“喜欢嚯奶茶”通过精心收集,向本站投稿了3篇小学六年级数学知识点重点,以下是小编给大家整理后的小学六年级数学知识点重点,欢迎大家前来参阅。
篇1:小学六年级数学知识点重点
小学六年级数学知识点重点
圆
一、认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形
只有3条对称轴的图形是:等边三角形
只有4条对称轴的图形是:正方形;
有无数条对称轴的图形是:圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:C=πdd=C÷π
或C=2πrr=C÷2π
5、在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2即πr
(2)半圆的周长:等于圆的周长的一半加直径。计算方法:πr+2r
三数与代数
一、分数乘法
(一)分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c
二、分数乘法的解决问题(详细见重难点分解)
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。
3、写数量关系式技巧:
(1)“的”相当于 “×”(乘号)
“占”、“是”、“比”“相当于”相当于“=”(等号)
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1±分率)=分率的对应量
六年级数学重难点
1、小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。
在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。
2、用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
3、在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置;
4、探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
5、在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;
6、在平均数的基础上教学中位数,使学生理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。
7、在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容。
8、通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。
9、培养学生的符号感,及观察、分析、推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
M在数学里代表什么
1)代表长度单位:米。这是英文meter(或metre)的简写;

2)代表时间单位:分钟。这是英文minute的简写;
3)代表千分之一:毫。这是英文milli的简写,通常加在单位前面,数值为千分之一的当前单位。比如mg:毫克;mm:毫米;ms:毫秒。
CuA是什么意思数学
CuA表示的是集合A在全集U里面的补集。例如集合U={1,2,3,4},A={1,2},CuA={3,4}。
篇2:六年级数学重点知识点
小学六年级数学下册知识:比例
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
六年级数学重要知识点
分数的除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c
②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c
小学六年级数学学习方法
小学数学学习必须关注孩子创新意识的培养和创新能力的发展。从某种意义上讲,养成创造性学习的习惯,比获得了多少知识更重要。这需要从以下几方面做起:
1.培养学生善于质疑的习惯。
在参与、经历数学知识发现、形成的探究活动中,善于发现,提出有针对性、有价值的数学问题,质疑问难,是创造性学习习惯培养的一个重要方面。在数学学习过程中,要逐步培养学生自主探究、积极思考、主动质疑的学习习惯,让他们想问、敢问、好问、会问。
质疑习惯的培养,也可从模仿开始,老师要注意质疑的“言传身教”,教给学生可以在哪儿找疑点。一般来说,质疑可以发生在新旧知识的衔接处、学习过程的困惑处、法则规律的结论处、教学内容的重难点及关键点处,概念的形成过程中、解题思路的分析过程中、动手操作的实践中;还要让学生学会变换角度,提出问题。
2.培养学生手脑结合,注重实践的习惯。
心理学研究告诉我们,小学生的思维正处在具体形象思维向抽象思维、逻辑思维发展的过渡阶段,特别是低年级儿童,他们的思维仍以具体形象思维为主要形式,他们的抽象思维需要在感性材料的支持下才能进行,因此小学数学教育必须重视培养学生动手、动脑、动口的良好习惯,使学生通过看一看、摸一摸、拼一拼、摆一摆、讲一讲来获取新知。
例如在学习“角的初步认识”时,角的大小与两边的长短有没有联系?这个问题就可以通过操作自制的活动角,边操作、边观察、边讨论,从而得出正确的结论。开展类似的教学活动,就能使学生养成手脑结合,勤于实践的学习习惯。
3.培养学生的良好思维习惯。
培养学生多角度思考和解决问题的习惯,培养他们思维的多向性和灵活性。通过“你能想出不同的方法吗?”“你还能想到什么?”“你有独特的见解吗?”你能从另一个角度看问题吗?“等言语,启发和诱导,鼓励学生敢想、敢说,不怕出错、敢于发表不同的见解,培养学生的创新思维习惯。
篇3:六年级数学知识点和重点笔记
六年级数学知识点
1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:
8.组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
(2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12.图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13.实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14.图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
六年级数学整数知识点
1.1整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数
2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数
3.零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
2.倍数和因数是相互依存的
3.一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数
3.在正整数中(除1外),与奇数相邻的两个数是偶数
4.在正整数中,与偶数相邻的两个数是奇数
5.个位数字是0,5的数都能被5整除
6.0是偶数
1.4素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3.1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法
1.5公因数与公因数
1.几个数公有的因数,叫做这几个数的公因数,其的一个叫做这几个数的公因数
2.如果两个整数只有公因数1,那么称这两个数互素数
3.把两个数公有的素因数连乘,所得的积就是这两个数的公因数
4.如果两个数中,较小数是较大数的因数,那么这两个数的公因数较小的数
5.如果两个数是互素数,那么这两个数的公因数是1
1.6公倍数与最小公倍数
1.几个数公有的倍数,叫做这几个数的公倍数
2.几个数中最小的公因数,叫做这几个数的最小公倍数
3.求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数
4.如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数
5.如果两个数是互素数,那么这两个数的最小公倍数是;两个数的乘积
六年级数学分数知识点
2.1分数与除法
一般地,两个正整数相除的商可用分数表示,即被除数÷除数=用字母表示为p÷q=(p、q为正整数)
2.2分数的基本性质
1.分数的分子和分母同时乘以一个不为零的整数,分数的值不变
2.分子分母只有公因数1的分数叫做最简分数
3.把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分
2.3分数的比较大小
1.同分母分数的大小只需要比较分子的大小,分子大的比较大,分子小的比较小
2.通分的一般步骤是:
(1)求公分母——求分母的最小公倍数;
(2)根据分数的基本性质,将每个分数化成分母相同的分数。
3.异分母分数比较大小需要先通分成同分母分数再按照同分母分数比较大小
2.4分数的加减法
1.同分母分数相加减,分母不变,分子相加减
2.异分母分数相加减,先通分成同分母分数,再按照同分母分数相加减
3.分子比分母小的分数,叫做真分数
4.分子大于或者等于分母的分数叫假分数
5.整数与真分数相加所成的分数叫做带分数
6.假分数化为带分数:分母不变,整数部分为原分子除以分母的商,分子则为原分子除以分母的余数
7.列方程求未知数的一般书写步骤:
(1)设未知数为x
(2)根据题意列出方程
(3)根据加减互为逆运算,表示出x等于那些数相加减
(4)计算出x的值,并写出上结论
2.5分数的乘法
1.两个分数相乘,分子相乘作为分子,分母相乘作为分母
2.如果乘数是带分数,先化成假分数,再进行运算
2.6分数的除法
1.一个数与其相乘的积为1的数为这个数的倒数;0没有倒数
2.除以一个分数等于乘以这个分数的倒数
3.被除数或除数中有带分数的先化成假分数再进行运算
2.7分数与小数的互化
1.一个分数能不能化为有限小数和分数的分母有关
2.从小数点后某一位开始不断地重复出现前一个或一节数字的无限小数叫做循环小数
3.被重复的一个或一节数码称为循环小数的循环节
4.一个分数总可以化为有限小数或无线循环小数