“喝咖啡我”通过精心收集,向本站投稿了20篇人教版小学数学实际问题教学设计,下面是小编为大家整理后的人教版小学数学实际问题教学设计,仅供参考,大家一起来看看吧。

篇1:人教版小学数学教学设计
一、模拟片段教学与说课的区别
1、说课:说教材、说教学目标、说教法学法、说教学程序。案例:《分数的初步认识》、《用字母表示数》模拟片段教学:说教学程序。
2、说课的“说教学程序”:复习铺垫、新授、巩固、综合运用、拓展延伸、小结等;模拟片段教学的“说教学程序”:一般说“新授”部分。
3、说课主要说“为什么这样教”,模拟片段教学重在“怎样教”。
二、模拟课堂片段教学应注意的几方面
1、要体现师生互动、生生互动的课堂情境;教师的语言表达:要注意教学语言的转化;教师的教学语言;学生的汇报交流:直叙、转述
2、要关注学生学习方式的转变;如:动手操作、小组合作、同桌互相说一说、自学课本等。
3、要体现课堂评价的多元;教师评价、学生评价适时、恰当。
4、要展示板书的科学性和合理性;与课堂教学同步(及时);有所选择;字体规范;布局合理。
5、不能出现科学性的错误;如:《平行与垂直》 《认识几分之一》 《连续退位减法》。
6、要注意培养学生数学信息收集、整理和交流的能力;
7、要体现学生提出数学问题的能力;
8、要关注学生方法多样化,体现学生不同的思维方式;学生不同的解法、不同的理解、不同的表述等要能及时板书。
三、不同领域的教学内容应有所侧重
1、计算具体情境提出数学问题的能力;注重算理的引导与表述(如:9加几,凑十法);板书的巧妙设计:色笔、横线、位置
2、空间与图形教师的演示;学生的动手操作;
案例:《平行四边形的面积》
3、统计与概率学生发现数学信息、提出数学问题、解决数学问题的能力;板书不可少;案例:《复式条形统计图》
4、解决问题学生发现数学信息、提出数学问题、解决数学问题的能力;学生解题方法的多样化。
四、其它一些问题
1、如何开头?
2、教学目标要说吗?
3、复习多长时间比较合适?《商的变化规律》
4、如何小结?
5、要充分利用资源—————没有三角板
篇2:数学《实际问题与方程》教学设计
数学《实际问题与方程》教学设计
教学内容:人教版五年级上册第五单元第七课实际问题与方程(二)
教学目标:
知识与技能:
1、结合具体的情景,使学生掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。
2、学生通过学习两积之和的数量关系来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。
过程与方法:
培养学生的比较、分析能力和类比学习的`能力。
情感态度与价值观:
学生在利用迁移、类推的方法,在解决问题的过程中,体会数学与现实生活的密切联系。
教学重难点:
分析数量关系,列出含有小括号的方程并解答。
教学准备:
教具准备:多媒体
学具准备:答题纸
教学过程:
一、联系生活、导入新课:
师:秋天是收获的季节,天气慢慢变凉,而且比较干燥,同学可以多吃些水果缓解干燥,你喜欢吃什么水果呢?(引入准备题)
生自由发言(三人左右)
师结合东营气候的实际情况作出评价。
二、合作交流、探究新知:
(一)1、师:我们看看妈妈买了些什么水果?仔细观察,你能得到那些信息?
(出示 P77例3 图片)
2、观察图片你能提出什么样的问题?
(生:苹果每千克多少钱?)
师:你能根据其中的条件找出数量间相等的关系吗?组内互相议一议,派代表发言。
3、生独立列方程,说说为什么这样列,并求解。(一生上台演板)
师:请你把思考方法给大家讲讲,其他同学可以互相补充、纠正。
方法一:
方法二: 还可以这样列方程:
师:请同学认真观察这个方程怎么解?小组内先讨论,再派代表发言。
师:把(2.8+X)看作一个整体,两边同时除以2,先求出2.8+X是多少,再算X等于多少。
4、同学把这个方程解完,学生演板后,教师组织讲评。
5、同桌互相说一说第二种等量关系和解这个方程的方法。
说一说列方程解应用题的一般步骤
6、练习:解方程
(二)教学例4
1.引入例题。出示例4的条件:
地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。
教师:现在又能提出哪些数学问题?
引出例题。
2.比较例题与求地球表面积的复习题,有什么区别。
引导学生回答:数量关系相同,条件与问题交换了位置。
请学生说出数量关系,教师板书:
陆地面积+海洋面积=地球的表面积5.1亿平方千米
↓
陆地面积×2.4
3.讨论:有两个未知数,怎么办?
①怎样设未知数?
②怎样列方程?
学生分组讨论,教师巡视,酌情参与讨论。
4.交流各种解法。
引导学生从便于思考、便于解方程两方面进行比较。
5.重点讨论下列解法。
解:设陆地面积为x亿平方千米。(设海洋面积为x可以吗?哪个更方便?)
那么海洋面积为2.4x亿平方千米。(这是用了哪个条件?)
x+2.4x=5.1 (这是用了哪个条件?)
(1+2.4)x=5.1 (这是用了什么运算定律?)
让学生自己把方程解完,得x=1.5。
提问:另一个未知数怎样求?根据是什么?
5.1-1.5=3.6(利用和的关系)
2.4x=1.5×2.4=3.6(利用倍数关系)
6.引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米:
1.5+3.6=5.1
验算海洋面积与陆地面积的倍数关系是否等于2.4:
3.6÷1.5=2.4
(三)用同样的方法教学例5
三、巩固应用
1.你会解下列方程吗?
5+ 1.5×5 = 17.5
(-3 ) ÷2 = 8.5
2. 两辆汽车同时从相距237千米的两个车站相向开出,经过3小时辆车相遇。一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?
3. 你能根据给出的方程编应用题吗?
(26+) ×3=150
四、课堂总结
通过本节课的学习你有什么收获?
板书设计:
篇3:二年级数学下册《实际问题》教学设计
二年级数学下册《实际问题》教学设计
教学目标:
1. 通过练习,使学生能够正确熟练地解答两步实际问题。
2. 提高学生分析、解决实际问题的能力和与同伴交流的'能力。
3. 渗透代入思想,增强学生用数学的意识。
教学重、难点:
正确分析解答实际问题。
教学过程:
一、口算:(投影)
67-25900-300670+30810+40(9+31)÷542-4×618+28÷4
练习形式:直接说得数,两步式题让学生说说运算顺序。
二、指导练习:(投影)
1. 买门票的实际问题。 三年级有128个学生,四年级有172个学生,两个年级一起去参观博物馆,有5个学生因有事没有去,应该买多少张学生票?
练习形式:
(1)学生读题,说条件、问题。
(2)独立分析解答。
(3)集体交流。说说你是怎样想的?怎样解答?有不同的想法吗?
2. 编题练习: 信息:果园里有梨树450棵 桃树360棵 苹果树500棵 杏树300棵 师:根据这些信息,你能提出两步解答的问题吗?并解答。 读一读,组织学生集体交流。
3. (投影)书上8题。 学生读题,理解题意,提出不明白的问题。 指导完成一道题,其它题让学生独立尝试。
4. 思维训练:
小力和小光去商店买球拍。小力原有65元,借给小光20元,现在两人的钱数同样多,小光原有多少元?
(1)读题后,让学生说条件和问题。
(2)同组同学互相商量一下自己的想法。
(3)集体交流,教师利用线段图帮助学生理解题意。
三、课堂总结
说说你的收获和提高?
篇4: 数学《实际问题与方程》教学设计
一、教学内容:
人教版五年级上册数学第五单元《实际问题与方程》例4,第78页
二、教学目标:
1、会根据两个未知量的关系,列出含有两个未知数的方程,理解和掌握列方程解这类问题的等量关系和解题方法。
2、学生在观察、分析、抽象,概括和交流的过程中,进一步体会方程的思想。
3、通过不同方法的渗透,培养学生的类推和迁移的思想,激发学生学习数学的兴趣。
三、教学重点:
列方程解答含有两个未知数的实际问题。
四、教学难点:
准确地找出等量关系,列出方程。
五、教学准备:
微课视频,懿文德软件课件
六、教学过程:
(一)激趣导入
播放爸爸去哪儿主题曲,师提问:同学们都看过爸爸去哪儿么?好看么?你们最喜欢哪位小朋友啊?
预设:1、看过,很好看,我最喜欢
2、没看过
师:今天啊,老师给你们请来了一位特殊的朋友,她要教我们学习用方程解决实际问题,你们欢迎么?
预设:欢迎。
(二)探究新知
1、微课讲解
将一道跟例题相关的题目以微课的形式进行分析和讲解。
师:请大家认真地听这位朋友讲解,她有任务要交给你们呢。
出示题目:果园里种着桃树和杏树一共180棵,桃树的棵树是杏树的3倍,桃树和杏树各有多少棵?
进行讲解:这道题目和我们之前学的不太一样,要求两个未知量。我可以设杏树的棵树为180棵,那么桃树的棵树可以表示为3x棵。分析题目,得到等量关系为:杏树棵树+桃树棵树=总棵树,列出方程为x+3x=180,运用乘法分配律,(1+3)x=180,4x=180,根据等式的性质4x÷4=180÷4,x=45,将x=45代入方程左边=45+3×45=45+135=180=方程右边,所以x=45是方程的解。杏树的棵树已经求出来了,那么桃树的棵树可以用总棵树-杏树棵树=180-45=135(棵),再根据问题将答话写完整,这道题目就完整的算完了。接下来,请大家积极地开动你的小脑筋,完成我接下来给你们出的题目,看谁的方法又好又多,那谁就获得优先选取大礼包的权利。小朋友们,你们听懂了么?(将这个过程录成微课的形式,使同学们能够认真地听,并积极地动脑思考)
师:同学们听懂这位朋友讲解的了。
预设:1、听懂了。
2、没听懂。
师:这道题目跟我们之前学习的不太一样,不是求谁设谁,而是有两个未知量,我们要根据题目具体分析怎么设未知量。接下来,请同学完成下面这道题目,自己先进行独立思考,然后小组内进行讨论和交流,我们看看哪个小组的方法又多又好。
2、新知探究
(1)出示例题:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍,地球上的海洋面积和陆地面积分别是多少亿平方千米?
(2)师:同学们你们知道地球表面积是由什么组成的么?播放地球动态图,使学生认识到地球表面积由海洋面积和陆地面积组成。
(3)师:请同学们根据刚才视频讲解的例题,开动自己的小脑筋,想想这道题可以怎么做?做完之后,小组之间进行交流。(师巡视指导)
(4)下面哪个小组来和大家交流一下做法呢?
预设1:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
海洋面积+陆地面积=地球表面积
2.4x+x=5.1
(2.4+1)x=5.1
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设2:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
地球表面积-陆地面积=海洋面积
5.1-x=2.4x
5.1-x+x=2.4x+x
5.1=(2.4+1)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设3:
解:设陆地面积为x亿平方千米,那么海洋面积面积可以表示为2.4x亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-2.4x=x
5.1-2.4x+2.4x=x+2.4x
5.1=(1+2.4)x
5.1=3.4x
3.4x=5.1
3.4x÷3.4=5.1÷3.4
x=1.5
5.1-1.5=3.6(亿平方千米)
答:陆地面积为1.5亿平方千米,海洋面积为3.6亿平方千米。
预设4:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
海洋面积+陆地面积=地球表面积
x+实际问题与方程教学设计=5.1
预设5:
解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。
地球表面积-海洋面积=陆地面积
5.1-x=实际问题与方程教学设计
师:同学们都积极的开动了自己的小脑筋,也都做的`很棒,下面请大家比较一下这几种方法,你们认为哪种方法最好呢?
预设:第一种方法最好,解方程的过程最简单。
师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。
师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?
(3)总结方法
1、设(找出未知数,用字母x表示)
2、找(找出题目中的等量关系)
3、列(根据等量关系列出方程)
4、解(运用等式的性质解方程)
5、验(将解出的结果代入方程检验)
6、答(完整地写好答话)
师:是的,用方程解决实际问题我们常用的就是你这六个步骤,请同学们要牢记哦。接下来,老师考考大家,看看你们掌握的怎么样,你们有没有信心接受我的挑战呢?
三、巩固练习
1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是
A、解:设梨树为x棵,则苹果树为5x棵。
B、解:设苹果树为x棵,则梨树为5x棵。
C、解:设苹果树为x棵,则梨树为实际问题与方程教学设计棵。
通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。
2、找出下列各题中的等量关系
(1)小红和小军一共存了235元,小红存的钱数是小军的1.5倍,小红和小军分别存了多少元?
实际问题与方程教学设计等量关系:
(2)植物园里种着松树和柏树,松树的棵树是柏树的2.5倍,柏树比松树少84棵,松树和柏树分别有多少棵?
实际问题与方程教学设计等量关系:
本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。
3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。
(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?
(2)白兔比黑兔多138只,白兔和黑兔各有多少只?
请同学们先独立完成第一问,然后我们进行交流。
第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。
四、课堂小结
通过本节课的学习:
实际问题与方程教学设计收获是
实际问题与方程教学设计遇到的困惑是
五、作业布置
请同学们完成一份关于保护地球的手抄报
篇5:用数学解决简单的实际问题 教学设计(人教版一年级下册)
教材与学情分析
总复习的编排注意知识间的内在联系,便于在复习中进行整理和比较,以加深学生对所学知识的认识。培养学生灵活运用知识解决问题的能力。
教学目标:
1、培养学生用所学的数学知识解决简单的实际问题。
2、进一步发挥学生的想象力。
3、让学生在交流中参与解决问题的全过程,培养学习数学的积极性。
教学重点:培养学生合理利用各种信息解决问题的意识
教学难点:根据情境图的资源,提出问题和解决问题。
一、基本练习
二、创设情景
三、用数学
四、小结:
1、指名口算:
10-7 5-4 6-2 7-3 8-0 18-10
17-7 18-5 2+13 4+10 6+9 27-20
8+5 0+0 15+4 5-5 5+7 20+9
2、填未知数:
(1)6+()=11 14-()=10
讨论:,括号里该填几?怎么想?指名回答。
(2)练习:
9+()=13 8+()=15 12-()=2
5-()=4 7-()=1 ()+7=14
学生做完后,问是怎样想的。
1、出示书上第108页的第10题。
(1)学生观察,你能提出两个数学问题并解答吗?
(2)同桌先说一说,再全班交流。
学生独自列式。
2、书上第108页第8题 生独立完成。
1、书上第109页第11题。
(1)分组讨论,说一说图中讲的是一件什么事情?
(2)引导学生看图,结合文字理解内容。
(3根据问题列式计算,并说说你是怎样算的?
(4)举例说一说日常生活中的有关数学知识方面的问题?
2、思考题:学生先思考,分组讨论,互说想法,然后再指名说一说你是怎样想的?
说一说你的收获?
作业设计: 1、课堂作业本
板书设计: 总复习:用数学
不同角度 不同的列式 原来有多少?
篇6:《百分数实际问题》教学设计
《百分数实际问题》教学设计
第1课时
教学内容:
义务教育课程标准实验教科书青岛版小学数学十二册第一单元信息窗二。
教材简析:
该信息窗以青岛市的几个著名旅游景点为背景,提供了和“十一”黄金周期间来青岛的游客人数和旅游收入等信息,通过解决“到海滨风景区的游客大约有多少万人”、“20‘十一’黄金周青岛旅游收入约多少亿元”和“20同期到青岛旅游的约有多少万人”等问题,引入对“求一个数的百分之几是多少”、“求比一个数多(少)百分之几的数是多少”和“已知比一个数多(少)百分之几的数是多少,求这个数”等知识的学习。这部分知识是本单元的教学难点。教师要充分重视知识的迁移性,充分利用学生已有的知识来学习。由分数问题的解决方法迁移到这一类百分数问题的解决方法。
教学目标:
1.通过学习使学生掌握百分数应用题的数量关系,能够正确解答“求一个数的百分之几是多少的`应用题。”
2.培养学生分析、解答应用题的能力。
3.通过学习活动,培养积极的学习态度,树立学好数学的信心。
教学过程
一、创设情境、激趣导入:
谈话:同学们,青岛作为国家著名的旅游胜地,气候怡人,景色优美,每年“十一”期间都会迎来大量游客到青岛旅游,我们能生活在这样一座美丽的海滨城市非常的幸福。
二、自主探究、获取新知:
1、仔细观察情境图,收集题中的数学信息,提出问题
谈话:观察情境图,你获得了哪些信息?你能提出什么数学问题?
预设:(1)到海滨风景区的游客大约有多少万人?
(2)到其他景区的游客大约有多少万人?
教师根据学生的提问,有选择的进行板书,如:到海滨风景区的游客大约有多少万人?(学生提出的其他合理问题先放进问题口袋,下节课再解决)
下面我们先来解决“到海滨风景区的游客大约有多少万人?”课件出示第一个红点例题。引导学生分析数量关系。
(1)读题。找条件和问题,明确这道题是把谁看成单位“1”。
(2)学生画图并自己试做。
谈话:要求到海滨风景区的游客大约有多少万人?该怎样计算呢?你能不能联系前面我们学过的求一个数的几分之几的解答方法,先自己想一想该如何列式,并说说列式的依据。
列好算式后,请学生独立计算,最后再交流计算结果。
102× 84% =102×0.84=85.68(万人)
答:及格的同学有85.68万人。
谈话:我们在列式时为什么要用乘法计算?
学生同桌讨论后让学生交流自己的观点。
引导学生得出:我们把黄金周到青岛旅游的总人数看作单位“1”,已知到海滨风景区的占总人数的84%,要求到海滨风景区的人数,就是求102万人的84%是多少。所以用乘法。
补充练习:
(1)张红看一本200页的书,已经看了全书的80%,看了多少页?
(2)工人叔叔要加工1500个零件,还剩下10%没有加工完,还剩下多少个没有加工完?(学生自主完成,集体交流)
2.课件出示自主练习第7题
敦煌莫高窟藏经洞出土文献5万余件。这些珍贵的文献约有70%流失海外,国内现存莫高窟出土文献约有多少万件?
(1)画图,理解题意
(2)小组交流,列出算式后汇报:
方法(1):5-5×70% 方法(2):5×(1-70%)
(3)学生四人小组内进行交流,交流解答方法的列式依据。
学生可能有的答案是:
1.根据线段图我们可以看出要求国内现存莫高窟出土文献约有多少万件?可以先求出流失海外的大约有多少万件,然后再用一共出土的减去流失海外的数量。
2.我们小组是根据“这些珍贵的文献约有70%流失海外”这句话先求出了国内现存莫高窟出土文献约占出土文献总量的30%,这时要示国内现存莫高窟出土文献约有多少万件?就是求5万件的30%是多少。
随机练习:(自主练习第2题)学生自主解答,集体交流。
三、巩固练习
1.只列式不计算
(1)六年级一班有学生45人,上学期期末跳远测验有80%的同学及格,及格的同学有多少人?
(2)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
2.自主练习
第1题:将下面百分数分别化成分数和小数。(学生汇报时说出转化的方法)
学生讨论:首先应该做什么?怎么才能提高正确率?
自主练习第9题。
第12题:在学生独立思考的基础上组织交流,使学生明确该题有两种解题思路:一是先分别求第一期和第二期修的米数,再求第一期比第二期多修的米数;二是先求第一期比第二期多修了全长的百分之几,再求多修的米数。这里不要求学生两种解题方法都掌握。答案:300×40%—300×30%=30(米)或300×(40%—30%)=30(米)。
四、课堂小结:
这节课我们研究了什么问题?你有什么收获?
(引导学生进行总结,能用自己的话说出学习主要内容。)
篇7:人教版小学数学教学设计与反思
今天上第一节新课《数一数》,问题有很多,的问题就是节奏慢,教学任务只完成了一半。新课上完了,习题没来得及做。主要原因是维持课堂秩序,培养学生的课堂纪律意识,塑造良好的课堂纪律行为。当然还有我的教学语言过于啰嗦,话多,实在值得反思。
4班上课伊始,课前准备有待加强。收拾学具盒,摆好数学课本花了一些的时间。然后就是各种整纪律,但是效果却是一般般,我一方面舍不得花太多时间整纪律,一方面孩子太闹,又不得不停下来整纪律。这就导致纪律没整透,孩子依然闹。今天我用了投影,结果很多孩子很好奇,一直问:老师这是什么?上课的时候,郭林轩就在讲台前跑来跑去,一会儿动动幕布,一会儿摸摸投影机,我在展示学生作业的时候,郭林轩就在碰投影,扰乱正常的教学秩序。我就应该停下来好好整治他,只是随便说一说,没什么效果,他依然我行我素。最气人的`是郭林轩一会儿碰这个,一会儿碰那个,带着其他小朋友也开始闹腾。龚文轩就是极受影响的一个,今天很开心地在讲台上跑来跑去,被我吼回去了。5班的许睿聪也是,一直要上厕所,声音很大,直接走到你面前,想不理他都不行。所以今天总结下来就是一半的时间在整纪律,但是也没整透。
一年级的课堂要做到以下几点:
1、使劲表扬。不只是回答得好的同学要发积分,只要站起来回答了问题,和答案相关的就可以发积分。像郭林轩只要他坐得住就可以发积分,安安静静地坐在课堂上就行。许睿聪也是。不要吝啬,要用奖励调动大家的积极性。
2、不要吼孩子。才开始不能吼,不仅自己嗓子受不了,孩子也会对你厌恶。整纪律的时候一定要达到效果,不能因为时间问题就放松要求,我让你们在什么时间内做完什么事情就要做完。切记拖拖拉拉。
3、有些问题可以一带而过,学生精彩的回答要大肆表扬,今天周优悠回答数小鸟的时候就说2个2个地数,已经会分群数数了,有乘法的基础在里面。
4、一定要让孩子介绍自己数的方法。让他们说一说自己是怎么数的。
5、同伴交流合作的时候,左右不分。
6、一定要有积分奖励、物质奖励。
篇8:人教版三角形教案_小学数学教学设计
第三单元:三角形
第一课时:(认识三角形)
教学内容:苏教版《义务教育课程标准实验教科书数学》四年级(下册)第22~23页。
教学目标:
1、知识目标:通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。
2、能力目标:引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。
3、情感目标:激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。
教学重点:认识三角形的特征。
教学难点:探究三角形三条边之间的关系。
教学过程:
一、认识三角形的特征
1、(由课前“考眼力”游戏中,不见了三角形导入)三角形躲到哪儿去了?哦!它到我们的生活中来了,你找到了吗? (斜拉索和桥面形成三角形,桥柱和桥面形成三角形。)
2、你还在什么地方看到过三角形?(举例)
3、请同学们自己想办法利用老师准备的材料做一个三角形。
4、展示作品,说说你是怎样做的。
在汇报摆三角形时,说明每条线段都必须首尾相接,才能围成三角形。
5、老师把它画到黑板上来,教学三角形的边、角、顶点,请一位同学上来指一指三角形的边、角、顶点,下面的同学数一数三角形有几条边、几个角、几个顶点呢?请你们结合刚才做的三角形,同桌相互指一指、说一说。
6、我们知道了这些三角形的特征,那么我们就用这些特征来判断下面哪个图形是三角形?
二、认识三角形三边的关系
1、用三根小棒围三角形。
2、汇报。
3、实践操作,探索发现。
(1)(出示4种小棒)老师准备了这样4根小棒,请你任选3根小棒,看能否围成三角形;
(2)边操作边由小组长负责将实验结果记录在实验表中。
(3)小组讨论,能围成三角形的三条线段成怎样的关系?
第1根长度
(厘米) 第2根长度
(厘米) 第3根长度(最长)
(厘米) 能否围成
三角形
先由小组讨论汇报后得出结论。(出示结论)
4、验证结论。
三、实践应用
1、完成教材P24第2题。
2、判断如果有两根长度分别为2cm和5cm的木棒,
①用长度为3cm的木棒与它们能摆成三角形吗?为什么?
②用长度为4cm的木棒与它们能摆成三角形吗?为什么?
③要摆成三角形,第三边还可以是几厘米?(讨论后回答)
7厘米行吗?7厘米以上呢?
3、把一根14厘米长的吸管剪成三段,用线串成一个三角形可以有几种方法?为什么?
强调三角形两边之和大于第三边。
四、总结延升:
1、今天我们一起进一步认识了三角形,从中你又了解了三角形的哪些知识?
2、展示各种运用三角形图片。生活中有如此多的三角形仅仅是因为它的美吗?它对我们的生活有着怎样的影响呢?只要我们善于观察、善于思考、善于探索,就能发现三角形中更多的奥秘!
板书设计:
认识三角形
三角形两条边长度的和大于第三边
篇9:人教版三角形教案_小学数学教学设计
第二课时:(认识三角形的高)
教学内容:教科书第24―25页
教学目标:
1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高。
2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与现实生活的联系。
3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。
教学重点:认识三角形的高,并正确地画高。
教学准备:三角尺、学具盒等
教学过程:
一、复习引入
1、上一节课,我们学习了一些有关三角形的知识,你对三角形有了哪些了解。?
2、画一个类似于人字梁的三角形(只要外面的三条边)
说说三角形的组成:三条边、三个角、三个顶点。
二、教学新课
(一)认识三角形的底和高
1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段。
2、同学们,看看这个图形知道它像什么吗?(介绍人字梁)
3、我们要最出这幅人字梁的高,应该从哪儿量到哪儿呢?
学生讨论。
指明:人字梁的高度就是从这个三角形的顶点到它对边的垂直线段。
4、画一个锐角三角形后,提问:数学中三角形的高是什么意思呢?
从三角形的一点到对边的垂直线段。
5、示范画高。
边画边讲:现在要找它的高,就是从顶点画出这条边底边垂直线段。从顶点画下来的这条垂线用虚线画一画。 指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,既然是垂直线段,画完后还要要注意标上直角标志。
学生在作业本上,模仿板书也画一画。
6、同学们想一想,一个三角形可以几条这样的高呢?
让学生自己试一试。
指出:三角形有三个顶点,可以向对边画三条垂直线段。也就是可以作三条高。
分别请学生来用三角板摆一摆另两条高的位置。学生在作业本上完成三条高。
引导观察该图:一个三角形可以画出它的3条高;这3条高应相交于同一个点。如果你画的三条高没有相交于同一个点,那么你的高肯定是画得不够准确。
(二)巩固新知
出示三角板,问:我手里的这个三角板和刚才画的三角形,有什么不用?(有一个直角)
描画出三角板中的三角形,并标出其中的一个直角。
提问:这个三角形,你也能像刚才那样找到3条高吗?怎么找?
结合学生的回答,使大家明白:三角形中有一个角是直角,那么这两条直角边可以互相看作是一底一高,不用另外画;只有当把斜边当作底的时候,它的高要另外画;3条高相交于原来的直角处。
三、完成书上的练习
1、试一试,分别量出下面每个三角形的底和高各是多少厘米。
2、想想做做第1题:画出每个三角形底边上的高。
注意:图上以规定了底,只要画出指定的一条高就可以了。交流的时候,重点说说第三个三角形:它的高是哪一条?为什么?
3、把一根14厘米长的吸管剪成三段,用先串成一个三角形,除了书上举例的5厘米、3厘米和6厘米外,还可以怎样剪?
说说你的方法?有没有有序思考的方法?
4、想想做做第3题,请你说说为什么这个三角形的高的长度一定比小棒短? (可引导学生回忆:从直线外一点到这条直线的所有线段中,垂线最短。所以这条高要比小棒短。)
四、介绍“你知道吗?”
学生分别用学具盒里的3根小棒,搭成一个三角形,轻轻捏住其中的一个角,敲其他的边或角,发现:这个三角形的形状、大小不变。
再用4根或5根甚至更多的小棒,围起来,得到一个多边形,也捏住它的一个角,轻轻地敲,发现:它非常容易得变成其他模样。
指出:三角形具有稳定性。
利用三角形的稳定性,生活中有广泛的应用。学生看书,说说这些图中哪些地方有三角形?还有什么地方也有三角形的结构?
篇10:人教版三角形教案_小学数学教学设计
第三课时:(三角形的分类)
教学内容:教科书第26――27页。
教学目标:
1、让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形、钝角三角形。
2、让学生在实际操作中发展空间观念。
3、激发学生的主动参与意识、自我探索意识和创新精神。
教学重、难点:会按角的大小给三角形分类。
教学准备:课件
教学过程:
一、复习引新
谈话:你学过哪几种角?小于平角的角可以分为哪几类?(锐角、直角和钝角)怎样判断一个角是直角、锐角或钝角?那么三角形可以分为几类呢?又有哪几类呢?今天老师和小朋友就一起来研究一下三角形的分类。(板书课题:三角形的分类)
二、师生互动,引导探索
1. 出示书本上6个三角形
提问:请小朋友仔细观察每个三角形的内角,说说他们各有几个锐角、直角或钝角。
指定几个学生回答。、
出示表格,根据学生的回答填写①号三角形。
① ② ③ ④ ⑤ ⑥
锐角个数
直角个数
钝角个数
提问:你会照样子填一填吗?
学生独立完成表格,并交流.
2.三角形的分类
提问:观察上表,这些三角形可以分为几类?怎样分?在四人小组内讨论。
交流讨论结果。
学生可能出现的分类:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的三角形。
再次组织学生讨论:你们分成的三类三角形有没有相同的地方?(都有两个角时锐角)有什么不同的地方?(另一个角有的是锐角,有的是钝角,有的是直角)我们抓住不同处来分类,你认为可以怎样分?
谈话:三角形按角可以分为锐角三角形、钝角三角形、直角三角形三类。
提问:那么什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?
出示各类三角形的定义:
三个角都是锐角的三角形是锐角三角形;
有一个角是直角的三角形是直角三角形;
有一个角是钝角的三角形是钝角三角形。
2. 练习巩固,深化概念
(1) 判断一下说法对吗?
3个角都是钝角的三角形是钝角三角形。
直角三角形中只有一个直角。
有一个角是锐角的三角形是锐角三角形。
谈话:三角形的3个角中只可能有一个钝角或一个直角,至少有两个锐角;3个角一个角大了,另两个角就小了。
(2) 教师出示一次三角形,用纸挡住两个角,让学生根据露在外面的一个角,猜一猜这个三角形属于哪种三角形。
只露出一个直角;只露出一个钝角;只露出一个锐角。
组织学生讨论。
在学生回答的基础上小结:第(1)题是直角三角形,第(2)题是钝角三角形,你们回答的非常准确。第(3)题只露出了一个锐角可能是锐角三角形,可能是直角三角形,也可能是钝角三角形,因此无法判定是什么三角形。
3. 用集合图表示分类结果。
(1) 出示一个椭圆,谈话:如果我们用这个圈表示三角形这个整体,你能把它分成几部分,填写出每部分的名称吗?要求学生尝试着在集合图中表示分类的结果。
(2) 出示学生填写的分类集合图,并说说对图意的解释:把所有的三角形看作一个整体,锐角三角形、直角三角形和钝角三角形都是这个整体的一部分。
三、巩固深化,拓展提高
1. 做想想做做第1题
让学生任意画一个三角形,指导学生用三角尺上的直角去比一比,从而判断画出是什么三角形。
提问:你在用三角尺比三角形的角是,是3个角都比的吗?如果不是,你是怎样比的?
谈话:只要量出三角形中最大的一个角是什么角,就能判断这个三角形是什么三角形。
2. 做想想做做第2题
(1) 独立完成,展示部分学生的答案,共同校对。
(2) 提问:你在判断图中的三角形时使用的什么办法?(有的凭观察,用的用三角尺去比量)
(3) 谈话:判断一个三角形是哪一类三角形时,一般情况下凭观察就可以作出判断,如果三角形中有一个角接近直角时,就要用三角尺的直角去比量一下,再准确地作出判断。
3. 做想想做做第3、4、5题
组织学生动手做一做,再展示部分学生的操作结果,共同评议。
4. 做想想做做第6题
学生各自动手画,展示学生的答案。
提问:你画出的线段是三角形的什么?
5. 做想想做做第7题
先让学生独立作图,再在小组内交流。
师生共同小结:可以分别从3个顶点向对边画线段,把它分成两个三角形。其中从直角顶点向对边画线段,可以分成两个直角三角形,也可以分成一个锐角三角形和一个钝角三角形。从其他两个顶点向对边画线段,只能分成一个钝角三角形和一个直角三角形。
四、总结提高,课后延伸
谈话:通过这节课的学习你知道了什么?还想知道哪些有关三角形的知识?自己可以通过阅读书籍、上网查阅来获得更多的知识。
篇11:人教版三角形教案_小学数学教学设计
第五课时:(等腰三角形和等边三角形)
教学内容:教科书第30――32页。
教学目标:
1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学重点:认识等腰三角形和等边三角形以及它们的特征。
教学难点:发现等腰三角形和等边三角形角的特征。
教学准备:例题中的三角形;一张长方形纸,一张正方形纸,剪刀。
教学过程:
一、复习:关于三角形,你有那些知识?
1、按角分成三种三角形
2、三个内角和是180度
算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减……
二、认识等腰三角形:
1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)
有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)
指出:像这种两条边相等的三角形,我们叫它“等腰三角形”
2、折一折、剪一剪:
取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开
观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)
除了两条边是相等的,还有什么也是相等的?你是怎么知道的?
(还有两个角也是相等的,因为也是重合的。)
3、画一画:
讨论一下,如果我要把这个等腰三角形画下来,应该怎么画?
从一个顶点出发,分别画两条同样长的边,这样就确保有两条边是相等的,然后再连接这两条边,就得到了一个等腰三角形。
师生共画等腰三角形。板书:等腰三角形
4、教学各部分名称:
读“等腰三角形”,想一想,这名字是什么意思?(两条腰相等的三角形)
在图上标出:这两条相等的边,我们就叫它“腰”;这第三条边和它们是不相等的,我们叫它“底”
在底边上的这两个角是相等的,就可以共用一个名字“底角”;剩下的这个角,称之为“顶角”。
三、认识等边三角形:
1、刚才有的同学画的等腰三角形,看上去三条边都是相等的。如果真是那样,那它还有一个名字,叫“等边三角形”。
2、为了确保三条边都相等,我们可以这样折:取一正方形形纸,边折边示范,并讲清楚为什么要这样折?
剪下后,量一量每条边是不是真都一样长?在量的过程中,你还有什么发现?(3个角也都相等,都是60度)
3、画等边三角形:很容易保证两条边相等,但保证三条边都相等有一定的困难,所以等边三角形不好画。你有什么办法?
方法一:根据角度来画。比如先画一条长3厘米的线段,然后分别画出60度的角,如果两边正好会合,正好都是3厘米,那就说明画得很准确。
方法二:根据高来画。比如先画一条3厘米的线段,然后在1.5厘米处画高,从端点出发到高量出3厘米,并画下来,再画另一条,就得到了等边三角形。
学生动手画一画。
四、完成想想做做:
1、下面物体的面,哪个是等边三角形,哪个是等腰三角形?
指名说一说,并说明理由。
2、用一张正方形纸,沿对角线剪开。剪出的两个三角形是等腰三角形吗?是直角三角形吗?www.
分别请学生说说判断的理由。指出:三角形可以按角来分也可以按边来分,这是两种不同的依据可得到不同的结果。
3、画出下面每个图形的另一半,使它成为一个轴对称图形,并说说这几个轴对称图形都是什么三角形。
指出:既然是对称的,那肯定有两条边是相等的,那就是等腰三角形。
4、在点子图上画出有一个角是直角的等腰三角形,再画出每个角都是锐角的等腰三角形。
老师注意巡视检查,也可请几个学生说说自己怎么画的,怎么想的?
5、教学你知道吗?
五、课堂作业:
第32页第5、6、7题。在写之前可先组织学生说说各题是怎么思考的。
板书设计:
等腰三角形和等边三角形
两条边相等的三角形是等腰三角形
三条边都相等的三角形是等边三角形
[人教版三角形教案_小学数学教学设计]
篇12:小学六年级数学《实际问题》试题
小学六年级数学《实际问题》试题
一、细心填写:
1、20米是16米的( )%,20米比16米多( )%;
16米是20米的( )%,16米比20米少( )%。
2、完成计划的百分之几=( )( )
读了全书的百分之几=( )( )
实际比计划节约百分之几=( )( )
今年比去年增产百分之几=( )( )
二、解决问题:
1、电视机厂五月份计划生产电视机台,结果多生产500台。超产百分之几?
2、电视机厂五月份生产电视机2500台,比原计划多生产500台。超产百分之几?
3、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?
4、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?
5、三年级有学生360人,男生与女生人数比是5:4。三年级男生人数比女生多百分之几?
6、鸡的只数比鸭少20%,鸭的.只数比鸡多百分之几?
7、老王花1260元买了一台洗衣机,比促销前便宜了240元。便宜百分之几?
8、老李计划生产2000个零件,实际超额完成400个。超额完成百分之几?实际生产的零件数是计划的百分之几?
篇13:《两步计算解决实际问题练习》数学教学设计
《两步计算解决实际问题练习》数学教学设计
教学目标:
通过练习,进一步弄清口算时进位加与不进位加、退位减与不退位减以及加与减在方法上的异同,进一步沟通知识之间的联系。
教学重难点:
通过练习,进一步弄清口算时进位加与不进位加、退位减与不退位减以及加与减在方法上的.异同,进一步沟通知识之间的联系。
教学过程:
一、导入课题
二、基本题练习
1、完成P46(1)
口算卡片出示。
指名口算。
先比较前两组每组上下两题的区别和联系。
再比较前两组每行左右两题的区别和联系。使学生明白加、减法在算法上的共同之处。
2、完成P46(2)
同桌两人合作练习。
一人操作,一人口算,再交换角色继续练习。
三、综合题练习
1、完成P46(3)
先明确题目要求,再交流估算方法。
在书本上用“○”圈出得数比50小的算式,用“□”圈出得数比50大的算式。
交流订正。
2、完成P46(4)
直接写得数。
注意速度。
3、完成P46(5)
要求提一个一步计算的问题。
指名提问,并口算出结果。
四、练习小结
五、布置作业
P46(5)
二次备课
篇14:二年级下册数学《两步计算实际问题》教学设计
二年级下册数学《两步计算实际问题》教学设计
教学目标
知识与技能:掌握解决乘加、乘减实际问题的过程及思考方法和解题策略。
数学思考:培养学生分析综合和简单体力能力。
解决问题:能运用所学知识解决乘加、乘减的实际问题。
情感与态度:体验解决问题的成功快乐,体会数学价值。
教学流程
一、创设情境,激趣导入
谈话:猴山上的桃熟了,大猴和小猴采了一些桃,小朋友们想不想去看看,不过小猴说去了要能帮它解决实际问题,你们看行吗?
二、探求新知
1、教学例题
①揭示例题情境图引导学生观察
②提问:怎样才能求出大猴和小猴一共采了多少个桃?
③引导:从问题想起。
④要求学生独立思考自己列式解答后再进行交流。
⑤学生汇报,老师板书:
12×3=36(个)
36+6=42(个)
⑥回顾:解决这个问题,我们用了几步计算?
板书课题:两步计算实际问题、
(2)提问:第一步算出的是什么?第二步呢?第二步为什么用减法计算?
反馈后教师板书:
12×3=36(个)
36-6=30(个)
强调:解决这个问题同样要先算出什么?
(3)比较:解答例题和试一试,这两个问题的过程,有什么相同地方和不同地方?
小组讨论后在班上交流
2、教学试一试
(1)谈话,要求大猴比小猴多采多少个?应该先算什么?再算什么?先独自计算,再与同桌交流。
三、巩固练习
1、做“想想做做”第1题
(1)学生读题后提问,题目中有哪些已知条件?要求我们解决什么问题?
(2)学生独立解答
2、做“想想做做”第2题
先在小组里说说自己的想法,然后练习。
四.全课总结:
提问:这节课我们学习了什么内容?
谈话:今天解决的实际问题比较复杂,需要两步计算,关键是要确定先算什么。
五、作业
做“想想做做”第3题
教后记:
篇15:列方程解决实际问题教学设计
教学目标:
1、让学生在解决实际问题的过程中,理解并掌握形如ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、让学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
3、让学生在积极参与数学活动的过程中,养成独立思考、主动与他人合作交流、自觉检验等习惯。
教学重点:
正确分析题中数量间的相等关系,并列出方程,提高用方程解答实际问题的能力。
教学难点:
合理地用字母或含有字母的式子表示题中两个未知的数量。
教学过程:
一、联系生活,引出问题
1、谈话导入:同学们,上节课我们一起游览了我国有名的历史文化名城——西安,在那里了解了闻名遐迩的古代建筑——大雁塔和小雁塔。今天我们要去北京的颐和园游览。
(出示颐和园的图片)指出:这是颐和园,坐落在我国的首都北京,它是清代皇家的园林,为我国古典园林之首,也是世界著名园林之一。你知道它的占地面积是多少吗?(出示例2的文字部分:北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。)
2、提出问题:你从题目中知道了些什么?你还想知道些什么?
3、出示问题:颐和园的陆地和水面大约各有多少公顷?
颐和园的陆地比水面大约多多少公顷?
颐和园的水面比陆地大约少多少公顷?
指出:下面两个问题要在解决第一个问题的基础上才可以完成。下面我们就一起来探讨第一个问题。
二、探索交流,解决问题
(一)继续教学例题
1、学习用线段图分析数量关系
启发:颐和园的水面面积与陆地面积之间有什么关系?为了看得更加直观和清楚,我们可以用什么样的方法来表示题目中的水面面积与陆地面积之间的关系呢?(引导学生用线段图的方法表示题中的数量关系)
提出要求:请同学们在课练本上试着画一画。(师巡视,注意辅导有困难的学生)
2、找出题中的等量关系
提问:根据题中的哪一句话可以找出数量间的相等关系?请同桌两个人互相说一说。
指名口答。
根据学生口答完成板书:
颐和园水面面积+陆地面积=颐和园的占地面积
3、尝试解答
提问:根据这个数量关系我们可以怎样列方程?请同学们试着列出方程。
板书:x+3x=290
观察:这个方程与我们前面所学习的方程有什么不同之处?同学们会解吗?请大家试试看。
交流:谁来说说你是怎样解的?(当学生说出首先计算“x+3x=4x”时追问:这样做有什么依据?)
小结:我们在解答这个方程时,利用乘法分配律,首先将方程化简,变成一般方程,然后再解。
4、进行检验
启发:如何知道我们求出的这个解是否正确呢?
你准备怎样检验呢?
学生口答,师板书检验过程:
72.5+217.5=290(公顷)
217.5÷72.5=3
(也可以把求出的解代入原方程进行检验,并分别看3x的值是否等于217.5,x+3x的和是否等于290。)
篇16:《一元一次方程与实际问题》教学设计
【教学背景】:
本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。
【教学目标】:
(一)知识与技能:
1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;
2、熟练掌握追及问题中的等量关系。
(二)过程与方法
培养学生观察能力,提高他们分析问题和解决实际问题的能力。
(三)情感态度价值观:
培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。
【教学重难点】:
1、重点:找等量关系列一元一次方程,解决追及问题。
2、难点:将实际问题转化为数学模型,并找出等量关系。
【教学方法】:
探究式
【教学过程】:
一、创设问题情景,引入新课:
1、行程问题中有哪些基本量?它们间有什么关系?
2、行程问题有哪些基本类型?
二、知识应用,拓展创新:
行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。
三、例题讲解
例1(同时不同地)甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。两人同时出发,同向而行,几秒后乙能追上甲?
分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而两人跑步所用的时间是相同的。所以有等量关系:乙走的路程—甲走的路程=100
解:设x秒后乙能追上甲
根据题意得5x—3x=100
解得x=50
答:50秒后乙能追上甲。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)中的同时不同地问题,以后遇到此类题,该如何解决。
例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。如果让黄色马先跑1s,棕色马再开始跑,几秒后可以追上黄色马?
分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。
解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)中的同地不同时问题。
归纳小结:列方程解应用题的一般步骤:
审—通过审题明确已知量、未知量,找出等量关系;
设—设出合理的未知数(直接或间接);
列—依据找到的等量关系,列出方程;
解—求出方程的解;
验—检验求出的值是否为方程的解,并检验是否符合实际问题;
答—注意单位名称。
练一练:(环形跑道问题)甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240米。两人同时同地同向跑,几秒后两人第一次相遇?
分析:本题属于环形跑道上的追及问题,两人同时同地同向而行,第一次相遇时,速度快者比速度慢者恰好多跑一圈,即等量关系为:甲走的路程—乙走的路程=400
解答由学生完成。
本节知识归纳:
1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;
2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。
3 、用示意图辅助分析数量间的关系便于我们列方程。
四、作业布置:(见补充题)
【课后反思】:
通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。
篇17:《一元一次方程与实际问题》教学设计
课题
一元一次方程与实际问题——配套问题
课型
习题课
教材
人教版
对象
初一学生
执教者
教材分析
作为实际问题中的重要部分,配套问题是学生进入实际问题的关键环节。在对一元一次方程的解法进行了充分学习之后,如何将刚学到的知识投入到学习中是至关重要的过程,这决定了学生的学习质量与思维拓展。尽管在方程解法的学习中学生已经思考并尝试将其投入到实际问题的解决中,但往往这样的投入是在为学习方程解法服务。在这一部分,学生将进一步练习如何将实际问题转化为数学模型,利用方程将其合理解决。
学情分析
对于学生而言,尽管已经学习了方程的解法,但是在面对一些实际问题时,很多学生依然不习惯使用方程方法,而是依然使用小学的算数方法,虽然在一些简单的问题中,算数方法更有优势,计算更简便,但是在本节课以及之后的一些实际问题中,使用算数方法将无从下手或非常复杂,因此学习如何使用一元一次方程来解决实际问题成为本阶段的重点。
教学目标
1、基本会用一元一次方程解决配套问题;
2、培养学生运用一元一次方程分析和解决实际问题的能力;
3、体现一元一次方程与实际生活的密切联系,渗透建模和转化的数学思想。
教学重点
用一元一次方程解决配套问题
教学难点
分析配套问题数量关系,寻找等量关系列出方程
教学过程
教学环节
教学内容
预设意图
创设情景
提出问题
复习巩固:解此方程:x-2(x-3)=3x+5(x-1)(3min)
例1:某车间有22名工人,每人每天可以生产1200个螺钉或20xx个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(12min)
问题1:思考解决实际问题的步骤应该是什么?
审题(抓信息)-找关系(等量关系)-列方程(用含未知数的式子)-解决问题
问题2:在此题目中,每天生产的螺钉数量与每天生产的螺母数量该怎么表示?
(每天生产的螺钉数量=生产螺钉的工人数量×每人每天可以生产的螺钉数量,同理每天生产的螺母数量=生产螺母的工人数量×每人每天可以生产的螺母数量)
问题3:根据题目,每天生产的螺钉和螺母如果想刚好配套,它们之间应该满足怎样的数量关系?
(每1个螺钉需要配2个螺母,则,即2×螺钉数量=1×螺母数量)
问题4:总结以上关系,思考我们应该设怎样的未知数才更方便于解决这个问题?
(由问题2和问题3,得:螺钉工人数×每人生产螺钉数×2=螺母工人数×每人生产螺母数,其中每人生产螺钉数与螺母数均已知,则需要找到螺钉工人数与螺母工人数之间的关系,又总人数为22人,则螺母工人数=22-螺钉工人数,设螺钉工人数为x即可)
问题5:根据以上分析,此方程可以如何列出?
从解方程开始,复习巩固方程的解法,并引出实际问题的解决方法,在此过程中,将问题逐步拆解,分解为一个个小的问题,再层层递进,得出最后的答案,在此过程中逐步感受配套问题乃至实际问题的基本思路。
探究归纳
变式探究:(仅需列出方程)
1、若每1个螺钉与3个螺母配成一套,则需要怎么安排生产螺钉和螺母的工人?
2、若每2个螺钉与3个螺母配成一套,则需要怎样安排生产螺钉和螺母的工人?
3、若每n个螺钉与m个螺母配成一套,则螺钉数量与螺母数量之间是什么关系?(8min)
思考:解决配套问题中,我们应该怎样寻找数量关系?
从已有的知识结构出发,不让学生在思维上出现跳跃,逐层递进,通过刚思考过的例子作为依据,进行相同类型题目的变式联系,将探究作为切入点,再对一般的情况进行归纳总结,从具体的数字到一般的情况,逐步推进,体会将未知化为已知的数学探究的乐趣。
跟踪练习
例2.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)
思考:等量关系是什么?如何设未知数并列出方程?(5min)
解:设用x立方米的木材做桌面,则用(10-x)立方米的木材做桌腿。
根据题意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张)。
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300张方桌。
例3.服装厂要生产一批某种型号的学生服,已知每3米布料可做上衣2件或裤子3条,计划用600米布料生产学生服,应该分别用多少米布料生产上衣或裤子恰好配套?(一件上衣配一条裤子)(5min)
解:设用x米布料生产上衣,那么用(600-x)米布料生产裤子恰好配套。
根据题意,得:
x=600-x,解得:x=360,则600-x=600-360=240(米)。
答:应该用360米布料生产上衣,用240米布料生产裤子恰好配套。
在得出一般化的方法后,再利用学到的知识对问题进行解决,这是数学学习的一般办法,也是解决问题的重要手段,在实际问题这一部分的学习中,这样的思考尤为重要。
课堂小结
课外作业
总结:本节课你有哪些收获?(2min)
1、思路上,对解决实际问题的一般方法有了大致的感受,对于配套问题的等量关系的.寻找有了方向,体会了用方程解决实际问题的便利性。
2、方法上,体会如何利用题目给的信息并分析题目的含义,合理地设未知数来解决实际性的问题。
当堂检测:(5min)
完成《课堂小练习》
作业:
限时作业一张
让学通过自己的语言表达学习的收获,在本节课即将结束的时候,让学生自我总结,加深印象,培养学生的自我总结能力,也帮助学生重新回顾重点知识和数学思想。
板书设计
一元一次方程与实际问题——配套问题
例1:
解:设应安排x名工人生产螺钉,(22-x)名工人生产螺母
依题意,得
20xx(22-x)=2×1200x
解方程,得x=10.
所以22-x=12
答:应安排10名工人生产螺钉,12名工人生产螺母
配套问题数量关系:若每n个螺钉与m个螺母配成一套,则m×螺钉数量=n×螺母数量
篇18:《一元一次方程与实际问题》教学设计
1、教学内容分析
电话计费问题是生活中的常见问题。具有一定的现实性和开放性。生活中的数学问题大多是具有开放性的综合问题。所以对这类问题的探究是数学回归生活,服务于生活的需要。本节课是实际问题与一元一次方程的最后一课。设置这一探究的目的不仅是解决这个具体问题。而是通过这个问题的解决过程,让学生进一步体验建模解题的过程。
2、学习者分析
学生通过之前的学习。比较熟悉在一些典型问题中用方程模型。而对于电话计费问题这样的综合性问题。还缺乏解决问题的经验。容易无所适从或片面理解。
3、学习目标确定
知识目标:进一步培养学生列方程解应用题的能力。
情感目标:通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力。
4、学习重点和难点。
重点:引导学生弄清题意,设计出各类问题的答案。
难点:把生活中的实际问题抽象成数学问题。
5、学习评价设计
新课程理念强调“经历过程与获取结论同样重要",对数学知识的获得来说,过程比结论更有意义。我们不能把学生看成是一个“容器”,尽可能往里面塞知识,也不能把学生训练成只会解题的“机器”,而应该让他们投入到知识的获取过程中去。在过程中徼发学生学习兴趣和动机,展现他们得让思路和方法,使他们学会学习;进而从过程中建构进取型人格,通过过程中的“成就感”来完善自我。这是目前学生最需要的。因此本节课我采用“问题—探究—发现”的探究性教学方式。
在学法指导上,本节课主要通过学生自主探索,概括出单项式及其相关概念。在课堂。上充分体现了学生的主体性地位和学生学习的规律,及发现知识一探索知识——掌握知识一运用知识的学习过程。
6、学习活动设计
教师活动
学生活动
环节一(根据课堂教育学的程序安排)
教师活动1
问题导学:
下表中有两种移动电话计费方式:
月使用
费/元
主叫限定
时间/分
主叫超时费/
(元/分)
被叫方式一
58
150
0.25
免费
方式二
88
350
0.19
免费
考虑下列问题:
(1)设一个月内用移动电话主叫为t分(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
教师提出问题:
1、从表格中的数据,你能把主叫时间分为几部分?
2、你能分别把主叫时间不同的话费情况用含t的代数式表示出来吗?
3、(1)在两种收费方式下,会不会有这么一个时间,打不同样多时间的电话,却收费相同呢?
(2)如果有这一时间,那么如何分别表示收费表达式呢?(“收费相等”是本题列方程的等量关系)
4、你能根据表格判断两种收费方式哪种更合算吗?
学生活动:
教师提问,学生思考回答。教师对回答的方向适当给予提示。如月使用费的比较,超时费的比较等。然后,教师举出一两个具体的主叫时间,让学生通过简单计算回答相应的费用。
活动意图说明
通过提问和学生的回答,了解学生对表格信息的理解能力。引导学生对。表格信息做初步梳理和简单加工。通过对几个容易计算的主叫时间的话费计算,检验学生是否理解表格信息的含义,并渗透话费多少与主叫时间相关。
环节二
教师活动2
(1)学生充分交流讨论后完成表格:
主叫时间(t/min)
方式一(计费/元)
方式二(计费/元)
t<150
58
88
t=150
58
88
150<t<350
58+0.25(t-150)
88
t=350
58+0.25(350-150)=108
88
t>350
58+0.25(t-150)
88+0.19(t-350)
(2)观察上表,可以看出,主叫时间超出限定时间越长,计费越多,并且随着主叫时间的变化,按哪种方式的计费少也会变化。
①从表格中,可以看出当t≤150时,按方式一的计费少。
②当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能某一主叫时间,两种方式的计费相等。列方程58+0.25(t-150)=88,解得t=270。故当t=270时,两种计费方式相同,都是88元,当150<t<270时,按方式一计费少于按方式二计费;当270<t<350时,按方式一计费多于按方式二计费。
③当t=350时,按方式二计费少。
④当t>350时,可以看出,按方式一的计费为108元加上超出350 min的部分超时费0.25(t-350),按方式二的计费为88元加上超时费0.19(t-350),故按方式二的计费少。
根据以上的分析,可以发现当t<270 min时,选择方案一省钱;当t>270 min时,选择方案二省钱。
学生活动2
理解问题的本身是列方程的基础,本例通过表格形式给出已知数据,让学生根据问题展开讨论,帮助理解,培养学生的读题能力和收集信息的能力.
活动意图说明
学生对电话计费问题是有生活基础的,所以也具备一定的认识基础,再给出探究问题之后让学生充分的发言。表达自己对问题的直观认识,这也是学生对问题的第一次认识,在此基础上,学生之间通过发表意见互相借鉴,为对问题的进一步探究进行准备。
环节三
教师活动3
练习:课件习题练习
学生活动3
教师提出问题,学生思考并制作表格,教师巡视。
活动意图说明:学生在参考了其他学生的观点之后,再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确立分类讨论的探究方式,并在总结学生发言的基础上归纳出分类的关键点。使学生的学习由感性认识逐步过渡到理性认识。
7、板书设计
(1)设一个月内用移动电话主叫为t分(t是正整数)。根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费。
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法。
8、教学反思与改进:
创设问题情境,联系生活实际,激发学习动机,将学生置于问题情境中.鼓励学生动手动口,增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题,学会能在不同的角度去探求生活经验从而让学生掌握知识。
篇19:浅谈小学数学创新教学 (人教版)
内容提要:通过数学的教学能够开发学生的创新潜能,开发和培养学生的创新精神和创新能力。创新课堂教学方法--激发学生的学习数学兴趣,鼓励学生不断探索数学问题,培养学生流畅、变通、独创及精密的思考能力,获取数学知识的能力,重视学生在数学学习上的主体参与作用,才能实现学生的数学创新潜能和意识的培养,在数学课堂教学中真正做到了向40分钟要质量,让数学走向生活化。
关键词:素质教育 创新潜能 创新能力 创新活动 小学生
创新教育是素质教育的一个重要组成部分,创新教育并不是离开素质中起炉灶,另搞一套,而是素质教育要以培养学生的创新精神和实践能力为重点,创新教育就是以培养人的创新精神和创新能和为基本价值取向的教育。创新是实施素质教育的关键,*创新是一个民族的灵魂,是国家兴旺发达的不竭动力”。诺贝尔物理奖得主美籍华人朱棣文曾一针见血指出:“中国学生学习很刻苦,书面成绩很好,但动手能力差,创新精神明显不足,这是与美国学生的主要差距。”我认为这一评价非常中肯、切中时弊。那么我们的学生创新精神和创造能力是怎样失去的呢?根本原因在教育本身,负担太重--考试频繁、资料繁多、死记硬背、作业机械重复,磨灭了学生学习的兴趣和对数学现象的好奇心,题海战术泯灭了学生的创造性思维,学生参加数学活动几乎是一种被动的行为。
当前,在新课标的指导下,在创新性的课堂教学中,我们必须牢固地确立以学生为中心的教育主体现,以学生能力发展为重点的教育质量观,以完善学生人格为目标的教育价值观。教师应充分地尊重学生的个体差异,把学生看作发展中的人,可发展的人,人人都有创造的潜能;学生要创造性地学数学,数学教学就要充满创新的活力;于是,在数学课堂教学中,教师应意识到创新课堂教学方法。
一、创设问题情境,启发学生思维
问题情境具有强烈的吸引力,能激发学生对学习的兴趣,引发学生的创新性思维,因此,教师在教学活动中应该有意识地创设问题情境,激发学生的探索新知的欲望,引导他们体验解决问题的快乐,从而促进创新性思维的发挥。
例如:在教学“小数的性质”时,设计一个有趣的问题,谁能在5、50、500后填上适当的单位,并用等号将它们连接起来?学生为之感到新奇,议论纷纷。有的说加上元、角、分可得到5元=50角=500分,有的说加上米、分米、厘米可得到5米=50分米=500厘米,此时教师提出能不能用同一单位把上面各式表示出来,于是学生就得出5元=5.0元=5.00元,5米=5.0米=5.00米,对于这几数之间是否相等正是我们要学习的“小数的性质”,这样的情境创设,形成悬念,培养了学生对知识探究的能力和习。
二、创设良好的学习情境,激发学生学习的主动性、积极性,培养学生的创新思维。
我们的课堂教学形式单调,内容陈旧,知识面窄,严重影响学生对数学的全面认识,难以激起学生的求知欲望、创造欲。新课标中指出:“数学教学应从学生实际出发,创设有助与学生自主学习的问题情境”。认知心理学关于学习机制的最新研究成果揭示了学习主动性的本质是认识主体的主动建构。只有当认识主体意识到是其自身在影响和决定学习成败的时候,生动建构才有可能实现。从认识论意义上看,知识总是情境化的,而且在非概念水平上,活动和感知比概念化更加重要,因此只有将认识主体置于饱含吸引力和内驱力的问题情境中学习,才能促进认识主体的主动发展。
鉴此,教师必须精心创设教学情境,有效地调动学生主动参与教学活动,使其学习的内部动机从好奇逐步升华为兴趣、志趣、理想以及自我价值的实现。教师就教学内容设计出富有趣味性、探索性、适应性和开放性的情境性问题,并为学生提供适当的指导,通过精心设置支架,巧妙地将学习目标任务置于学生的最近发展区,。让学生产生认知困惑,引起反思,形成必要的认知冲突,从而促成对新知识意义的建构。因此,在创造性的数学教学中,师生双方都应成为教学的主体。在一节数学课的开始,教师若能善于结合实际出发,巧妙地设置悬念性问题,将学生置身于“问题解决”中去,就可以使学生产生好奇心,吸引学生,从而激发学生的学习动机,使学生积极主动参与知识的发现,这对培养学生的创新意识和创新能力有着十分重要的意义。如:讲勾股定理时,教师可出营造情境--建房施工放线,在没有三角板和量角器的情况下,怎样使得拉出的线框每个角都是直角,为什么?华东师大出版社的课改教材七年级(下)6.3节时,可设疑“为了装饰墙报,准备用长80分米的彩条围一个长方形,但好的作品太多,怎样围才能张贴出更多的作品呢?”这样设计,迅速点燃学生思维的火花,使学生认识了数学知识的价值,从而改变被动状态,培养学生主动学习精神和独立思考的能力。
三、鼓励学生自主探索与合作交流,利于学生创新思维的发展。
解决问题的关键是教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同发展的过程。”弗赖登塔尔曾经说:“学一个活动最好的方法是做。”学生的学习只有通过自身的探索活动才可能是有效地,而有效的数学学习过程不能单纯地依赖模仿与记忆;建构主义学习理论认为,学习不是一个被动吸收、反复练习和强化记忆的过程,而是一个以学生己有知识和经验为基础,通过个体与环境的相互作用主动建构意义的过程。创造性教学表现为教师不在于把知识的结构告诉学生,而在于引导学生探究结论,在于帮助学生在走向结论的过程中发现问题,探索规律,习得方法;教师应引导学生主动地从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在课堂教学中应该让学生充分地经历探索事物的数量关系,变化规律的过程。如例:完成下列计算:1+3=?
1+3+5=?
1+3+5+7=?
1+3+5+7+9=?
┅ ┅
根据计算结果,探索规律,教学中,首先应该学生思考,从上面这些式子中你能发现什么?让学生经经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程。教学中,不要仅注意学生是否找到规律,更应注意学生是否进行思考。如果学生一时未能独立发现其中的规律,教师就鼓励学生相互合作交流,通过交流的方式发现问题,解决问题并发展问题,不仅能将“游离”状态的数学知识点凝结成优化的数学知识结构,而且能将模糊、杂乱的数学思想清晰和条理化,有利于思维的发展,有利于在和谐的气氛中共同探索,相互学习,同时,通过交流去学习数学,还可以获得美好的情感体验。
四、注重开放题的教学,提高创新能力。
沿袭以久的教育内容和方法不利于培养学生的创新品质。数学作为一门思维性极强的基础学科,在培养学生的创新思维方面有其得天独厚的条件,而开放题的教学,又可充分激发学生的创造潜能,尤其对学生思维变通性、创造性的训练提出了新的更多的可能性,所以,在开放题的教学中,选用的问题既要有一定的难度,又要为大多数学生所接受,既要隐含“创新”因素,又要留有让学生可以从不同角度、不同层次充分施展他们聪明才智的余地,如:调查本校学生的课外活动的情况,面对这个比较复杂的课题,一定要给学生以足够的时间和空间进行充分的探索和交流。首先学生要讨论的问题是用什么数据来刻画课外活动的情况,是采用调查和收集数据。接着的问题是“可以调查那些呢?”对此,学生可能有很多想法,对学生提供的办法不要急于肯定或否定,应让学生通过实际操作和充分讨论,认识到不同的样本得到的结果可能不一样,进而组织学生深入讨论:从这些解释中能作出什么判断?能想办法证实或反驳有这些数据得来的结论吗?这是一个开放题,其目的在于通过学习提高学生的发现问题、吸收信息和提出新问题的能力,注重学生主动获取知识、重组应用,从综合的角度培养学生创新思维。
四、尊重学生个体差异,实施分层教学,开展积极评价。
美国心理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略;在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
我在教学工作中,体会到数学课堂应创设富有探索性、挑战性的问题,让学生通过自主探索和合作交流,不仅能更好地激发学生的学习兴趣,更重要的是培养学生的创新意识和创造能力,实施课堂教学的过程中,注重引导学生在课堂活动过程中感悟知识的发生、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神。将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生的主动学习与创新意识的培养落到实处。由于小学生的教学创新思维能力需要有一个长期培养的训练过程,因此,教师要有意识地结合教学内容进行,在教学中要遵循学生认知规律,重视学生获取知识的思维过程,通过操作、观察、引导学生进行分析,比较、综合,在感性认识的基础上加以抽象、概括、进行简单的判断、推理、启发学生动脑筋、想问题,鼓励学生质疑问难,提出自己的独立见解,培养学生能够有条理,有根据地进行思考。
3、《小学数学教学方法》
篇20:小学数学教学设计
教学目标:
1、经历以米、厘米为单位正确测量物体长度的过程,体验1米到底有多长,并会估计物体的长度。
2、体会米的含义,知道厘米、米之间的关系。
3、在活动中体验测量与生活的密切联系,激发学生学习数学的兴趣,发展学生的空间观念。
教具准备:
新铅笔、米尺、数学课本、文具盒、1米多长的绳子。
教学过程:
一、创设情境
1、师生利用课前共同准备的直尺、三角板、等工具测量小组中各物品的长度。
2、指导学生同桌合作,用不同的测量工具测量绳子的长度。
学生在测量的过程中会随机比较、选择用哪些测量工具比较合适。(主要是直尺或米尺)
3、用米尺测量课桌的长度。
二、体验探究
1、认识米,知道1米有多长。
2、让学生以组为单位,直观体验1米有多长。
3、学生在观察、交流过程中认识米与厘米之间的关系。
归纳:100厘米=1米 1米=100厘米 1m=100cm
4、让学生联系身边的事物,找出几种长度是1米的物品。
三、实践应用
1、1米大约等于几枝铅笔的长度?
2、学生自主量一量教室中比较大的物体的长度(或高度)。教师要与学生共同完成测量活动。
3、出示书中5页练习题。
4、课外小作业:让学生回家测量家中物体的长度。
让学生自己操作既符合儿童的心理需求,调动学生的学习积极性,又可以为后面的测量做好铺垫,培养学生发散思维。
让学生充分发挥自主性,通过动手操作亲自感知,从实践中总结出“量比较长的物体或距离,通常用‘米’做单位”。
对1米多长的绳子的测量以及1米20厘米的书写既是对用米做单位的再次体验,又为后面的练习做好了铺垫。
让学生以一把米尺为准,直观体验1米有多长。
这种徒手做动作既使学生感兴趣,乐于参与的活动,又是让学生再次体验,从而建立1米有多长的空间观念。











