,并且使用的也是很高效,在一定的程度上可以很好的节约时间。

第二,云计算的功能在一定的程度上是比其他网络技术水平更高。

最后,云计算的功能在一定的程度上是可以很快捷的将不同的地方数据来共享所有的功能。

篇6:云计算下网络安全技术论文

2.1对数据进行加密处理

为了能够保证信息的安全性,是需要对于传播的信息进行加密形式的处理。

采用该技术的主要基础就是对于价值性比较高的数据进行保护,通过对于文件的加工与处理,在一定程度上保证了数据传播的安全有效性,有就是在信息数据丢失之后,非法的第三方也是没有办法迅速的开展相关信息的应用。

在对信息信息技术的应用与观察上,是需要对信息进行一定的加密这样才能够对存储系统进行安全有效的管理,也就是通过对信息的保障,进而完善对信息的安全保障。

2.2安全存储技术

在实际信息的管理中,网络数据的安全性在一定程度上是决定着后续信息应用的根本保障,在一定的程度上也是需要通过数据存储就可以将信息进行隔离,进而建立起来安全可靠的数据网络。

通过对信息的保护,能够实现对于位置与隔离任务上的安全处理,这样在一定的程度上就能够实现信息安全性的保证。

云系统就是通过安全保护体系来进行保护整体的信息。

在进行云服务的时候,供应商的整体数据是可以通过隔离的方式来将其更为有效的显示出来的。

在当前云计算的前提下,服务商的供应数据一般情况下就是处于一种资源共享的前提下,这对于数据的加密上是有着一定的要求,在随着云计算的广泛应用,对于信息技术加密上的应用,是需要更加注重存储与网络系统方面的安全性,在之前就要做好吃相关的备份工作,只有这样,在一定的程度上才能够保证数据整体不被破坏,进而对网络数据有着一定的保护。

2.3安全认证

为了可以保证用户信息的安全性,在一定的程度上是需要对相关用户的安全性进行保护,对其中的信息进行认证,同时还是需要对客户自身的信息进行一定的认证,这样在一定的程度上才能够保证该条款有效的实施。

其实,在实际的应用中,并不是所有的信息都是需要用户的认证,在一些非法后台的出现这些信息在一定的程度上就会影响到相关信息的应用。

在这个过程中,有些客户的相关信息是会被泄露的。

为了能够减少对于这一方面的危害,就需要对客户的信息进行审计,这样在一定的程度上是可以保证信息安全认证的准确性,降低非法用户的使用权,可以降低第三方的非法使用。

2.4数据防护信息化技术处理

信息技术在安全模式运行中,是需要通过周围边界进行一定的防护,对资源进行全方位的调整,对相关用户进行服务申请,进而对信息进行有效得调整。

想要对信息进行集成化的建设,是需要建立在良好信息嘟嘴基础上的,相关的用户是可以通过对物理边界的防护来对整体用户进行相关的防护,进而对整体用户信息进行防护。

2.5病毒查杀防御

是需要在客户端上安装保证系统安全性的补丁,这样在一定的程度上就可以防止攻击者进行利用互联网攻击系统中的漏洞对计算机中的病毒进行攻击与活动。

在对相关杀毒软件进行安装的时候,是需要对杀毒软件进行更新,确保客户端可以处于防火墙的保护中,防止攻击性,还应该对系统进行随时的杀毒,客户端是需要加强对计算机网络安全的认识,对于一些处于风险的网址中的链接是不能随意打开的,还需要对软件及时更新。

随着我国改革开放的不断深入与进行,推动了我国经济与科学技术的发展,在一定程度上推动了我国经济的发展,使得计算机技术应用到人们的生活工作中,并起到了重要的作用。

在当前由于计算机网络的发展,云计算作为其中一种新的方式,发展的其实主要就是因特网,是需要与需求进行结合的,将软硬件等资源进行结合来提供给设备的,进行资源上的共享。

引用:

[1]董海军,云计算环境的计算机网络安全技术,科技传播,第13期。

[2]张菁菁,新时期云计算环境下的计算机网络安全技术研究,中国新通信,20第4期。

[3]刘维平,“云计算”环境中的安全支持技术,网络安全技术与应用,年第4期。

[4]哈贵庭,浅谈云计算环境下的计算机网络安全技术,电子技术与软件工程,第18期。

[5]蔡志锋,“云计算”环境下的计算机网络安全困境分析,电脑知识与技术,20第22期。

篇7:云计算下网络安全技术论文

随着云计算技术的快速兴起和广泛运用,其所具备的高可靠性、通用性、高可扩展性和廉价性等特点满足了人们的差异化需求,正逐步被更多的企业和用户所认可。

但由此产生的网络安全问题,同时也成为使用云计算服务而必须直面的重要问题。

一、云计算背景下网络安全方面存在的主要问题

1.1数据的通信安全有待提升

“共享”是互联网的基本理念,云计算则把这个理念推向极致。

数据通信作为互联网的重要环节,在云计算网络环境下,非常容易受到安全威胁。

例如在云计算过程中,数据的传输与用户本身的管理权出现分离,黑客会利用网络云端管理方面的漏洞对服务器进行攻击,从而导致用户数据的丢失,这主要是因云计算基础设施安全性建设不足所致。

1.2网络系统比较薄弱

主要是指提供云计算平台的商业机构。

近年来我国云计算领域发展迅速,而行业内部良莠不齐,大部分企业由于自身网络安全防范机制并不完善,导致因黑客恶意攻击而出现的用户数据被侵、甚至服务器瘫痪等现象时有发生。

1.3网络环境较为复杂

“集中力量办大事”体现了云计算的优越性和实用性,但与传统网络环境不同,云计算所整合、运用的是由云平台所分配的网络虚拟环境,并不能完全保证数据的安全可靠,所以对用户本身而言确实存在一定的安全隐患。

二、云计算环境下实现安全技术的具体路径

2.1提升用户的安全防范意识

进一步加强用户的安全防范意识和安全防范观念,加强网络安全系统身份的实名认证。

提供云计算平台的商业机构应采取多种方式对用户登录认证加以约束,如加入手机短信验证、实名登记认证等。

用户本身应有使用正版软件程序的意识,并养成良好的操作习惯。

在我国,导致高危风险的盗版软件大行其道,较为安全的正版软件则无人问津,这也是互联网领域“劣币驱逐良币”的有趣现象。

2.2加强智能防火墙建设

智能防火墙技术与传统意义的防火墙技术相比,最大的的特点是智能和高效,消除了匹配检查所需的海量计算,更智能地发现网络行为的特征值,进而直接进行访问控制。

还有就是安全可靠性更高,相比于传统防火墙技术,智能防火墙有效解决了拒绝服务攻击(DDOS)的问题、病毒传播问题和高级应用入侵问题,在技术层面更为高级。

2.3合理运用网络安全上的加密技术

加密技术是云计算环境下比较常用、也非常有效的网络安全技术,自计算机和互联网诞生以来,加密技术就一直以各种形态存在于我们的日常生活之中,保护我们的隐私不受侵犯。

合理运用加密技术,就像给计算机罩上一层滤网,它能够有效识别和打断恶意信息和不良程序的入侵,将重要信息变换为数据乱码,只有通过正确的秘钥才能获取和解读,最大程度保证了数据的完整和安全。

2.4做好对网络病毒的防控工作

随着云计算技术的使用,在计算机用户传输数据、租用网络、进行计算的过程中,网络病毒的沾染率和入侵率大大提升,网络病毒的顽固性和复杂程度也在不断提升,由网络病毒感染服务器云端甚至扩散至整个网络的现象也有发生,这就对我们做好对网络病毒的安全防控提出了更高要求。

因为云端,我们的计算机可以获取最新的网络病毒特征和更为正确的处理方式,也正因为云端,我们受感染的几率同比提升,这注定是一场旷日持久的拉锯战争,所以我们需要构建相应的反病毒技术,并对非法用户的使用和权限加以关注和严控,视违规情况给予相应的处罚处理,才能为云计算下优质的网络安全环境提供保障。

三、结语

云计算在带给我们方便快捷的同时也带来了网络安全问题。

在云计算环境下,提升用户的安全防范意识、加强智能防火墙建设、合理运用网络安全上的加密技术和做好对网络病毒的防控工作是我们必须思考的重要问题,我们应继续加强网络安全技术建设,不断探索具体的实施途径,解决云计算下的各种网络安全问题。

参考文献

[1]毛黎华.云计算下网络安全技术实现的路径分析[J].网络安全技术与应用,,06:140-141.

[2]李俊.云计算下网络安全技术实现的路径分析[J].网络安全技术与应用,2014,11:135-136.

[3]闫盛,石淼.基于云计算环境下的网络安全技术实现[J].计算机光盘软件与应用,2014,23:168+170.

篇8:云计算环境下的数据挖掘研究论文

摘要:文章首先对云计算的特点进行简要分析, 在此基础上对云计算环境下的数据挖掘进行研究。期望通过本文的论述能够对数据挖掘效率的提高有所帮助。

关键词:云计算; 数据挖掘; 服务;

1 云计算的特点分析

1.1 超大规模

国内外大型互联网企业纷纷建立起云平台, 开启一大批服务器, 如Google公司、亚马逊公司、微软公司等公司都建立了云平台, 大幅度提升了网络平台数据运算效率、存储效率和交互效率, 使云计算具备超大规模特点。

1.2 虚拟化

云平台是向网络平台提供资源的平台, 网络用户可借助云计算技术在任意位置获取应用服务, 这种应用服务不是固定实体, 而是虚拟化的。在云平台上, 需要运行虚拟化的搜索、储存、上传下载操作, 网络用户无需了解资源的获取渠道, 只要通过终端设备就可以获取网络服务信息, 实现数据快速互传。

1.3 可靠性高

云平台可提高数据互传、存储的可靠性, 其采用计算节点同构可互传、数据多副本容错等措施增强服务的可靠性, 即使在数据传输或存储丢失的情况下, 也可以找回渠道恢复数据, 与计算机自带硬盘相比, 网络云计算平台的可靠性更高。

1.4 通用性强

云计算技术的针对性不强, 对其他设备没有过高的要求, 只需在网络平台上建设平台, 配备足够的服务器, 就可以实现云计算技术的应用。在同一云平台的支撑下, 可满足不同设备的运行要求。

1.5 扩展性好

云平台既可以满足不同类型企业的需求, 也可以满足个人用户需求, 其本身带有动态伸缩性。用户可根据自身需求对空间、功能进行定制, 满足个性化的应用要求, 使云平台具备良好的扩展性。

1.6 按需服务

云平台可提供充足的空间, 便于用户在云平台上存储、调用、传输数据资源。为了避免用户过度占用云平台资源, 云平台一般设置了计费标准, 要求用户按需购入占用量, 促使云平台成为可交易的资源。

篇9:云计算环境下的数据挖掘研究论文

2.1 数据挖掘服务层次结构

2.1.1 基础设施层

该层主要为整个数据挖掘服务提供存储和计算资源, 在基础设施层运行中, 通过接口可连接网络资源与物理资源, 实现不同类型资源的高度共享。该层还提供数据挖掘服务的虚拟化接口, 满足资源对接要求, 为资源存储、共享提供技术支撑。

2.1.2 虚拟化层

在云计算技术上建立数据挖掘服务模式, 利用虚拟化层快速处理大量资源。在结构体系中, 虚拟化层根据云计算技术虚拟化汇聚分布式资源, 在封装处理虚拟资源的基础上, 分类和管理不同资源, 从而提高挖掘服务执行效率。在对资源进行封装后, 通过开发和利用平台层实现资源共享。虚拟化技术是资源封装的重要技术, 既可以提高资源运行效率, 也可以实现对资源的合理调动, 提高服务模式的便捷性。

2.1.3平台层

在数据挖掘服务模式中,平台层作为数据核心服务部分, 负责管理不同数据及其功能, 实现不同服务目录的高效管理。用户可根据服务内容和使用需求组合不同服务目录, 发挥数据功能性管理作用。在平台层中, 可有效调度计算资源, 提高计算资源的运行效率, 这使得平台层在数据挖掘服务中占据着不可替代的地位。

2.1.4 应用层

该层由终端层和接口层组成, 其中接口层为用户提供服务等级, 满足各种服务请求, 终端层将服务请求显示出来, 并且可根据请求的服务内容作出评价。在终端层的内容访问中, 根据用户访问请求、访问内容对访问接入作出不同选择, 再结合用户访问情况, 借助终端设备实现数据挖掘服务。

2.2 体系的建模流程

2.2.1 对服务进行自定义

在数据挖掘服务运行时, 可通过自定义完成相关数据的搜集, 从而快速找到与之相关的资源。由此可以使数据挖掘人员开展工作时, 对候选加以充分利用, 进而形成服务目录, 为用户使用提供方便。

2.2.2 组件构建

在对数据挖掘服务组件进行构建时, 应当确保调用服务接口的统一性, 同时在构建其它服务组件时, 需要绑定服务和数据, 从而构建起数量更多的组件, 为用户提供所需的数据挖掘服务模式。

2.3 数据挖掘体系的服务过程

2.3.1 分析阶段

该阶段主要负责分析数据挖掘内容, 确定需要挖掘的`数据, 根据对应的数据服务内容设置相应的服务模式, 并对服务模式作出定义。为保证数据挖掘与实际需求相符, 在数据挖掘时需先进行数据分析, 深入到外部环境中调查市场发展趋势和市场需求情况, 以市场为导向开发大数据挖掘模式, 使云计算下的数据挖掘服务更具备高效性、实用性和针对性。

2.3.2 设计阶段

该阶段要根据前期市场调查情况对数据挖掘服务方案进行设计, 最终确定符合用户使用习惯的数据处理模式。数据挖掘服务模式设计不仅关系到用户体验的满意程度, 而且还影响着数据挖掘服务运行效率。在某些特定的情况下, 甚至可能对供应商与消费者带来利益冲突, 阻碍数据挖掘服务在信息化环境中的有效应用, 为了解决上述问题, 必须以市场调查为前提开展数据挖掘服务模式设计, 避免不必要的矛盾。

2.3.3 开发阶段

在该阶段, 一套相对完整的数据挖掘服务体系会随着设计得以呈现, 各种服务内容与方法在该阶段中得到合理应用。体系开发时, 应对各项功能进行定义, 并将所有的功能整合到一起, 以此来实现多种不同的服务目标, 确保数据挖掘服务模式的高效运行。对体系进行开发的过程中, 可基于服务接口的实现, 对相关的功能进行有效地协调, 从而使开发出来的功能更符合用户的使用需要, 由此可使数据挖掘服务的价值得以充分体现, 有利于推动数据挖掘服务市场的持续、稳定发展。

3 结论

综上所述, 云计算以其自身所具备的诸多特点, 在诸多领域中得到越来越广泛的应用。本文在简要阐述云计算特点的基础上, 对云计算环境下的数据挖掘进行分析研究, 提出数据挖掘服务模式的构建方法, 以期能够对数据挖掘效率的进一步提升有所帮助。

参考文献

[1]孙亮.数据挖掘服务模式应用云计算的优化策略探究[J].黑河学院学报, (01) :23-25.

[2]王勃, 徐静.基于云计算的Web数据挖掘Hadoop仿真平台研究[J].电子设计工程, 2018 (01) :43-44.

[3]包科, 蔡明.高速接入网云计算平台的大数据挖掘算法研究[J].机床与液压, (12) :143-144.

[4]冯丽慧.云计算和挖掘服务融合下的大数据挖掘体系架构设计及应用[J].电脑编程技巧与维护, 2017 (12) :132-133.

篇10:移动网络下云计算安全研究论文

摘要:云计算因其超大规模,虚拟化,高可靠性,通用性,高可扩展性,按需服务性,极其廉价性等优势,被越来越多的企业集团,组织甚至个人所青睐。随着时代的变化,移动网络的发展也日新月异,移动网络环境下云计算的安全问题也应该引起重视。本文研究了移动网络环境下的云安全问题,并提给出了安全建议,为移动网络环境下云计算安全研究提供参考。

关键词:移动网络;云计算;安全

云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。随着移动终端手机,平板的快速更新换代以及移动网络的高速发展,云计算已经不仅仅局限于PC。移动终端APP与云计算技术的结合,已经成为IT产业新的发展模式。在享受两者结合优势为广大受众带来便利的同时,随之而来的安全性不可避免的成为了我们下一步要解决的问题。

1云计算简述

云计算是继1980年代大型计算机到客户端-服务器的大转变之后的又一种巨变。云计算是分布式计算、并行计算、效用计算、网络存储、虚拟化、负载均衡、热备份冗余等传统计算机和网络技术发展融合的产物。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云计算具有如下特点:1)通用性:千变万化的构造应用使得同一个云可以同时支撑不同的应用运行,不针对特定的应用。

2)可靠性高:通过使用数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性。

3)可扩展性高:云的规模可以动态伸缩,满足应用和用户规模增长的需要。

4)规模超大:一般企业私有云拥有数百上千台服务器,可以赋予用户规模宏大的计算能力。

5)虚拟化,云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自云,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台移动终端,就可以通过移动网络服务来实现我们需要的计算,甚至是超,大型计算。

6)按需服务,云是一个庞大的资源海洋,需要使用者按需购买,可以像水电,话费,煤气那样,按照使用量缴费。

7)廉价性,由于云的特殊容错措施可以采用极其廉价的节点来构成云,云的自动化集中式管理使企业无需负担日益高昂的数据中心管理成本,云的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受云的低成本优势。

8)潜在的危险性,云计算可以使公司的秘密数据被远程办公的员工远程监控,从而有可能使公司之外的人获取其全部的访问权限;云计算供应商的确在使用SSL协议来保护传输中的数据,但是因为数据最终是被保存起来的,所以它们有可能会和其他公司的数据保存在同一个虚拟空间中;停电,虚拟通道的堵塞,系统崩溃等问题都可能导致云数据的不及时乃至丢失。

篇11:移动网络下云计算安全研究论文

2.1移动终端安全问题

手机,平板电脑等作为移动服务的终端载体,其安全问题始终不可避免的贯穿了整个云计算服务的流程。相比PC端的安全问题,移动终端面临着一系列新的安全问题,移动终端用户通过各种APP来享受服务,不可避免的会面对一些APP系统漏洞,以及部分下载源所携带的病毒所带来的安全问题。其次,除了APP的安全问题外,移动网络(部分WIFI,短信)等也携带病毒。

2.2服务平台与服务器安全问题

用户在使用移动端APP的同时,不可避免的要通过网络与服务平台的服务器进行接洽,因此,服务平台的安全也是移动网络环境下云计算安全所面临的问题,由于云计算的各种数据是储存在云服务器中的,所以服务器的故障或者关闭会对服务平台造成致命的打击,一旦用户过分依赖提供云服务的服务商而没有备份自己的数据的话,用户平台会因为云服务器的故障造成不可挽回的损失。

2.3信息安全问题

云计算通过信息的交流,共享,大大降低了移动服务所需的成本和时间,但同时也造成了更多的个人信息,地理位置以及大量企业信息的泄露。从而有可能引发*客的频繁攻击和对机密信息的窃取。

2.4网络安全问题

相对于固定互联网主张平等,自由,开放,网络中没有控制点的特点而言,移动互联网封闭性更强,网络中一般部署了关键控制点,可以实现管理控制。移动网络除了可以使用IP地址作为表示之外,也可以采用用户SIM卡的信息作为表示,精确定位移动终端的位置。从溯源性这个方面是医用互联网优于固定互联网的。但是,对于移动互联网环境下的云计算安全服务最大的威胁是不采用加密算法,通过移动网络数据传输云数据,采用的传输协议也要能保持数据的完整性。因此安全性不能得到保障。

篇12:移动网络下云计算安全研究论文

3.1加强APP下载平台的管理,对于来历不明的APP一律不予采纳,仔细审核APP程序系统,降低其病毒的携带率以及漏洞的存在率。

3.2加强移动网络运营商对网络信息的优化,对不良信息。垃圾信息的过滤。以及对移动网络节点的优化审核。

3.3加强对用户服务平台的管理力度,使其定期检测监督所使用的服务器,并且预估风险,不惜成本,及时备份,减少因此而对用户所造成的损失。

3.4加强实名制的进度,进行移动网络的统一管理,避免不良分子利用移动网络的盲区从事非法活动。

3.5加强对云计算移动终端的监督控制,发现漏洞,及时处理,弥补漏洞。

3.6加强云服务业务系统间的权限管理,尽可能将减少不法分子通过云计算服务间接窃取信息,以至于造成用户的经济损失等。

4结束语

移动网络环境下,云计算的优势被无限放大,与我们的生活关系日益紧密,但不可避免的出现了一些新的安全性问题,但只要我们充分正视所出现的安全问题,及时解决,并且实时预防,移动网络环境下的云计算一定会发展的更好。希望本文对移动网络环境下云计算安全的研究以及解决建议能对移动网络环境下云计算安全的发展起到积极的作用。

参考文献:

[1]郭丽.网络环境下云计算的信息安全问题研究[J].电脑知识与技术,,20:16-17.

[2]孟超.基于云计算的病毒恶意软件分析研究[D].南京航空航天大学,.

[3]房秉毅,张云勇,徐雷.移动互联网环境下云计算安全浅析[J].移动通信,,09:25-28.

篇13:基于云计算的数据挖掘技术探讨论文

基于云计算的数据挖掘技术探讨论文

1、前言

毫无疑问,21世纪代,已经是不折不扣的信息时代,或者也可以称之为数据时代。随着计算机的发展,网络的快速普及,尤其是移动互联网在近年来的蓬勃发展,数据量、信息量无时无刻不在海量增长着。目前,面对海量的信息,找出自己真正感兴趣的内容已经成为用户最为头疼的事情,数据挖掘已经成为当前最为热门的技术领域。近年来,云计算成为广受关注的技术领域,也使得数据挖掘平台有了新的发展方向,构建新一代的数据挖掘平台来应对数据的日趋复杂庞大成为可能。云计算实为传统计算机技术与网络技术融合的产物。云计算并非简单的计算,它是新型计算方式、数据存储方式、备份方式、网络资源分配方式的综合体,是基于互联网的相关服务的增加、使用和交付模式。传统的数据挖掘技术是建立在数据库之上的,是通过对已收集数据信息的计算,找出隐藏在不同数据中的相关信息。传统的数据挖掘技术需要在海量数据的基础上进行大量的数据访问与统计计算,在对数据进行挖掘的过程中需要消耗及占用大量的计算以及存储资源,面对规模不断增长的海量数据,需要消耗及占用大量计算及存储资源的传统数据挖掘技术显得越来越力不从心,难以胜任。而云计算独特的计算模式,为海量数据的挖掘提供了一种新的解决方案。

2、云计算与数据挖掘

2.1云计算。云计算是基于互联网的一种商业计算模式,对于云计算的定义,目前并没有一个统一的说法,现阶段广为人接受的是美国国家标准与技术研究院对云计算所做出的定义,即:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。从云计算的定义我们可以知道,云计算拥有可配置的、大型的计算资源共享池,这种资源共享池包括了网络、服务器、存储器、应用软件以及服务。那也就是说,云计算就是对计算资源共享池的一种资源分配技术或服务,它的特点是可以快速提供这些计算资源,可以减少客户的管理工作。云计算将计算任务分布在了由大量计算机或服务器构成的共享资源池上,大大提高了资源的有效利用,使计算处理能力以及存储能力等得到了提高,并且具有更好的扩展性。云计算具有虚拟化的特点,用户不再受到地理位置以及终端设备的限制,只要接入互联网,即可获取所请求的应用服务,也就是说,用户只需要拥有一台可以接入互联网的终端设备,即可获利所需要的各种应用服务;云计算拥有通用性的特点,云平台可以构造出千万种应用,用户没有应用限制,在同一个云平台即可运行不同的应用;云计算具有超大规模以及高扩展性的特点,对于云计算来说,云的规模扩展不会影响用户应用服务的质量,而目前,云计算的规模已经发展出了超大型,如谷歌的云计算已经拥有了上百万台的服务器;云计算拥有高可靠性以及经济性好的特点,多副本容错、多计算节点同构可互换等技术确保了服务的高可靠性,而云计算采用廉价的节点构成云,自动化集中式管理相较于企业传统的数据中心管理成本来说,经济性能十分优越。

2.2数据挖掘。数据挖掘是数据库知识发现中的一个步骤,数据挖掘又被称为数据采矿,顾名思义,数据挖掘就是在已有的海量数据中通过特定的算法来挖掘、发现有用信息或知识的过程。数据挖掘是为了解决需求的问题,也是为了解决数据管理的问题。数据挖掘对于信息产业界来说,是产生价值的关键环节,只有将数据转冯波换成具有应用价值的.信息或是知识,才能具有实在商业价值。传统的数据挖掘技术是建立在数据库的基础之上的,需要数据库系统提供有效的存储、索引和查询处理支持,而高性能的计算技术是对海量数据进行处理的关键支撑,在处理效率方面具有重要影响。随着互联网规模的不断扩大以及移动互联网的兴趣,数据规模呈现更快的增长速度,而对于数据挖掘的需求也日益增多,这使得传统的数据挖掘技术暴露出一些问题,首先是数据挖掘效率的问题,传统的基于数据库的数据挖掘技术在面对如今海量数据的增长规模已经很难高效的完成计算分析任务;其次,面对海量数据规模的增长,传统的数据挖掘技术需要更高的软硬件成本的支持,这种成本的支撑面对数据量的大规模增长是长期性的;第三,传统的基于数据系统的数据挖掘技术平台架构,已经无法为挖掘算法能力的提升提供更多支持,算法受限于系统架构影响了数据挖掘技术的发展。

3、基于云计算的数据挖掘关键技术

云计算的出现为数据挖掘技术的发展提供了新的方向,数据挖掘技术基于云计算可以发展出新的模式,就具体的实现来说,其中几个关键技术的发展至关重要。

3.1云计算技术。分布式计算是云计算平台的关键技术,是目前应对海量数据挖掘任务,提高数据挖掘效率的有效手段之一。分布式计算包含分布式存储和并行计算两方面内容,分布式存储有效解决了海量数据的存储问题,实现了数据存储高容错、高安全、高性能等关键功能。目前,谷歌提出的分布式文件系统理论是业界流行的分布式文件系统的基础,谷歌文件系统(GFS)就是为了解决其海量数据的存储、搜索与分析等问题而研发的,其它如Hadoop分布式文件系统(HDFS)、Kosmos文件系统(KFs)是基于Goolgle分布式文件系统理论进行研发的开源系统。分布式并行计算框架是高效完成数据挖掘计算任务的关键。目前流行的一些分布式并行计算框架都对分布式计算的一些技术细节进行了封装,这样用户只需要考虑任务间的逻辑关系,而不用再过多的关注这些技术细节,不仅大大提高了研发的效率,而且还可以有效的降低系统维护的成本。典型的分布式并行计算框架如谷歌提出的MapReduce并行计算框架、Pregel迭代处理计算框架等。目前业界开源的云计算平台Hadoop平台,包含HDFS和MapReduce,为海量数据挖掘平台提供完备的云计算平台支撑平台。

3.2数据汇集调度技术。数据汇集调度技术需要实现的是对接入云计算平台的不同类型数据的汇集与调度。数据汇集与调度需要支持不同格式的源数据,还要提供多种数据同步方式。解决不同数据的规约问题是数据汇集调度技术的任务,技术解决方案需要考虑对网络上不同系统生成的数据格式的支持,如联机事务处理系统(0LTP)数据、联机分析处理系统(0LAP)数据、各种日志数据、爬虫数据等,如此才能实现数据的挖掘与分析。

3.3服务调度和服务管理技术。为了能够让不同的业务系统使用本计算平台,平台必须要提供服务调度和服务管理功能。服务调度根据服务的优先级以及服务和资源的匹配情况等进行调度,解决服务的并行互斥、隔离等,保证数据挖掘平台的云服务是安全、可靠的,并根据服务管控进行调度控制。服务管理实现统一的服务注册、服务暴露等功能,不仅支持本地服务能力的暴露,也支持第三方数据挖掘能力的接入,很好地扩展数据挖掘平台的服务能力。

3.4挖掘算法并行化技术。挖掘算法并行化是有效利用云计算平台提供的基础能力的关键技术之一,涉及到算法是否可以并行、以及并行策略的选择等技术。数据挖掘算法主要有决策树算法、关联规则算法以及K-平均值算法等,算法的并行化,是利用云计算平台进行数据挖掘的关键技术。

篇14:分析论文:云计算环境下大数据

分析论文:云计算环境下大数据

1大数据处理流程

基本的大数据的处理流程可以分成数据采集、数据处理与集成、数据分析和数据解释4个阶段。首先获取数据源的数据,因为在数据源端的数据包含各种各样的结构,需要使用某种方法将其进行预处理,使数据成为某种可以用一种算法分析的统一数据格式,接着需要找到这种数据分析的算法,将预处理过的数据进行算法特定的分析,并将分析的结果用可视化等手段呈现至用户端。

1.1数据采集

大数据的采集是整个流程的基础,随着互联网技术和应用的发展以及各种终端设备的普及,使得数据的生产者范围越来越大,数据的产量也越来越多,数据之间的关联也越来越复杂,这也是大数据中“大”的体现,所以需要提高数据采集速度和精度要求。

1.2数据处理与集成

数据的处理与集成主要是对前一步采集到的大量数据进行适当的预处理,包括格式化、去噪以及进一步集成存储。因为数据采集步骤采集到的数据各种各样,其数据结构也并不统一,不利于之后的数据分析,而且,一些数据属于无效数据,需要去除,否则会影响数据分析的精度和可靠性,所以,需要将数据统一格式并且去除无效数据。通常会设计一些过滤器来完成这一任务。

1.3数据分析

在完成了数据的采集和处理后,需要对数据进行分析,因为在进行数据分析后才能体现所有大数据的`重要价值。数据分析的对象是上一步数据的处理与集成后的统一格式数据,需要根据所需数据的应用需求和价值体现方向对这些原始样本数据进一步地处理和分析。现有的数据分析通常指采用数据仓库和数据挖掘工具对集中存储的数据进行分析,数据分析服务与传统数据分析的差别在于其面向的对象不是数据,而是数据服务。

1.4数据解释

数据解释是对大数据分析结果的解释与展现,在数据处理流程中,数据结果的解释步骤是大数据分析的用户直接面对成果的步骤,传统的数据显示方式是用文本形式体现的,但是,随着数据量的加大,其分析结果也更复杂,传统的数据显示方法已经不足以满足数据分析结果输出的需求,因此,数据分析企业会引入“数据可视化技术”作为数据解释方式。通过可视化结果分析,可以形象地向用户展示数据分析结果。

2云计算与大数据分析的关系

云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源,是一种按使用量付费的模式。这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。目前,国内外已经有不少成熟的云计算的应用服务。数据分析是整个大数据处理流程里最核心的部分。数据分析是以数据的价值分析为目的的活动,而基于大数据的数据分析通常表现为对已获取的海量数据的分析,其数据来源可能是企业数据也可能是企业数据与互联网数据的融合。从目前的趋势来看,云计算是大数据的IT基础,是大数据分析的支撑平台,不断增长的数据量需要性能更高的数据分析平台承载。所以,云计算技术的不断发展可以为大数据分析提供更为灵活、迅速的部署方案,使得大数据分析的结果更加精确。另一方面,云计算的出现为大数据分析提供了扩展性更强,使用成本更低的存储资源和计算资源,使得中小企业也可以通过云计算来实现属于自己的大数据分析产品。大数据技术本身也是云计算技术的一种延伸。大数据技术涵盖了从数据的海量存储、处理到应用多方面的技术,包括海量分布式文件系统、并行计算框架、数据库、实时流数据处理以及智能分析技术,如模式识别、自然语言理解、应用知识库等等。但是,大数据分析要走向云计算还要赖于数据通信带宽的提高和云资源的建设,需要确保原始数据能迁移到云环境以及资源池可以随需弹性扩展。

3基于云计算环境的Hadoop

为了给大数据处理分析提供一个性能更高、可靠性更好的平台,研究者基于MapReduce开发了一个基于云计算环境的开源平台Hadoop。Hadoop是一个以MapReduce算法为分布式计算框架,包括分布式文件系统(HDFS)、分布式数据库(Hbase、Cassandra)等功能模块在内的完整生态系统,已经成为当前最流行的大数据处理平台,并被广泛认可和开发应用。基于Hadoop,用户可编写处理海量数据的分布式并行程序,并将其运行于由成百上千个节点组成的大规模计算机集群上。

4实例分析

本节以电信运营商为例,说明在云计算环境中基于Hadoop的大数据分析给大数据用户带来的价值。当前传统语音和短信业务量下滑,智能终端快速增长,移动互联网业务发展迅速,大数据分析可以为运营商带来新的机会,帮助运营商更好地转型。本文数据分析样本来自于某运营商的个人语音和数据业务清单,通过Hadoop2.6.0在Ubuntu12.04系统中模拟了一个大数据分析平台来处理获得的样本。希望通过对样本数据的分析与挖掘,掌握样本本身的一些信息。以上分析只是一些很基本的简单分析,实际上样本数据中所蕴含的价值要远远大于本文体现的。以上举例意在说明基于云计算的大数据分析可以在数据分析上体现出良好的性能,为企业带来更丰富更有效率的信息提取、分类,并从中获益。

5结束语

基于云计算的大数据分析已经成为解决大数据问题的主要手段,云计算环境中的大数据分析平台部署需要综合考虑硬件、网络、软件等各方面的集成,使大数据的海量信息积累体现价值,显示云计算的性能优势,而没有云计算技术的支撑也不能进行高效和准确的大数据处理分析。最后本文通过一个例子来分析了基于云计算的大数据分析给企业带来的价值,由此可见,大数据需要云计算技术的深入挖掘,同时也促进了云计算技术的不断发展。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。