“小G”通过精心收集,向本站投稿了20篇《线段的垂直平分线》教案,下面是小编整理后的《线段的垂直平分线》教案,欢迎您阅读分享借鉴,希望对您有所帮助。
篇1:《线段的垂直平分线》教案
《线段的垂直平分线》教案
《线段的垂直平分线》教案 教学目标 1、 经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力 2、 能够证明线段垂直平分线的性质定理、判定定理及其相关结论 教学重点和难点 重点:线段的垂直平分线性质与逆定理及其的应用 难点:线段的垂直平分线的逆定理的理解和证明 教学方法 观察实践法,分组讨论法,讲练结合法,自主探究法 教学手段 多媒体课件 教学过程设计 一、从学生原有的认知结构提出问题 这节课,我们来研究线段的垂直平分线的尺规作图和性质。 二、师生共同研究形成概念 1、线段垂直平分线的性质 1) 猜想:我们看看上面我们所作的线段的垂直平分线有什么性质? 引导学生自主发现线段垂直平分线的性质。 2) 想一想 书本P 24 上面 应先让学生自己思考证明的思路和方法,并尝试写出证明过程。 线段垂直平分线上的点到这条线段两个端点的距离相等 要证明一个图形上每一点都具有某种性质,只需要在图形上任取一点作代表。这一思想方法应让学生理解。 3) 符号语言 ∵ P在线段AB的垂直平分线CD上 ∴ PA = PB 4) 定理解释: P为CD上的任意一点,只要P在CD上,总有PA = PB。 5) 此定理应用于证明两条线段相等 巩固练习1) 如图,已知直线AD是线段AB的垂直平分线,则AB = 。 2) 如图,AD是线段BC的垂直平分线,AB = 5,BD = 4,则AC = ,CD = ,AD = 。 3) 如图,在△ABC中,AB = AC,∠AED = 50°,则∠B的度数为 。 2、线段垂直平分线的逆定理 1) 想一想 书本P 24 想一想 困为这个命题不是“如果……那么……”的形式,所以学生说出或写出它的逆命题时可能会有一定的困难帮助学生分析它的条件和结论,再写出其逆命题,最后应要求学生按证明的格式将证明过程书写出来。 2) 猜想:我们说“线段垂直平分线上的点到这条线段两个端点的距离相等”,那么,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上有什么性质? 引导学生自主发现线段垂直平分线的判定。 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 3) 符号语言 ∵ PA = PB ∴ P在线段AB的垂直平分线上 4) 定理解释 只要有PA = PB,则P为CD上的任意一点 5) 此定理应用于证明一点在某条线段的.垂直平分线上 巩固练习1) 已知点A和线段BC,且AB = AC,则点A在 。 2) 如果平面内的点C、D、E到线段AB的两端点的距离相等,则C、D、E均在线段AB的 。 3) 设 是线段AB的垂直平分线,且CA = CB,则点C一定 。 3、讲解例题 例1 填空: 1、 如图,在△ABC中,∠C = 90°,DE是AB的垂直平分线。 1)则BD = ; 2)若∠B = 40°,则∠BAC = °,∠DAB = °,∠DAC = °,∠CDA = °; 3)若AC= 4, BC = 5,则DA + DC = ,△ACD的周长为 。 2、 如图,△ABC中,AB = AC,∠A = 40°,DE为AB的中垂线,则∠1 = °,∠C = °,∠3 = °,∠2 = °;若△ABC的周长为16cm,BC = 4cm,则AC = ,△BCE的周长为 。 例2 如图,DE为△ABC的AB边的垂直平分线,D为垂足,DE交BC于E, AC = 5,BC = 8,求△AEC的周长。 分析:此题侧重于让学生体会解题过程,培养学生的逻辑思维。讲解时借助细绳,让学生更好地理解各线段之间的关系。 例3 已知在△ABC中,DE是AC的垂直平分线,AE = 3cm,△ABD的周长是13cm,求△ABC的周长。 分析:此题与上例类似,在证明时,要多一步,要说明AC的长度。讲解时借助细绳,让学生更好地理解各线段之间的关系。 三、随堂练习1、 书本 P 26 随堂练习1 2、 《练习册》 P 6 3、 如图,已知AB = AC = 14cm,AB的垂直平分线交AC于D。 1)若△DBC的周长为24cm,则BC = cm; 2)若BC = 8cm,则△BCD的周长是 cm。 4、 在△ABC中,AB = AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,求AB、BC。 5、 如图,在△ABC中,AB的垂直平分线交AC于D,如果AC= 5cm,BC= 4cm,AE = 2cm,求△CDB的周长。 四、小结 线段的垂直平分线在计算、证明、作图中都有着重要作用。在前面学习中,有一些用三角形全等的知识来解决问题,现在可用线段垂直平分线的定理及其逆定理来解会更方便些。 五、作业 书本 P 27 习题1.6 3 六、教学后记篇2:线段的垂直平分线
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。
五、练习与作业
练习:第87页 1、2
作业:第95页 2、3、4
《教案设计说明》
线段的'垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。
在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。
篇3:线段的垂直平分线
教学目的:
1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
2、了解线段垂直平分线的轨迹问题。
3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。
教学重点:
线段的垂直平分线性质定理及逆定理的引入证明及运用。
教学难点 :
线段的垂直平分线性质定理及逆定理的关系。
教学关键:
1、垂直平分线上所有的点和线段两端点的距离相等。
2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。
教 具:投影仪及投影胶片。
教学过程 :
一、提问
1、角平分线的性质定理及逆定理是什么?
2、怎样做一条线段的垂直平分线?
二、新课
1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。
2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?
通过学生的观察、分析得出结果 PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。
定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
这个命题,是我们通过作图、观察、猜想得到的`,还得在理论上加以证明是真命题才能做为定理。
已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上
求证:PA=PB
如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB
证明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定义)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的对应边相等)。
反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?
过P,P1做直线EF交AB于C,可证明ΔPA P1≌PB P1(SSS)
∴EF是等腰三角型ΔPAB的顶角平分线
∴EF是AB的垂直平分线(等腰三角形三线合一性质)
∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。
线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。
三、举例(用幻灯展示)
例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。
证明:∵点P在线段AB的垂直平分线上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。
四、小结
正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。
五、练习与作业
练习:第87页 1、2
作业 :第95页 2、3、4
《教案设计说明》
线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。
在设计教案时,我结合教材内容,对如何导入 新课,引出定理以及证明进行了探索。在导入 新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。
篇4:线段的垂直平分线的性质教案
2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)
一、情境导入
如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?
二、合作探究
篇5:线段的垂直平分线的性质教案
2.线段的垂直平分线性质定理和逆定理.
3.三角形三边的垂直平分线交于一点.
本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
篇6:线段的垂直平分线的性质教案
如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )
A.5cm
B.10cm
C.15cm
D.17.5cm
解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.
方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.
【类型二】 线段垂直平分线的性质与全等三角形的综合运用
如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.
证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.
(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.
方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.
【类型三】 线段垂直平分线与角平分线的.综合运用
如图,在四边形ADBC中,AB与CD互相垂直平分,垂足为点O.
(1)找出图中相等的线段;
(2)OE,OF分别是点O到∠CAD两边的垂线段,试说明它们的大小有什么关系.
解析:(1)由垂直平分线的性质可得出相等的线段;
(2)由条件可证明△AOC≌△AOD,可得AO平分∠DAC,根据角平分线的性质可得OE=OF.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;
(2)OE=OF,理由如下:在△AOC和△AOD中,∵∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.
方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.
探究点二:线段垂直平分线的判定
如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.
解析:先利用角平分线的性质得出DE=DF,再证△AED≌△AFD,易证AD垂直平分EF.
解:AD垂直平分EF.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠EAD=∠FAD,DE=DF.在△ADE和△ADF中,∵∴△ADE≌△ADF,∴AE=AF,∴A、D均在线段EF的垂直平分线上,即直线AD垂直平分线段EF.
方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计
篇7:数学教案-线段的垂直平分线
数学教案-线段的垂直平分线
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、 教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
教学目标:
1、知识目标:
(1)掌握线段的垂直平分线的性质定理及其逆定理;
(2)能运用它们证明两条线段相等或两条直线互相垂直;
2、能力目标:
(1)通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
(2)提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;;
(2)通过知识的纵横迁移感受数学的辩证特征.
教学重点:线段垂直平分线定理及其逆定理
教学难点:定理及逆定理的关系
教学用具:直尺,微机
教学方法:以学生为主体的讨论探索法
教学过程():
1、新课背景知识复习
(1)线段垂直平分线的概念
(2)问题:(投影显示)
如图,CD是线段AB的垂直平分线,P为CD上任意一点,PA、PB有何关系?为什么?
整个过程,由学生完成. 找一名学生代表回答上述问题并
投影显示学生的证明过程.
2、定理的获得
让学生用文字语言将上述问题表述出来.
定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
强调说明:线段垂直平分线性质定理是证明线段相等的一条依据,在计算、作图中也有重要作用.
学生根据上述学习,提出自己的问题(待定)
学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.
3、逆定理的获得
类比角平分线逆定理获得的过程,让学生讲解下一环节所要学习研究的内容.
这一过程,完全由学生自己通过小组的形式,代表到台前讲解.
逆定理:和一条线段两个端点距离相等的点,在这条线段的'垂直平分线上.
强调说明:定理与逆定理的联系与区别
相同点:结构相同、证明方法相同
不同点:用途不同,定理是用来证线段相等
4、定理与逆定理的应用
(1)讲解例1(投影例1)
例1 如图,△ABC中,∠C= ,∠A= ,AB的在垂线交AC于D,交AB于E
求证:AC=3CD
证明:∵DE垂直平分AB
∴AD=BD
∴∠1=∠A=
∵
∴∠2=
∴CD= BD
∴CD= AD
∴AD=2CD
即AC=3CD
讲解例2(投影例2 )
例2:在△ABC中,AB=AC,AB的中垂直线与AC所在直线相交所得的锐角为 ,求底角B的大小.
(学生思考、分析、讨论,教师巡视,适当参与讨论)
解:(1)当AB的中垂线MN与AC相交时,如图(1),
∵∠ADE= ,∠AED=
∴∠A= -∠AED= - =
∵AB=AC ∴∠B=∠C
∴∠B=
(2)当的中垂线与的延长线相交时,如图(2)
∵∠ADE= ,∠AED=
∴∠BAE=-∠AED=-=
∵AB=AC ∴∠B=∠C
∴∠B=
例3 (1)在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A= ,求∠NMB的大小
(2)如果将(1)中∠A的度数改为 ,其余条件不变,再求∠NMB的大小
(3)你发现有什么样的规律性?试证明之.
(4)将(1)中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改
解:(1)∵AB=AC
∴∠B=∠ACB
∴∠B=
∵∠BNM=
∴
(2)如图,同(1)同理求得
(3)如图,∠NMB的大小为∠A的一半
5、课堂小结:
(1)线段垂直平分线性质定理和逆定理
(2)在应用时,易忽略直接应用,往往又重新证三角形的全等,使计算或证明复杂化.
6、布置作业:
书面作业P119#2、3
思考题:已知:如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高
求证:AD垂直平分EF
证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF
∴D在线段EF的垂直平分线上
在Rt△ADE和Rt△ADF中
∴Rt△ADE≌Rt△ADF
∴AE=AF
∴A点也在线段EF的垂直平分线上
∵两点确定一条直线
∴直线AD就是线段EF的垂直平分线
板书设计:
篇8:线段垂直平分线教学反思
本节继续练习线段垂直平分线性质定理应用,但学生参与的积极性还不够高,参与的面
还不够广,教学效果不尽如人意,吸收知识的个体差异比较大。只能使少数学生会通顺地用语言来描述,其余学生都无法过关,所以在练习时产生困难。
篇9:《线段的垂直平分线》教学反思
为了更好地交流和学习教学经验,在学校“评比课”活动中,通过精心准备和备课组、教研组的认真研讨和指导下,我较满意地开了《线段的垂直平分线》这节课。
《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用,因此我选择本节课作为授课内容。
上完本节课后,通过观看自己的上课实录,并与备课组老师及其他老师交流,自己静心反思,我主要有以下体会:
一.课前的认真准备是上好一节课的关键
作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。在备教材的同时也要了解学生的已有知识的掌握情况,并能充分估计到学生的认知水平和接受能力。
由于本节课课前准备比较充分,整个教学过程的思路自己感觉比较清晰,步骤比较顺畅。
二.在教学活动过程中,有几个感觉比较理想的体验:
1、从实际生活中的情境入手,贴近生活
我从实际问题“在浦东世博园区内,有三个地铁车站,要在中间建一个展览馆,请问展览馆的位置建在何处才能使三个地铁车站到展览馆的距离相等呢?”引入,设置悬念,引出课题,既让学生体会到数学与生活密切相关又能激发学生的求知欲。其实,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找适宜的数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触和生活有关的数学问题,势必会激发学生的学习兴趣,从而有效地提高教学效率,使学生真正喜欢数学,学好数学,用好数学,真正做到数学源于生活,又服务于生活。
2、整个教学过程,体现以学生发展为本的精神
本节课我设计的教学模式以学生主体性学习为主,提出问题让学生想,设计问题让学生做,方法规律让学生说。教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥了学生的主体作用,让学生真正成为教学活动的主人。我首先从“画一画”活动开始让学生动手操作,接着学生自己去测量、猜测结论,这时老师并不直接灌输,而是有意识地营造一个较为自由的空间,让学生自主探究,合作交流,主动参与到教学中,接着在老师的引导下去验证定理的正确性并引导挖掘出逆定理,这正适应新课程背景下的学生学习方式。
3、整堂课我设计了“十个一”活动,这些活动的开展扎实有效,学生在实实在在中探索、接受了新知识,有所收益。
4、注重数学思想方法的渗透
如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。
在对线段的垂直平分线的逆定理的.证明时,我引入分类思想,分两种情况加以证明。
在对线段的垂直平分线的概念从集合的角度理解时,又在对学生渗透数学中的集合思想。
5、注重学生几何语言的训练
在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。
本节课得到的定理为:线段的垂直平分线上的点和这条线段的两个端点的距离相等。
用几何语言表示为:∵MN是AB的垂直平分线,
点P为MN上的任意一点(已知)
∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)
通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。
逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。
用几何语言表示为:
∵PA=PB(已知)
∴点P在AB的垂直平分线MN上
(和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)
6、采用多媒体动态演示,形象直观,便于学生理解
在对“线段的垂直平分线的概念”用集合的思想理解时,制作了动态的演示过程,使学生能更形象直观地理解;解决了本节课的一个难点。
7、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。
8、注重学生数学思维能力的培养
对例题和练习的解决,把单单是为了做出题目,而是通过题目把思维过程展现给学生,培养学生的数学思维能力,分析问题,解决问题的能力。例题解决后能引导学生适时做出归纳,总结,培养学生总结能力,并发现规律和有用结论。
当然,整堂课静下心来思考感觉有很多不理想之处。
首先,对于引入时的情境问题,学生回答时出现了一些偏差,但由于自己没有做好对学生回答情况的估计,没有及时纠正学生回答中出现的问题,而是一带而过,转入新课。所以,在今后的教学中要充分考虑到学生的各种情况及时应对。
其次,要充分相信学生的能力,让学生主动暴露思维过程。
在对线段的垂直平分线的逆定理进行证明时,由于证明的思维方法平时很少接触,所以没敢让学生自主探究,而是老师提示方法,缺少了学生对逆定理证明的思维,一部分学生的错误思维没有暴露出来,不利于他们对逆定理的理解。课后,向一些学生再次提出逆定理的证明方法,他们也能自己去思维,而且想出了更多的证明方法,这是我意想不到的。例如:已知PA=PB,求证点P在线段AB的垂直平分线上,有同学就说“老师讲的两种方法可以,还可以过P作的平分线,然后利用等腰三角形的三线合一证明这条角平分线就是线段AB的垂直平分线,从而证得点P在线段AB的垂直平分线上等。通过这些,给我一个深刻的启发,以后的课堂教学应多相信学生,多给学生发挥、思维的空间,暴露学生思维方式。
再次,应加强课堂教学的灵活性。
整堂课应根据学生的回答灵活应对,在学生碰撞出不同意见的火花时,能善于抓住教育的契机,适时引导,这样学生对问题的理解、掌握会更加深刻。
最后,整堂课学生的活动时间比较紧张,教师要善于把握时间,适当调整课堂内容。如最后的例2可以适时删减,增加学生活动做题时间。
总之,从对这节课的反思和各位老师的指导中,我受益匪浅,在今后的教学工作中我会继续发挥自己的长处,改进自己的不足,使自己的教学水平能得到更大的提高,为本校的教学工作做出一点贡献。
篇10:线段的垂直平分线教学反思
《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用。一节课下来,反思自己的这节课有成功之处也有需要改进的地方。
自己感觉比较成功的地方有:
1、创设情境
从实际问题建水电站问题,即将水电站建在何处到在河同一侧的两个村庄的距离之和最短?出发引出课题。这样既让学生体会到数学与生活密切相关又能激发学生的求知欲。让学生感受到数学源于生活,又服务于生活。
2、加强学生的自主探索能力
首先从“画一画”活动开始让学生动手操作,接着学生自己去测量、猜测结论,让学生自主探究,合作交流,主动参与到教学中,接着在老师的引导下去验证定理的正确性并引导挖掘出逆定理,这正是新课程所倡导的学生学习方式。
3、注重学生几何语言的训练
在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,为做证明题时的推理打下基础。
通过几何语言的表述强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再证三角形全等而得出,防止学生应用时走弯路。
需要改进的地方有:
1.课堂时间分配上,前松后紧。为了让学生理解两个定理内容和几何语言叙述,在判断题和辨析题上花时间较多了点,而在线段垂直平分线的应用上,时间较紧张。
2.练习设计上,有关线段垂直平分线的基本作图涉及的内容少。
3.在对线段的垂直平分线的逆定理进行证明时,由于证明的思维方法平时很少接触,所以没敢让学生自主探究,而是老师提示方法,缺少了学生对逆定理证明的思维,一部分学生的错误思维没有暴露出来,不利于学生对逆定理的理解。
篇11:线段的垂直平分线教学反思
本节我没有按照课本顺序讲解而是设计了以下过程:
1、讲解垂直平分线尺规画图的方法开始,然后让学生探究理论依据;
2、练习画垂直平分线,然后动手测量点到线段两端的距离进而得到性质;
3、还是利用尺规作图,让学生找到画图最关键是保证半径相等,也就是到线段两端的距离相等,根据理论依据得到点在线段平分线上的判定方法。同时解决证明直线为线段的垂直平分线时要同时证明两点都在垂直平分线上。
通过做练习来看整体效果较好。
线段垂直平分线在几何作图、证明、计算中有着十分重要的作用、线段的垂直平分线的性质定理
篇12:《线段的垂直平分线》教学反思
第一节课在五班上的很不理想,反思原因:
1教师的情绪直接影响学生的学习兴趣、教师要有“度量”,能容忍个别学生的错误,不要拿个别学生的错误来惩罚全体同学。 2五班学生李奕星为什么不理解?这节课学习的主要内容是垂直平分线的性质与判定。
定理的学习要经过几个阶段:通过画图、测量、猜想、验证得到命题;将文字命题写成“如果 那么”的形式,让学生明白这个命题的已知是什么,求证什么?在这个基础上,画出图形,写出已知、求证,进行证明。
在证明了后,强调定理的应用格式,即在具体的题目中,如何应用这些定理。
通过几个题目来巩固题目,训练,从而让学生形成正确的应用习惯。
篇13:《线段的垂直平分线》教学反思
反思整个教学过程,我觉得有以下几个地方值得肯定:
这节课通过动画引导学生回忆以前学过的知识,增强了吸引力。在逆命题的引出部分通过让学生自己动手画出以线段AB为底边的等腰三角形,观察得到顶点在线段AB的垂直平分线上。学生在画的过程中可以直观感受数学知识,符合学生的认知发展规律。《新课标》指出:“重视教学内容的展开方式,努力帮助学生用自己的智慧去获取、发展数学知识。”接着引导学生发现前后两个命题的内在联系。在对逆命题的证明上,采取合作交流及积极引导的方式,发挥教师的主导作用及学生学习的'主动性,使学生的学习过程成为在教师引导下的再创造过程。
新课程要求教师不能是单一的课程执行者,而应是能够依据课程内容、学生的具体情况,对课程进行整合处理的实施者。对本节课的难点问题一:文字语言与符号语言的转化。
我采取了提前学习,逐步探索,分散难点的方法。课前学习了“等边对等角”及“等角对等边”的证明,也做过一些相应的文字语言转化为符号语言的练习,所以这节课让学生回忆转化的步骤,按照以前的方法,先画出相应的图形,再找出命题的题设,根据题设结合图形写出已知;同样找出命题的结论,结合图形写出求证。课上总结这类问题的解决方法,使学生的知识内化、巩固加深。对本节课的重、难点问题二:命题及逆命题的证明及应用。我采取了逐个突破的办法。学生证明完命题后及时做两道相应的练习巩固。练习由浅入深,由易到难,激发学生的潜能,使不同的学生得到不同的发展。对逆命题的证明,我采取了小组讨论、合作交流、教师引导的办法。引导学生发现图形中缺少证明所需的线,使学生想到要作辅助线,再进一步讨论得出可以添加什么样的辅助线。对学生提出的几种辅助线进行分析是否合适,从而命题得证。学生在练习本上写出证明过程,随机抽取几个同学的证明过程用投影仪展示,同时老师指正修改。多媒体技术的应用提高了课堂效率。接着提出一道练习和一道生活中的实际问题,将数学应用到实际生活中,使学生体验到数学的价值。
教学永远是一门遗憾的艺术。本节课有几个地方我做的还不够好:
在证明命题和逆命题后,应再次强调一下两个命题的内容,使学生明确知识点;在学生回答问题时,应给学生充分思考的空间,分析答案的可行性。
通过这一次的“成长”,我对教材的理解有了进一步的加深,教学语言的规范性得到了加强,对学生的认知规律有了更深层的认识。相信在今后的教育教学中我会做得更好。
篇14:《线段的垂直平分线》教学反思
本节我没有按照课本顺序讲解而是设计了以下过程:
1、讲解垂直平分线尺规画图的方法开始,然后让学生探究理论依据;
2、练习画垂直平分线,然后动手测量点到线段两端的距离进而得到性质;
3、还是利用尺规作图,让学生找到画图最关键是保证半径相等,也就是到线段两端的距离相等,根据理论依据得到点在线段平分线上的判定方法。同时解决证明直线为线段的垂直平分线时要同时证明两点都在垂直平分线上。
通过做练习来看整体效果较好。
篇15:《线段的垂直平分线》教学反思
本节课的教学目的是:理解和掌握线段的垂直平分线的定理及其逆定理,并能利用定理进行证明或计算;知道线段垂直平分线是到线段两端距离相等的点的集合;通过动手操作、猜想,证明、应用的过程,渗透集合的观点和用交轨法确定某一个点的位置的思想方法;通过参与课堂活动,知道数学问题源于生活实践,反过来数学又为生活实践服务,提高学习数学的兴趣。
首先设置情景引入新课,普陀区政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等?
然后通过实践探究、猜想得到命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等。”再证明这个命题的正确性。得到线段垂直平分线的性质定理。接着由学生说出其逆定理,培养学生逆向思维及数学语言表达的能力。本节课较重视与生活实践相联系。将实际问题数学化,揭发学生学习数学的兴趣。使学生感受到数学问题源于生活实践,反过来数学又为生活实践服务。
篇16:《线段的垂直平分线》教学反思
一、构建崭新的交互环境,师生互动性更强
本节课我采用了电子白板授课,改变了以往PPT课件授课模式,PPT课件的程序是预先设定好的,伴随着一步步的点击,投影出幻灯片,教师与学生的交互性很受局限。通过使用交互式电子白板,教师操作课件可以直接在触屏上进行,例如:在电子白板上演示用尺规作线段的垂直平分线等,避免了在讲台与黑板之间来回走动过程中分散学生注意力。白板教学环境下加强了集体共同参与的学习过程,师生之间的交流更直接,例如:探究新知2中方法的多样性可以让学生在电子白板上尽情的展示自己的方法,而不会出现黑板不够用的状况。电子白板的使用,可以真正实现人与人之间的交流,而不是人与课件之间的交流。同时,白板课件每个页面中的素材都可以根据学生的具体情况来灵活处理。
二、建立符合学生的认知结构
在进行创设情境中,我没有采用课本上的形式,而是改用七年级学习过的建水电站问题,即将水电站建在何处到在河同一侧的两个村庄的距离之和最短?在学生回忆并解决后将问题变为“建在何处到两个村庄的距离相等?”,这样的设计避免了死板的套入教学内容,不但符合学生的元认知结构,还可以极大的调动学生的学习积极性,使学生快速融入到教学之中,而且题目设计实现知识的纵向迁移,加深了学生对知识的理解、内化,形成自我知识体系,教学实践证明效果显著。
三、充分发挥教师在教学中的的主导性
在这一节中,所介绍的定理实际是在七年级曾经探索过的命题,如线段垂直平分线的性质定理,当时采用的方法是折纸法,作为探索活动的自然延续和必要发展,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学思想方法的强化和渗透,例如:归纳法、数形结合思想和分类讨论在教学中的应用。
四、创新性的使用教材
线段垂直平分线性质定理的证明,我没有直接采用课本中的方法,而是在教学设计时引入分类思想,从两个方面进行证明:(1)当点P在线段AB 上,即点P与垂足重合时,显然点P是线段的中点,因此有PA=PB;(2)当点P不在线段AB上,同教材中的证明,分两种情况考虑这个定理的证明。还有在逆定理的说理过程中,课本上没有给出证明,我也引入了分类思想,分两种情况证明:(1)如果点P满足PA=PB,且在线段AB上,那么,点P显然是线段AB的中点,而线段的中点自然在线段的垂直平分线上.(2)如果点P不在线段AB上,且满足PA=PB。让学生探究和展示方法,体现学生在学习中的主体地位,从而突破本节课的难点。
五、实际教学效果
在实现教学活动中,学生有较好的参与意识 和求知欲望,同时能够跟随着老师的提问而不断的进行更深入的思考。在探究2的方法的多样性上,学生能积极探究 ,在电子白板上尽情展现自己的成果;在尺规作图上,学生能积极自主探究,并通过电子白板演示,提高学生动口、动手、动脑的综合能力。通过巩固达标训练,提高学生解决问题的能力,从而实现本节课的目标,教学效果良好。
篇17:线段的垂直平分线八年级数学教案
线段的垂直平分线(八年级)数学教案
线段的垂直平分线(八年级)数学教案 -03-14 15:32:15 阅读191 评论0 字号:大中小 订阅 一、学习目标: 1、了解线段垂直平分线的定义。 2、会用尺规作图画线段的垂直平分线、能规范的已知、求作和作法。 3、使学生理解线段的垂直平分线的性质定理及定理的应用。 二、重点、难点: 线段的垂直平分线的性质及性质的应用。 三、教材分析: 1、本节内容分为三个部分:其一,通过折纸,经历探索线段垂直平分线的概念形成过程和探索线段的轴对称的过程;其二,用尺规作图的方法作出线段的垂直平分线;其三,通过作图、实验与操作,探索线段的垂直平分线的性质。 2、教科书首先引导学生用折叠的方法探索线段垂直平分线的特征,从而引出线段垂直平分线的定义,在此基础上概括出线段的轴对称性。 3、在七年级(下)《简单平面图形的认识》一章中,已经学习了尺规作图。本节线段的垂直平分线的内容属于基本尺规作图。 4、探索线段垂直平分线的性质,主要应用试验和观察的方法。 四、学情分析: 本节内容学生在学习了轴对称的基础上通过动手折叠得出线段的对称性及线段的垂直平分线的性质。这些内容是对已学过的线段内容的补充和完善,而且是进一步研究三角形、四边形和圆的基础。对学生的.后继学习有着重要的作用。 五、学法指导: 自主学习、合作交流 六、学习准备: 三角尺、圆规、教具 七、学习过程: (一)、课前预习: 复习轴对称图形及性质 (二)课上探究: 活动一:自主学习(先自主学习,经历自主探索总结的过程,并自主完成活动,同学们进行展示。) 1、问题:怎样做一条线段的垂直平分线? 2、在纸上画一条线段AB,通过对折点A与点B重合,思考下列问题。 活动二:合作交流 (小组内相互交流,得出结论) 1、将纸展开后铺平,记折痕所在的直线MN,直线MN与线段AB的交点为O,线段AO与BO的长度有什么关系? 2、直线MN与线段AB有怎样的位置关系? 3、线段AB是轴对称图形吗? 精讲点拨:(各小组总结发现的结论,教师及时进行总结) 1、总结线段垂直平分线的定义: 2、线段的轴对称性: 活动三:交流提升 问题:用尺规怎样画线段的垂直平分线呢? 例题分析:(自主预习课本,画出线段的垂直平分线) 已知:线段AB 求作:线段AB的垂直平分线。 作法: 活动四:交流与发现 (1)请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。 (2)在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系? (3)、通过学生的观察、分析得出结果 PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论进行总结: 归纳总结: 线段垂直平分线的性质 有效训练: 1、线段AB、BC的垂直平分线相交于点P,试问线段PA、PB、PC的长度是否相等?你能说一说理由吗? 2、有一家工厂的三栋厂房形成了一个三角形,为方便职工生活,准备建一个食堂,请问食堂建在什么位置才能使三栋厂房内的工人走的路相等? (三)课后延伸 在三角形ABC中,DE是边BC的垂直平分线,与AB,AC分别交与D,E,三角形ACD的周长为17,三角形ABC的周长25,根据以上条件,你可以求出那些线段的长? 八、当堂检测 1、线段的垂直平分线上的点和这条线段两个端点的_________相等。 2、三角形三边的垂直平分线交于一点,且这点到三个顶点的距离_________. 3.如图,直线 l上一点Q满足QA=QB,则Q点是直线l与_________的交点. 4.在△ABC中,AB=AC=6 cm,AB的垂直平分线与AC相交于E点,且△BCE的周长为10 cm,则BC=______ cm. 5.下列命题中正确的命题有_________. ①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线. A.1个 B.2个 C.3个 D.4个 6.在Rt△ABC中,∠C=90°,AC>BC,AB的垂直平分线与AC相交于E点,连结BE,若∠CBE∶∠EBA=1∶4,求∠A、∠ABC。 九、反馈矫正 十、典型习题 (一)、填空题 1.如果P是线段AB的垂直平分线上一点,且PB=6cm,则PA=__________cm. 2.如图,已知直线MN是线段AB的垂直平分线,垂足为D,点P是MN上一点,若AB=10 cm,则BD=__________cm;若PA=10 cm,则PB=__________cm; 3.如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长是12 cm,AC=5cm,则AB+BD+AD=________cm;AB+BD+DC=__________cm;△ABC的周长是__________cm. 4.如图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=__________,∠AEC=__________,AC=__________ . (二)、选择题 5.下列各图形中,是轴对称图形的有多少个( ) ①等腰三角形 ②等边三角形 ③三角形 ④角 ⑤线段 A.1个 B.2个 C.3个 D.4个 A.CD垂直平分AD B.AB垂直平分CD C.CD平分∠ACB D.以上结论均不对 6.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是( ) A.6 cm B.7 cm C.8 cm D.9 cm 7.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形篇18:八年级数学教学教案:线段的垂直平分线
八年级数学教学教案:线段的垂直平分线
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的'教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
篇19:《线段垂直平分线的性质》教学反思
《线段垂直平分线的性质》教学反思
在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线MN,在MN上取一点p,让学生量出pA、pB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:pA=pB。
然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的'集合。
这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的。最后总结点O是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。
篇20:《线段》教案
《线段》教案
教学目标
1.使学生初步认识.
2.学会用尺子量的长度;学会按要求的长度画.
3.培养学生的动手操作能力.渗透“数学源于生活,用于生活”的观念.
教学重点
用直观、描述的方式帮助学生认识的特征.
教学难点
认识的特征.
教学过程
一、导入环节
1.拿出一根线,贴在黑板上.(要贴成弯弯的)
2.再拿出一根线,贴在黑板上.(要贴成直直的)
3.问:这两根线有什么不同?(这两根线的形状不同,一根是直的,另一根是弯的)
4.在生活中,有许许多多向这样的的线.(指着直的说)
5.分别用一本厚书、一个长方体的盒子比着,在黑板上各画一条.
6.将黑板上的几条圈起来,说:“今天,我们就来学习这样的几何图形,这种图形叫做.”(板书课题:)
二、新授与操练
1.问:谁来说说,你在生活中的什么地方还见过?(桌子的`任意一条边,都是一条;我们数学书的任意一条边也都是一条;生活中许多直的物体的边都是.)
2.师:大家说得都很好,生活中可以发现很多的,是可以量出长度的.
量一量数学书上P14最上面的三条的长度.
3.练习
① 指出下面图形中哪一个是.
② 下面每个图形是由几条组成的.
4.师:大家已经认识了,会测量了,如果让你画一条,你会吗?
5.讲解画的方法:
在尺子的0刻度上点一个点,要画的是几厘米,就再在几厘米的刻度上点一个点,然后再把两个点用一条直直的线连起来.
6.练习:画一条4厘米长的.
三、巩固练习
1.基本练习(练习四1,2)
(1)指出下面哪些是.
(2)下面每个图形是由几条组成的?
2.操作性练习
从以下三个题目中任选一个题做.
画出长5厘米的.
3.思考性练习
右面给出五个点,在两个点之间画.
你能画出几种不同的图形?每种图形画了几条?
四、归纳质疑
通过今天的学习,大家有什么收获,还有什么问题吗?