“蜂蜜芥末味炸雞”通过精心收集,向本站投稿了13篇不定积分知识点总结,下面是小编精心整理后的不定积分知识点总结,希望能够帮助到大家。

篇1:不定积分知识点总结

不定积分知识点总结

不定积分

1、原函数存在定理

定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。

分部积分法

如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。 如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。

2、对于初等函数来说,在其定义区间上,它的'原函数一定存在,但原函数不一定都是初等函数。

定积分

1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程

2、函数可积的充分条件

定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可 积,即连续=>可积。

定理设f(x)在区间[a,b]上有界,且只有有限个间断点, 则f(x)在区间[a,b]上可积

3、定积分的若干重要性质

性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx

推论| ∫abf(x)dx|≤∫ab|f(x)|dx

性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的 大致范围。

性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。

4、关于广义积分

设函数f(x)在区刚[a,b]上除点c ( a

定积分的应用

求平面图形的面积(曲线围成的面积)

直角坐标系下(含参数与不含参数)

极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx ,其中f(x) 指曲线的方程)

平行截面面积为已知的立体体积(V=∫abA ( x ) dx,其中A ( x )为截面面积)

功、水压力、引力

函数的平均值(平均值y=l/(b-a)*∫abf(x)dx )

篇2:不定积分的方法总结

不定积分的方法总结

不定积分的方法总结

教学过程:

在实际问题的解决过程中,我们不仅要用到求导数和微分,还要用到与求导数和微分相反的计算即积分运算.也就是由函数的导数求原函数,它是积分学的基本问题之一-----求不定积分.

一、原函数

1.引例1:已知物体运动方程s s(t),则其速度是物体位移s对时间t的导数.反过来,已知物体的速度v是时间t的函数v v(t),求物体的运动方程s s(t),使它的导数s (t)等于v v(t),这就是求导函数的逆运算问题.引例2:已知某产品的产量P是时间t的函数P P(t),则该产品产量的变化率是产量P对时间t的导数P (t).反之,若已知某产量的变化率是时间t的函数P (t),求该产品产量函数P(t),也是一个求导数运算的逆运算的问题.

2.【定义5.1】(原函数)设f(x)是定义在区间I上的函数.若存在可导函数F(x),对 x I均有F (x) f(x)ordF(x) f(x)dx,则称F(x)为f(x)在I上的一个原函数.

例如:由(sinx)  cosx知sinx是cosx的.一个原函数;又(sinx 5)  cosx,(sinx c)  cosx(c是常数),所以sinx 5,sinx c也都是函数cosx的一个原函数.

再如:由(2x3)  6x2知2x是6x的一个原函数;32

(2x3 c)  6x2,所以2x3 c(c是常数)也是6x2的一个原函数.

注意:没有指明区间时,应默认为区间就是函数定义域.

二、不定积分

1.原函数性质

观察上述例子知:函数的原函数不唯一,且有性质

(1)若f(x) C(I),则f(x)存在I上的原函数F(x).

(2)若F(x)为f(x)在I上的一个原函数,则F(x) C都是f(x)的原函数,其中C为任意常数.

(3)若F(x)和G(x)都是f(x)的原函数,则

F(x) G(x) C.

证明:  F(x) G(x)

F (x) G (x) f(x) f(x) 0.

C R,   s.t.F(x) G(x) C.

(4)设F(x)为f(x)在I上的原函数,则f(x)在I上全体原函数为F(x) C(其中C为任意常数).2.【定义5.2】函数f(x)在I上的全体原函数称为f(x)在I上的不定积分,记作 C R,s.t. f(x)dx.

即若F(x)为f(x)在I上的一个原函数,则有 f(x)dx F(x) C,C为任意常数.

说明:(1) ---积分号;(2)f(x)---被积函数;

(3)f(x)dx----被积表达式.(4)x----积分变量.

3.结论:

①连续函数一定有原函数.

②f(x)若有原函数,则有一簇原函数.它们彼此只相差一个常数.

提问:初等函数在其定义区间上是否有原函数?例:edx,sinxdx, x2 2sinx xdx)

(一定有原函数,但原函数不一定还是初等函数.)例1求(1)3xdx;(2)x5dx. 2

解(1)∵(x)  3x,∴32233xdx x C.

x6 x6

55(2)   C.  x,  xdx 6 6

例2求解1 1 x2dx.  arctanx   1,21 x

1 1 x2dx arctanx C.

1提问: dx  arccotx C对吗?1 x2

1例3求 dx.x

11解: (lnx)  ,  dx lnx C.xx

例4:某商品边际成本为100 2x,则总成本函数为C(x)  (100 2x)dx 100x x2 C.

3.导数与不定积分的关系

f (x)dx f(x) C.

(1)* df(x) f(x) C.(1)

df(x)dx f(x). dx

(2)*d f(x)dx f(x)dx.(2)

可见:微分运算与求不定积分的运算是互逆的.

提问:如何验证积分的结果是正确的?(积分的导数是被积函数时正确)

二、不定积分的几何意义

如图: f(x)dx F(x) C,

函数f(x)的不定积分表示

斜率为f(x)的原函数对应的

一簇积分曲线.在同一点x0处

积分曲线簇的切线平行.

此曲线蔟可由F(x)沿y轴上下平行移动而得到.积分曲线:函数f(x)原函数y F(x)的图形称为f(x)

的积分曲线.

不定积分的几何意义:f(x)的不定积分是一簇积分曲线F(x) C.且在同一点x0处积分曲线簇的切线互相平行.

例5设曲线通过点P(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解设曲线为y f(x),依题意知

x2dy 2x,dx   2x,  2xdx x2 C,

2于是f(x) x C,

由f(1) 2 C 1,

所求曲线方程为y x 1.

提问:如何验证积分的结果是正确的?(结果求导必须是被积函数)

小结:

1.F(x)为f(x)在I上的原函数,则f(x)在I上全体原函数F(x) c为f(x)的不定积分,即2

f(x)dx F(x) c

2.注意当积分号消失时常数c产生.

3.熟记积分公式,注意将被积函数恒等变形后用公式计算不定积分.

课后记:存在的问题不能正确理解几何意义;计算错误较多,找不对原函数,写掉积分常数C.

【提问】判断下列结论是否正确

(不正确说明理由)

(1)3dx 3x C.(2)xdx

(3)

515x C6   C.

(4) 1

x2  1x C.(5) 1

x lnx C.

(6) 5xdx 5xln5 C.

(7) 2exdx ex C.

(8) 2sinxdx  cosx C.(9) 1

1 x2dx arctanx c  arccotx C.

(10) sec2xdx tanx C.

(11) csc2xdx  cotx C.

(12)  arcsinx C  arccosx C.

(13) secxtanxdx secx C.

(12) cscxcotxdx  cscx C.

篇3:不定积分解题方法总结

不定积分解题方法总结

前言

说到技巧,在数学当中可是浩如烟海。从常规数学学习当中的配凑,换元,裂项相消,错位相减,数形结合,到竞赛中的.化归,调整,算两次,这些技巧极大简化了解决问题的难度,也成为了很多人对于数学产生兴趣的来源,这其中也包括了我。当然,在逐渐接触到越来越多更加高等的数学后,我明白当时对于数学的理解可谓十分浅薄,这门学科比这些模式化的计算和技巧的堆积要精彩太多。然而,虽然技巧只是数学汪洋当中微不足道的一隅,他们仍然是数学学习中非常重要的一部分。时至今日,我仍然会去关注和探索在初等和高等数学中的小技巧,因为我享受发现和使用技巧时的灵光一闪,也非常喜欢通过技巧来开阔思路,增强我对某个知识理解的深入程度。

在今天这一期推送里,我们来讲讲不定积分的技巧。在微积分/分析这门学科当中,计算是一项非常基本的能力,而在计算的过程当中有许多我们可以应用到的技巧。本文适合所有有一定微积分基础知识的人:对于学过一些微积分的高考同学,这篇文章可以做为一篇课外读物,加深一下你们对积分的理解;对于国外体制内,选修了相应微积分课程的同学们,你们可能对于其中的一部分或大部分概念感到比较熟悉;这篇文章可以作为你们对于相关学科内容的一个巩固。不论怎样,我都真诚地希望这篇文章能够对目标群体的读者有一定的帮助,而由于本人水平所限,如果有任何错误,还吝请大家指正。

正文

篇4:定积分和不定积分区别

在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的'求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。

篇5:不定积分的积分方法论文

不定积分的积分方法论文

不定积分的积分方法论文【1】

摘 要: 在高职高专院校高等数学的不定积分章节的学习中,有三种积分方法,分别是第一类换元积分法,第二类换元积分法和分部积分法.部分学生在积分运算中,对积分方法的选择不知如何着手.针对这种现象,本文对三种积分方法加以总结,以便学生对积分方法能更好地掌握.

关键词: 不定积分 换元积分法 分部积分法

一、第一类换元积分法

定理1(第一类换元积分法)设f(u)具有原函数,u=φ(x)可导,则有换元积分公式

f[φ(x)]φ′(x)dx=[f(u)du].

第一类换元积分公式实质上就是:f[φ(x)]φ′(x)dx=f[φ(x)]d[φ(x)].

第一类换元积分公式在运用过程中,应用的关键是确定新的积分变量φ(x),那么如何确定φ(x)?方法有如下两种.

1.通过对所求不定积分中被积函数的观察,发现函数中既含有φ(x)又含有φ′(x),则我们就可以猜测出新的积分变量为φ(x).

例如:求dx

分析:所求不定积分的被积函数为,因为(lnx)′=,所以我们可以把看做lnx,则新的积分变量φ(x)=lnx.

解:dx=[lnx]dx=lnxd[lnx]=lnx+C

2.通过对所求不定积分的观察,猜测出所要运用的基本积分公式,基于这个公式确定新的积分变量φ(x).

例如:求sin3xdx

分析:所求不定积分为sin3xdx,观察后发现我们所用的基本积分公式为sinxdx=-cosx+C,但是所求积分的被积函数不是sinx而是sin3x,我们可以把3x看做一个整体,就是新的积分变量φ(x),即φ(x)=3x.

解:sin3xdx=[sin3x]3dx=[sin3x]d[3x]=[sin3x]d[3x]=-cos3x+C

二、第二类换元积分法

定理2(第二类换元积分法)设函数x=φ(t)单调,可导,且φ′(t)≠0,f[φ(t)]φ′(t)的原函数存在,则有换元积分公式

f(x)dx=[f[φ(t)]φ′(t)dt],

其中t=ψ(x)是x=φ(t)的反函数.

第二类换元积分公式在何时运用?我认为:重点是解决被积函数中含有“根号”的积分问题.那么在学习中遇到的常见的含有根号的情形有几种呢?我总结了一下共有四种,分别是:;;;.

如何消除被积表达式中的根号?做适当变量替换即可,针对以上四种情形具体替换如下:

① 对,设t=;

② 对,设x=asint;

③ 对,设x=atant;

④ 对,设x=asect.

原来关于x的不定积分转化为关于t的不定积分,在求得关于t的不定积分后,必须代回原变量.在进行三角函数换元时,可由三角函数边与角的关系,作三角形,以便于回代.在使用第二类换元法的同时,应注意根据需要,随时与被积函数的恒等变形、不定积分性质、第一类换元法等结合使用.

例如:求dx

分析:所求不定积分的被积函数中含有根号,符合上述情形中的第三种,由此我们做替换x=2tant即可.

不定积分知识点总结(推荐13篇)解:dx=•2sectdt=sectdt=ln(sect+tant)+C=ln++C=ln(+x)+C

三、分部积分法

分部积分公式:udv=uv-vdu或uv′dx=uv-u′vdx(其中u=u(x)与v=v(x)都具有连续导数)

分部积分法主要是解决被积函数是两类不同类型函数乘积的不定积分问题.这里我们所说的函数类型指的是反三角函数、对数函数、幂函数、三角函数、指数函数五种基本初等函数.当然在具体应用时被积函数未必是这五种类型,有可能是相似的类型,我们在应用公式前,只需要将所求的不定积分运用其他的积分方法适当变形转化为这五种函数即可.

应用分部积分公式的关键是确定公式中的u和v′,如何确定它们?可按照反三角函数、对数函数、幂函数、三角函数、指数函数的顺序(即“反、对、幂、三、指”的顺序),把排在前面的那类函数选作u,而把排在后面的那类函数选作v′.

例如:求xsinxdx

分析:不定积分中的被积函数xsinx为两类不同类型的函数乘积,所以我们就要应用分部积分法,其中u为x,v′为sinx,则u′=1,v=-cosx把上述四项代入公式即可.

解:xsinxdx=-xcosx--cosxdx=-xcosx+sinx+C

小结:我们学习以上三种积分方法的目的就是要把我们所计算的不定积分问题转化为我们所熟悉的基本积分公式来处理,当然,这些积分方法在运用时往往不是单独使用,大多数情形下都是混合使用,甚至要多次使用.

参考文献:

[1]同济大学,天津大学,浙江大学,重庆大学编.高等数学.高等教育出版社,.6,第2版.

[2]周金玉.高等数学.北京理工大学出版社,.8,第1版.

[3]陈传樟等.数学分析.高等教育出版社,1983.7,第2版.

不定积分计算方法的思考【2】

摘 要: 本文通过分析不定积分计算教与学中的困难,提出老师和学生要注意的问题,并对几种常用方法作了分析。

关键词: 不定积分计算 困难 分析 常用方法

不定积分是大学数学关于计算问题的一个重要内容,是定积分、重积分、线面积分计算、微分方程求解的基础。因此,熟练掌握不定积分的计算方法与技巧,对于学好高等数学是十分必要的,然而它的计算却存在着一定的难度。

一、不定积分计算的困难及分析

不定积分计算的困难首先是由其概念本身带来的,因为从求导的逆运算引进,造成了它的计算是非构造性的一类运算,它与求导相比有着显著的不同,求导有一定的公式可套,但求不定积分并非如此。

不定积分计算的困难还在于错误的思考方法,对于学生来说,解题往往通过“猜”的方式,猜原函数,这显然相当的困难;在老师方面,不定积分的教学也是一个难点,老师的任务是理出方法,教会学生如何理解方法,而不是凭感觉。

现实存在的问题有两个:一是当在指定让学生用哪种方法解决时,学生可以做到,但如果把方法混在一起,学生往往不知道用哪种方法;二是在当时学生会解决的题目,时间久了,学生就忘记了。原因都在于学生没有真正理解透各种方法的本质特点,面对问题时,不知道怎么根据其特征选择适当的方法。

二、不定积分计算的方法思考

在介绍积分方法时,老师首先应提醒学生注意被积函数的多样性,而不同类型的被积函数就需要不同的积分方法来解决,对于一个给定的f(x),要求f(x)dx,这是一个未知的问题,从宏观上说我们要将未知的问题转化为已学知识来讨论。那么就存在两个问题:已知的是什么?怎么转化过去?

课本根据求导与不定积分的关系由基本求导公式给出了积分基本公式,它们可以作为已知的知识,那么不能直接由积分公式解决的问题,就要通过几种转化方法转化到现有的公式上,转化的依据要根据被积函数的结构和转化方法的特点。常用方法有以下几种。

1.基本变形。这个方法是由不定积分的性质线性引出的,只要做恒等变形就可以将要求的不定积分转化到基本积分公式中去,它的特点就是多个变单个。

2.凑微分法。顾名思义,关键在于一个“凑”字,如果能想到如何“凑”,则题目会迎刃而解,若想不到方法,则会无处入手。因此,归纳并熟记常用的`凑微分公式是十分必要的。

老师在讲解这个方法的时候可以先通过几个简单的凑微分的例子引出凑微分这个方法,以形象地观察出凑微分法的本质、特点,书上给出的定理是比较抽象的,在对其证明中,可以采取比较通俗的方式,如:要验证f[φ(x)]・φ′(x)dx=f(u)du=F(u)+C=F[φ(x)]+C是否成立,只要验证(F[φ(x)]+C)′=f[φ(x)]・φ′(x)是否成立。

如果成立,则证明了该定理,也证明了前几个例子的做法是正确的。再结合例子和定理归纳出凑微分法的特点就是“变元再协同”。

有些例题要“凑”多次,老师可以举相关例题让学生充分体会凑微元法的本质特点是变元再协同中的“再”,总的来说凑微元法就是一个“变元再协同”的过程。

3.变量代换法。从被积函数中会发现一些难以处理的因式,使用凑微元怎么也协同不了,在讲解这个方法的时候可以先举几个这样的例子,告诉学生思考这个问题的方法,多列几个学生就会知道想办法去掉难以处理的因式,当然是有多种代换方法的。在学生接受了这种思路后再给出定理,证明手段类似凑微元的证明。

例1:求.

思路一:被积函数中既有x,又含有x,所以我们想办法通过变元都协同到x上,然后再观察,再协同。

解一:===

=d=d

=arctan+C

思路二:考虑被积函数中含有根号,想办法去掉根号,使用三角代换很容易将其算出。

观察这两种方法的各自特点,第一种思路它比较难想到,但计算起来比较简单,第二种方法它虽然操作起来相对麻烦一些,但指向性非常明确。

三角换元法一般是把被积函数中含有的,分别用x=asint,x=atant,x=asect做变换去掉根式,没有太多的技巧,但是有些含有这样根式的不定积分不需要采取变量代换的方法,例如xdx,dx,被积函数中含有了比较难处理的因式,而变量代换就是起到一个去掉难处理的因式的作用,但在有些题目中只要用凑微元做就可以了,提醒学生不要犯教条。

4.分部积分。其基本公式为udv=uv-vdu,此方法用于求udv不易,而求vdu较易的题目。在运用分部积分法关键是u与dv的选取,掌握此方法的一个关键在于你要对哪个求导,du是一个局部求导,求导之后要方便运算才有意义。

例2:求xedx.

分析:被积函数是指数函数e与三角函数x的乘积,用分部积分有两种方案:xedx=edx=ex-xdexde,第一种方案是对e局部求导,而我们知道对它求导还是本身,所以解决不了根本问题,所以学生在做题的时候要思考到底对谁局部求导能达到目的,这题中对x局部求导就可以去掉这个因式,所以选择第二种方案。

这部分内容的学习要求我们要对各类积分法进行总结比较,分析各类积分方法的特征,达到掌握并熟练运用的目的。

参考文献:

[1]华东师范大学数学系编.数学分析(上册)[M].高等教育出版社,1990.

[2]仉志余.大学数学应用教程(上册)[M].北京大学出版社,.8.

[3]夏磊.不定积分在高职教学中的教学浅析[J].教育研究与实践,,(12).

篇6:对不定积分计算方法的思考

对不定积分计算方法的思考

为大家献上对不定积分计算方法的思考,欢迎各位数学毕业的同学阅导数在不等式证明中的应用!

摘 要:本文通过分析不定积分计算教与学中的困难,提出老师和学生要注意的问题,并对几种常用方法作了分析。

关键词:不定积分计算 困难 分析 常用方法

不定积分是大学数学关于计算问题的一个重要内容,是定积分、重积分、线面积分计算、微分方程求解的基础。因此,熟练掌握不定积分的计算方法与技巧,对于学好高等数学是十分必要的,然而它的计算却存在着一定的难度。

一、不定积分计算的困难及分析

不定积分计算的困难首先是由其概念本身带来的,因为从求导的逆运算引进,造成了它的计算是非构造性的一类运算,它与求导相比有着显著的不同,求导有一定的公式可套,但求不定积分并非如此。

不定积分计算的困难还在于错误的思考方法,对于学生来说,解题往往通过“猜”的方式,猜原函数,这显然相当的困难;在老师方面,不定积分的教学也是一个难点,老师的任务是理出方法,教会学生如何理解方法,而不是凭感觉。现实存在的.问题有两个:一是当在指定让学生用哪种方法解决时,学生可以做到,但如果把方法混在一起,学生往往不知道用哪种方法;二是在当时学生会解决的题目,时间久了,学生就忘记了。原因都在于学生没有真正理解透各种方法的本质特点,面对问题时,不知道怎么根据其特征选择适当的方法。

二、不定积分计算的方法思考

在介绍积分方法时,老师首先应提醒学生注意被积函数的多样性,而不同类型的被积函数就需要不同的积分方法来解决,对于一个给定的f(x),要求f(x)dx,这是一个未知的问题,从宏观上说我们要将未知的问题转化为已学知识来讨论。那么就存在两个问题:已知的是什么?怎么转化过去?

课本根据求导与不定积分的关系由基本求导公式给出了积分基本公式,它们可以作为已知的知识,那么不能直接由积分公式解决的问题,就要通过几种转化方法转化到现有的公式上,转化的依据要根据被积函数的结构和转化方法的特点。常用方法有以下几种。

1.基本变形。这个方法是由不定积分的性质线性引出的,只要做恒等变形就可以将要求的不定积分转化到基本积分公式中去,它的特点就是多个变单个。

2.凑微分法。顾名思义,关键在于一个“凑”字,如果能想到如何“凑”,则题目会迎刃而解,若想不到方法,则会无处入手。因此,归纳并熟记常用的凑微分公式是十分必要的。

老师在讲解这个方法的时候可以先通过几个简单的凑微分的例子引出凑微分这个方法,以形象地观察出凑微分法的本质、特点,书上给出的定理是比较抽象的,在对其证明中,可以采取比较通俗的方式,如:要验证f[φ(x)]・φ′(x)dx=f(u)du=F(u)+C=F[φ(x)]+C是否成立,只要验证(F[φ(x)]+C)′=f[φ(x)]・φ′(x)是否成立。

如果成立,则证明了该定理,也证明了前几个例子的做法是正确的。再结合例子和定理归纳出凑微分法的特点就是“变元再协同”。

有些例题要“凑”多次,老师可以举相关例题让学生充分体会凑微元法的本质特点是变元再协同中的“再”,总的来说凑微元法就是一个“变元再协同”的过程。

3.变量代换法。从被积函数中会发现一些难以处理的因式,使用凑微元怎么也协同不了,在讲解这个方法的时候可以先举几个这样的例子,告诉学生思考这个问题的方法,多列几个学生就会知道想办法去掉难以处理的因式,当然是有多种代换方法的。在学生接受了这种思路后再给出定理,证明手段类似凑微元的证明。

例1:求.

思路一:被积函数中既有x,又含有x,所以我们想办法通过变元都协同到x上,然后再观察,再协同。

解一:===

=d=d

=arctan+C

思路二:考虑被积函数中含有根号,想办法去掉根号,使用三角代换很容易将其算出。

观察这两种方法的各自特点,第一种思路它比较难想到,但计算起来比较简单,第二种方法它虽然操作起来相对麻烦一些,但指向性非常明确。三角换元法一般是把被积函数中含有的,,,分别用x=asint,x=atant,x=asect做变换去掉根式,没有太多的技巧,但是有些含有这样根式的不定积分不需要采取变量代换的方法,例如xdx,dx,被积函数中含有了比较难处理的因式,而变量代换就是起到一个去掉难处理的因式的作用,但在有些题目中只要用凑微元做就可以了,提醒学生不要犯教条。

4.分部积分。其基本公式为udv=uv-vdu,此方法用于求udv不易,而求vdu较易的题目。在运用分部积分法关键是u与dv的选取,掌握此方法的一个关键在于你要对哪个求导,du是一个局部求导,求导之后要方便运算才有意义。

例2:求xedx.

分析:被积函数是指数函数e与三角函数x的乘积,用分部积分有两种方案:xedx=edx=ex-xdexde,第一种方案是对e局部求导,而我们知道对它求导还是本身,所以解决不了根本问题,所以学生在做题的时候要思考到底对谁局部求导能达到目的,这题中对x局部求导就可以去掉这个因式,所以选择第二种方案。

这部分内容的学习要求我们要对各类积分法进行总结比较,分析各类积分方法的特征,达到掌握并熟练运用的目的。

参考文献:

[1]华东师范大学数学系编.数学分析(上册)[M].高等教育出版社,1990.

[2]仉志余.大学数学应用教程(上册)[M].北京大学出版社,2006.8.

[3]夏磊.不定积分在高职教学中的教学浅析[J].教育研究与实践,2008,(12).

篇7:知识点总结

知识点一:设计分析

合理的设计分析是成功地进行技术设计的关键一步,分析得当可以指引以后的技术上可以少走或不走弯路。

产品本身是一个整体,包括功能、造型、材料等,但任何产品都不是孤立存在的,一方面,它是为人服务的,人的需求在很大程度上决定着产品的设计;另一方面,它是在一定的环境中使用的,必然受到环境的制约,并对环境产生影响。因此,设计任何产品都应综合考虑物、人、环境三个方面。详见书本P95台灯分析的例子。

知识点二:方案的构思方法

方案的构思是指人们在一定的调查研究和设计分析的基础上,通过思考将客观存在的各要素按照一定的规律架构起来,形成一个完成的抽象物,并采用图、模型、语言、文字等方式呈现思维过程。

方案的构思过程中,考虑到的许多问题是模糊的、零散的、不系统的,而且也是不具体的,怎样把这些模糊的、零散的、不系统的设计想法变成我们能看到的、比较完整的具体方案呢这就需要一定的方法

(1)草图法

设计时,我们可以运用草图法进行构思。草图不仅能将一些想法明确地表达出来,而且可以随意修改。在运用草图法进行构思的过程中,学生可以捕捉灵感、自由发挥、不受约束。

(2)模仿法

模仿现实生活中存在的一些事物进行方案的构思。如仿生技术

(3)联想法

要用联想的方法进行方案的构思,人们就必须具备丰富的实践经验、较广的见识、较好的知识基础及丰富的想象力。

利用联想法进行方案的构思,不一定能使技术设计一次性成功,但它有可能为构思找到一种方法或一条形成方案的路径。运用联想法进行构思后,我们不能盲目地实践,而应该首先对方案进行科学论证,而后再进行制作和实施。

(4)奇特性构思法

奇特性构思法所形成的方案一般具有原创性。这些构思在历史上很少发生,或从来没有发生过,甚至有些构思在当前的科学、技术、经济条件下无法实现。

知识点三:方案的比较和权衡

在多个方案经构思形成后,我们往往要对这些方案进行评判和比较,同时要从设计的目的出发,针对一些相互制约的问题进行权衡和决策,最后选出较为满意的方案或集中各方案的优点进行改进。

对方案进行比较和权衡的过程是一个综合考虑的过程,各个指标并不是独立的,它们相互关联、相互制约。抓住设计的核心与关键是权衡设计方案的必要条件。

考虑的方面:实用、美观、创新、稳定性、安全性、环保性、加工难易程度、经济成本。

篇8:知识点总结

01质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式)

2.中间时刻速度Vt/2=V平=(Vt+Vo)/2

3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

4.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)

4.推论Vt2=2gh

02质点的运动:

1)平抛运动

1.水平方向速度:Vx=Vo

2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot

4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角:tg=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角:tg=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

2)匀速圆周运动

1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f

3.向心加速度a=V2/r=2r=(2/T)2r

4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r

7.角速度与转速的关系=2n(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度:弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。

3)万有引力

1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}

03力:

1.重力G=mg (方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}

4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)

篇9:知识点总结

人的一生就只有一次生命,我们应该爱惜生命。注意交通安全也是爱惜生命的一部分。交通安全知识点总结最新有哪些你知道吗?共同阅读交通安全知识点总结最新,请您阅读!

交通安全知识点总结

1、行走安全:行人须在人行道内行走,没有人行道靠右边行走;

穿越马路须走人行横道;通过有效通信号控制的人行道,须遵守信号的规定;通过没有交通信号控制的人行道,要左顾右盼,注意来往车辆,不准追逐,奔跑;没有行人横道的,须直行通过,不准在车辆临近时突然横穿;有人行过街天桥或地道的,须走人行过街天桥或地道;不准爬越马路边和路中的护栏、隔离栏,不准在道路上扒车、追车、强行拦车或抛物击车。

2、骑自行车(电动车、摩托车)安全:不满16周岁不能在道路上骑电动车、摩托车;

不打伞骑车;不脱手骑车;不骑车带人;不骑“病”车;不骑快车;不与机动车抢道;不平行骑车;不在恶劣天气骑车。

3、乘车安全:乘公共汽车要停稳后上下车,在车上要抓好扶手,头、手等身体部位不能伸出窗外,管好身边物品,防止扒窃;

乘高速汽车要系安全带;不乘超载车。小学生交通安全知识

1、汽车不是一刹车就停的

有的学生认为乱过马路没有什么关系,反正驾驶员会刹车的。

其实,汽车不是一刹就停的。由于惯性作用,刹车后车还会向前滑一段路,这就是力的惯性作用。就像人在奔跑中,突然停下来,还会不由自主地身前冲几步一样。何况还有可能驾驶员不注意,刹车不灵等。所以,乱穿马路是十分危险的,不少交通事故就是因为行人乱过马路造成的。血的教训应当引以为戒。

2、安全走路

走路,谁不会呢?

其实不然,如果我们不注意交通安全,走路就会闯祸。

所以上学读书、放学回家、节假日外出时走在人来车往的交通繁忙的道路上,要遵守交通规则,增强自我保护意识。

走路要走人行道上。在没有人行道的地方,应靠道路右边行走。走路时,思想要集中,不要东张西望,不能一边走一边玩耍,不能一边走路一边看书,不能三五成群并行行走,不要乱过马路,更不要追赶车辆嬉戏打闹。更不要在马路上踢球、溜冰、放风筝、做游戏。一旦被来往车辆装倒,后果十分严重。

3、不在车前车后急穿马路

有人总是喜欢在汽车前、后急穿马路这是很危险的。驾驶员眼睛看不到的地方,被称为“视线死角”。要是有人在车前车后驾驶员眼睛看不到的“视线死角”内急穿马路,就会造成车祸。所以我们横过马路要注意左右来往车辆,先向左看,后向右看,当看清没有来车时才横过马路。在有“人行横到”和“人行天桥“上行走,这样才比较安全。

4、礼貌乘车

在等乘公共汽车时,应在站台上有次序地候车。要做到等车停稳后,让车上的人先下来,然后依次车。车辆行驶时,要坐好或站稳,并抓住扶手,防止紧急刹车时摔倒。不能将身体的任何部分伸出车外下来后,要注意安全,不要从车前车后突然穿出或猛跑过马路,以免发生伤亡事故。

安全行车十五想

出车之前想一想,检查车况要周详;马达一响想一想,集中精力别乱想;

起步之前想一想,观察清楚再前往;自行车前想一想,中速行驶莫着忙;

要过道口想一想,莫闯红灯勤了望;遇到障碍想一想,提前处理别惊慌;

转弯之前想一想,需防左右有车辆;会车之前想一想,先慢后停多礼让;

超车之前想一想,没有把握别勉强;倒车之前想一想,注意行人和路障;

夜间行车想一想,仪表车灯亮不亮;经过城镇想一想,减速鸣号切莫望;

雨雾天气想一想,防滑要把车速降;长途行车想一想,劳逸结合放心上;

停车之前想一想,选择地点要适当。

篇10:知识点总结

1、一元二次方程解法:

(1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1

(2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0

若b2-4ac>0则有两个不相等的实根,若b2-4ac=0则有两个相等的实根,若b2-4ac<0则无解

若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a2-b2=0→(a+b)(a-b)=0

②运用公式法:

完全平方公式:a2±2ab+b2=0→(a±b)2=0

③十字相乘法

2、锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin):对边比斜边,即sinA=a/c;

余弦(cos):邻边比斜边,即cosA=b/c;

正切(tan):对边比邻边,即tanA=a/b;

余切(cot):邻边比对边,即cotA=b/a;

3、积的关系

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

4、倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

5、两角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

篇11:知识点总结

1.角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。

2.角有以下的表示方法:

(1)用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间。

(2)用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示。

(3)用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。

3.以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。

4.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

5.如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

6.同角(等角)的补角相等;同角(等角)的余角相等。

篇12:知识点总结

第一章:声现象

教学目标:1。知道声音是由振动产生的

2知道空气传播需要介质,声音在不同介质中传播的速度不同,声音不能在真空中传播,直到声音在空气中传播速度,知道声音是一种波它具有能量

3了解组成声音的三要素:响度。音调和音色。知道声音的音调跟发生的振动频率有关,响度与发声体的振幅和距离发声体的远近有关,不同物体发出的音色不同。

4了解声音中乐音和噪音的不同,了解噪声的来源和危害,什么事超声波和次声波

教学重点:1声音的产生与传播2声音的三要素3乐音和噪音教学难点:明白声音三要素的区别

一:声音的产生与传播知识梳理(重):

1声音是有物体的振动产生的,正在发声的物体叫声源2声音的传播必须依靠介质,真空不能传声

3不同物质传播声音的速度不同,在固体中传播的最快,在空气中传播的最慢4声音在空气中以声波的方式传播,声波具有能量二:声音的三要素(重)

1声音的三个特征是音调,响度和音色

2音调指的是声音的高低,音调是由发声物体振动的频率决定的,频率越大,音调越高3响度是指声音的大小,响度跟发声体的振幅有关,振幅越大,响度越大,响度还跟距发声体的远近有关

4不同乐器的声音,他们的音色是不同的。音色不同,声波的波形也不同。5弦乐器的音调与弦的长度,粗细和材料有关三:乐音和噪音(重)

1乐音通常指那些动听的,令人愉快的声音,它的波形是有规律的,通常指那些难听的,令人厌烦的声音,它的波形是没有规律的。但从环保角度看凡是影响人们正常正常学习、工作和休息的声音都是属于噪声。

2减小噪音干扰的主要途经有在声源处,在传播途中和在人耳处减弱噪声三:超声波和次声波

1超声波:频率高于20xx0Hz的声波;次声波:频率低于20Hz的声波;可听见的频率范围:20Hz-20xx0Hz

2超声波方向性好,穿透能力强,易于获得较集中的声能。应用:

⑴制成声纳⑵B超⑶超声波速度测定器⑷超声波清洗器⑸超声波焊接器3次声波应用于预报地震台风和监测核爆炸等

4声音传播被障碍物反射回来形成回声;回声测距原理利用波的传播速度练习:略第二章1温度温度计:

1、温度:物体的冷热程度叫温度(重)2、摄氏温度(符号:t单位:摄氏度)瑞典的摄尔修斯规定:①把纯净的冰水混合物的温度规定为0℃②把1标准大气压下纯水沸腾时的温度规定为100℃③把0到100℃之间分成100等份,每一等份就是一℃3、温度计(重)

原理:液体的热胀冷缩的性质制成的

构造:玻璃壳、毛细管、玻璃泡、刻度及液体

使用:使用温度计以前,要注意观察量程和认清分度值使用温度计测量液体的温度时做到以下三点:

①温度计的玻璃泡要全部浸入被测物体中;②待示数稳定后再读数;③读数时,不要从液体中取出温度计,视线要与液面上表面相平,4、体温计,实验温度计,寒暑表的主要区别5、摄示度(℃)的规定方法:(重)

以通常情况下冰水混合物的温度作为0度;以标准大气压下水的沸腾是的温度作为100度;6、熔化和凝固的定义、条件(重)

物质由固态变为液态的过程叫熔化。条件是吸热。物质从液态变成固态的过程叫凝固。条件是放热。7、熔点和凝固点(重)固体分晶体和非晶体两类

熔点:晶体都有一定的熔化温度,叫熔点;非晶体没有熔点

凝固点:晶体者有一定的凝固温度,叫凝固点;非晶体没有凝固点同一种物质的凝固点跟它的熔点相同

8、晶体熔化的条件:①达到熔点温度②继续从外界吸热

液体凝固成晶体的条件:①达到凝固点温度②继续向外界放热9、汽化与液化(重)

物质从液态变为气态叫汽化,汽化有两种不同的方式:蒸发和沸腾,这两种方式都要吸热。物质从气态变为液态叫液化,液化有两种不同的方式:降低温度和压缩体积,这两种方式都要放热。

10、蒸发现象(重)

定义:蒸发是液体在任何温度下都能发生的,并且只在液体表面发生的汽化现象影响蒸发快慢的因素:液体温度高低,液体表面积大小,液体表面空气流动的快慢11、沸腾现象(重)

定义:沸腾是在一定温度下,发生在液体内部和表面同时进行的剧烈的汽化现象液体沸腾的条件:①温度达到沸点②继续吸收热量

12、升华和凝华(重)

①升华:物质从固态直接变成气态的现象,升华需要吸热;②凝华:物质从气态直接变成固态的现象,凝华需要放热13酒精灯的使用(一般)

1酒精灯的外焰温度最高,应该用外焰去加热2绝对禁止用一只酒精灯去点燃另一只酒精灯。3熄灭酒精灯时必须用灯帽盖灭不能吹灭

4万一洒出的酒精在桌面燃烧起来,应立即用湿抹布盖灭第三章光现象

一光的色彩颜色(一般)

1光的色散:用三棱镜把太阳光分解成红、橙、黄、绿、蓝、靛、紫七种色光叫光的色散,英国物理学家牛顿第一个做色散实验

2色散现象表明:白光不是单色光,而是由不同颜色的光组成的

3透明体的颜色是由透过它的色光决定的;不透明体的颜色是由它反射的色光决定的4色光和颜料混合后的颜色

红、绿、蓝三种色光混合成白光;红、黄、蓝三种颜料混合成黑色。色光混合和颜料的混合成的颜色是不一样的二人眼看不见的光

1红外线和紫外线都是人眼看不见的光

2红外线能使被照射的物体发热,具有热效应,太阳的热主要就是以红外线的形式传到地球上的。

3紫外线最显著的性质是它能使荧光物质发光。应用:紫外灯灭菌、验钞机验钞。4光具有能量叫光能

三光源光的直线传播(重)

1自身能发光的物体叫光源。光源分类:天然光源和人造光源

2光在同一均匀介质中是沿直线传播的小孔成像、影的形成、日食、月食可用光的直线传播来解释。

3光在不同介质中速度是不同的。光在真空中的传播速度是3×108m/s四平面镜成像(重)1平面镜成像特点:

㈠、平面镜成像是同大、正立、左右相反的虚象㈡、像和物的连线同镜面垂直㈢、像和物的大小相等。

1实像和虚像①实像真实光线汇成②虚像不是由真实光线汇成不能用屏接收五光的反射现象及其规律(重)

1光的反射定律;光发射时,反射光线位于入射光线和法线所确定的平面内,反射光线和入射光线分居在法线的两侧,反射角等于入射角。可归纳为:“三线共面,两线分居,两角相等”理解:

由入射光线决定反射光线,叙述时要“反”字当头

发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度2平面镜作图抓住反射定律平面镜成像规律六透镜

1、光的折射(重)

光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射

理解:光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。

注意:在两种介质的交界处,发生折射的同时必发生反射,折射中光速必定改变,而反射中光速不变2、光的折射规律

光从空气斜射入水或其他介质中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。理解:折射规律分三点:(1)三线共面(2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入射角;③光从水等介质斜射入空气中时,折射角大于入射角3、在光的折射中光路也是可逆的4、透镜及分类

透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多。

分类:凸透镜:边缘薄,中央厚凹透镜:边缘厚,中央薄5、主光轴,光心、焦点、焦距主光轴:通过两个球心的直线

光心:主光轴上有个特殊的点,通过它的光线传播方向不变。焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点。焦距:焦点到光心的距离叫焦距,用“f”表示。每个透镜都有两个焦点、焦距和一个光心。6、别透镜的方法:

①、用手摸:中间厚边缘薄是凸透镜。

②、用眼看:能使字放大是凸透镜。缩小的是凹透镜。③、用光照、能使平行光会聚一点的是凸透镜。7、凸透镜和凹透镜的作用:

①、凸透镜对光有会聚作用②、凹透镜对光有发散作用。

8、物距:物体到透镜的距离叫物距。(u)像距:像到透镜的距离。(v)9、凸透镜成像的变化规律

物距减小,像距增大,像也增大。10、凸透镜成像的其它内容

①、实象和物体的最近距离是4f②、F点是成实象和虚象的分界点

③、2F点是成放大像和缩小像的分界点11、凸透镜的成像规律:

物距像的性质应用像距vU>2fU=2ff<u<2fU=fU<ff<v<2fv=2fv>2f物象同侧大、小小同大大不能成像大正虚同放大镜正、倒倒倒倒虚、实实实实同异侧异异异照相机无投影仪、幻灯机12、

“一焦分虚实,二焦分大小;虚像同侧正,物远像变大;实像异侧倒,物远像变小13、照相机和眼睛的相同点①、所成像都是倒立缩小的实象

②、眼镜的晶状体相当于照相机的镜头③、眼镜的视网膜相当于照相机的胶片14、视力的缺陷及矫正

①、近视眼:远处物体的像成在视网膜之前,用凹透镜来矫正

②、远视眼(老花眼):近处物体的像成在视网膜之后,用凸透镜制成远视眼镜来矫正,远视眼镜的作用是使像相当于晶状体向前移,它能使光会聚,使近处的物体在视网膜上成清晰的像。

15、望远镜的发展历史伽利略望远镜开普勒望远镜射电望远镜哈勃空间望远镜16、望远镜的组成:

伽利略望远镜:物镜,凸透镜;目镜,凹透镜;

开普勒望远镜:物镜,凸透镜,焦距长;目镜,凸透镜,焦距短;17、显微镜

①、作用:可以帮助我们用看清肉眼看不见的细小物体

②、结构:物镜,凸透镜,焦距短;目镜,凸透镜,焦距长;

18、远视眼睛焦距和度数的关系:D=1/f×100D:度数f:焦距,单位是米。

篇13:知识点总结

迅速撤离:去到公共场所时,要留意墙上、门上、转弯处等地方设置的“安全出口”、“紧急出口”和“安全通道”等标志,一旦发生火灾,按照标志指示的方向迅速撤离。

低身前进:火灾发生时产生的烟一般在上空,那么逃生时尽量弯腰、贴近地面前进。

毛巾捂鼻:逃生时用浸水的毛巾、棉布、口罩等捂住鼻口,降温和过滤吸入的浓烟。因为火灾产生的烟不仅温度高,毒性也很大,吸入后容易引起呼吸系统的灼伤或者中毒。

厚物护生:用浸湿的毛毯、棉被或者能吸水的大件物品盖在身上,确定好逃生路线,迅速逃离到安全区域。不能用塑料或者化纤类等物品来保护身体,否则适得其反。

结绳自救:可以将床单、窗帘等物品撕成条,拧在一起成麻花状,或者用绳子一端栓在固定的重物上,另一端扔向窗外爬下。如果有的话可以带上手套避免磨破手心。

信号求救:在等待救援时,可以通过大声呼救、投软物品或者挥动布条吸引救援人员的注意。夜间可以用手电筒能发光的物品发出信号。

面对小火及时灭除,面对大火及时逃离。

消防常识需具备。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。